Simultaneous OPC- and CMP-Aware Routing Based on Accurate Closed-Form Modeling

Shao-Yun Fang, <u>Chung-Wei Lin</u>, Guang-Wan Liao, and Yao-Wen Chang

March 26, 2013

Graduate Institute of Electronics Engineering Department of Electrical Engineering National Taiwan University

Outline

Simultaneous OPC- & CMP-Aware Routing

- In modern process, distortion which may occur in three dimensions should be minimized
 - Optical Proximity Correction (OPC)
 - Minimize pattern width and length distortion
 - Dummy insertion for chemical-mechanical polishing (CMP)
 - Minimize pattern thickness variation
- OPC and CMP must be considered in the routing stage to minimize the total distortion

Optical Proximity Correction (OPC)

- Optical proximity correction (OPC) changes layout pattern shapes for better printed pattern quality
- Layout patterns may be too closed to reserve enough spacing for OPC

OPC-Aware Routing

- Routing without OPC consideration may produce OPCunfriendly patterns
 - A time-consuming layout modification process is then required by OPC engineers

Cu Damascene Process

□ The Cu metallization (damascene) has two main steps

- Electroplating (ECP)
 - Deposit Cu on the trenches
- Chemical-mechanical polishing (CMP)
 - Remove Cu that overfills the trenches

open trenches

CMP

CMP Process

CMP contains both chemical and mechanical parts

- Chemically: abrasive slurry dissolves the wafer layer
- Mechanically: a dynamic polishing head presses pad and wafer
- Great interconnect performance and systematic yield loss are observed after CMP

Dummy Fill

- The inter-level dielectric (ILD) thickness after the CMP process strongly depends on pattern densities
 - Metal dishing and dielectric erosion
- Reasons
 - The hardness difference between metal and dielectric materials
 - The non-uniform distribution of layout patterns

dielectric

design feature

Dummy Fill

- The inter-level dielectric (ILD) thickness after the CMP process strongly depends on pattern densities
 - Metal dishing and dielectric erosion
- Reasons
 - The hardness difference between metal and dielectric materials
 - The non-uniform distribution of layout patterns
- Dummy fill is the major technique to enhance the layout pattern uniformity

CMP-Aware Routing

□ Maximize wire-density uniformity

- ILD thickness may still suffer from large variation after CMP
- The uniformity may limit the flexibility of dummy insertion
- □ Maximize dummy insertion controllability

Outline

Previous Studies on OPC-Aware Routing

- Chen et al. [TCAD'10] developed the first modeling of the post-layout OPC
 - A quasi-inverse lithography technique is used to predict post-OPC layout shapes
 - Off-axis illumination (OAI) is not considered
- Ding et al. [DAC'11] proposed a generic lithographyfriendly detailed router
 - Data learning techniques are used for hotspot detection and routing path prediction
 - Pattern thickness variation is not considered

Previous Studies on CMP-Aware Routing

- All previous CMP-aware routers try to avoid dummy insertion by maximizing wire-density uniformity
 - Dummy insertion may still be required after routing
 - Multi-layer accumulative effect causes different target densities in one routing layer

bigger thickness variation due to the accumulative effect

Outline

OPC Routing Cost Derivation (1/3)

□ The electric field of a 1D pattern

$$E(x) = \begin{cases} 1, np - \frac{w}{2} \le x \le np + \frac{w}{2}, n = 0, \pm 1, \pm 2, \dots \\ 0, \text{ otherwise} \end{cases}$$

□ The electric field on a lens *L*

$$E_L(x) = \sum_{n=-\infty}^{\infty} \left(\delta\left(x - \frac{n}{p}\right) \frac{\sin(\pi x w)}{\pi x w} \right), \ \delta(x) = \begin{cases} 1, \ x = 0\\ 0, \ \text{otherwise} \end{cases}$$

□ Only the electric field between $-1 \le n \le 1$ will be caught due to the size limitation of a lens

$$E_{L'}(x) = \left(\delta\left(x - \frac{1}{p}\right) + \delta(x) + \delta\left(x + \frac{1}{p}\right)\right) \frac{\sin(\pi xw)}{\pi xw}$$

OPC Routing Cost Derivation (2/3)

□ With OAI, the electric field can be approximated as (πrw)

$$E_{OAI}(x) = \left(\delta\left(x - \frac{1}{p}\right) + 2\delta(x) + \delta\left(x + \frac{1}{p}\right)\right) \frac{\sin(\pi xw)}{\pi xw}$$

The electric field on the wafer

$$E_W(\mathbf{x}) = 2 + \frac{1}{\pi y^2} \cos\left(\frac{\pi x}{py}\right), \ y = \frac{w}{p}$$

The light intensity on the wafer

$$I_{W}(x) = (E_{W}(x))^{2} = 4 + \frac{4}{\pi y^{2}}\cos\theta + \frac{1}{\pi^{2}y^{4}}\cos^{2}\theta, \ \theta = \frac{\pi x}{py}$$

$$I_{t}: \text{ intensity threshold such that pattern will be printed}$$

OPC Routing Cost Derivation (3/3)

□ The width of printed pattern can be computed by

$$x = \frac{w}{\pi} \cos^{-1} \left(\frac{\pi w^2}{(w+s)^2} \left(-2 \pm \sqrt{I_t} \right) \right)$$

Lithography (OPC) cost: the deviation between the original wire width and the printed width

different edges have different OPC costs

Extension to 2D Pattern

- 2D patterns are divided into 1D patterns
- Lithography (OPC) cost: the lithography (OPC) cost corresponding the closest 1D edge
 - Similar to a Voronoi diagram

Outline

Wire Uniformity vs. Density Controllability

Maximum wire uniformity may not achieve maximum density controllability

Maximum dummy fillable area is desirable!

Buffer Space

Two categories of dummy fills

- Tied fills: dummy features are connected to power/ground
- Floating fills: dummy features are left floating
- Enough buffer space should be provided to prevent undesired effects

Density Controllability Maximization

A larger fillable area is more friendly for dummy insertion
 A fillable area can be computed as

$$A_{fillable} = A_{total} - \sum_{i} A_{wire,i} - \bigcup_{i} (A_{S,i} \cup A_{BS,i})$$

- A_{total} : total area
- $A_{wire,i}$: area of wire *i*
- $A_{S,i}$: area of minimum space induced by wire *i*
- $A_{BS,i}$: area of buffer space induced by wire *i* (for reducing coupling capacitance)

CMP Routing Cost Derivation (1/2)

- Try to minimize the increasing non-fillable area while routing a wire
- Cost computation steps
 - Layout expansion
 - Trapezoidal decomposition
 - Closed-form cost calculation

CMP Routing Cost Derivation (2/2)

□ The CMP cost of a point (x,y), $C(x,y) = C_L(x,y) + C_R(x,y)$

- $C_L(x,y)$: increasing non-fillable area on the left side of (x,y)
- $C_R(x,y)$: increasing non-fillable area on the right side of (x,y)
- Each cost can be computed as

$$C_L(x,y) = \begin{cases} \Phi \times l, & D_L(x,y) \ge 2\Phi\\ (D_L(x,y) - \Phi) \times l, & \Phi \le D_L(x,y) \le 2\Phi\\ 0, & \text{otherwise} \end{cases}$$

Outline

Experimental Setup

Platform

- C++ programming language
- 1.2GHz Linux workstation with 8 GB memory
- Benchmark
 - MCNC benchmarks

Design	Size (µm²)	#Layers	#Nets	#Connections	#Pins	Width (µm)	Spacing (µm)
Mcc1	162.0 x 140.4	4	802	1,693	3,101	90	72
Mcc2	548.6 x 548.6	4	7,118	7,541	25,024	90	72
Struct	735.5 x 735.5	3	1,920	3,551	5,471	90	180
Primary1	1128.3 x 748.2	3	904	2,037	2,941	90	180
Primary2	1565.7 x 973.2	3	3,029	8,197	11,226	90	180
S5378	108.8 x 59.8	3	1,694	3,124	4,818	90	90
S9234	101.0 x 56.3	3	1,486	2,774	4,260	90	90
S13207	165.0 x 91.3	3	3,781	6,995	10,776	90	90
S15850	176.3 x 97.3	3	4,472	8,321	12,793	90	90
S38417	286.0 x 154.8	3	11,309	21,035	32,344	90	90
S38584	323.8 x 168.0	3	14,754	28,177	42,931	90	90

Implementation

- Use the OPC and CMP cost models into MR [Chang and Lin, TCAD'04]
 - MR is a multilevel router considering routability and wirelength
 - OPC cost model: deviation of printed width
 - CMP cost model: increasing non-fillable area
 - The two costs are first normalized and then integrated together by equal weights
- Our three routers
 - OPC-MR: MR + our OPC cost
 - CMP-MR: MR + our CMP cost
 - DFM-MR: MR + our OPC cost + our CMP cost
- Overheads
 - <2% wirelength overheads on MR</p>
 - <13% runtime overheads on MR

Comparison of OPC-Aware Routers

Compare OPC-MR with QL-MGR [Chen et al., TCAD'10]

19% improvement in the maximum edge-placement error (EPE)

– 6% improvement in the average EPE

	QL-MGR				OPC-MR			
Design	WL	EPE _{Max}	EPE _{Ava}	CPU	WL	EPE _{Max}	EPE _{Ava}	CPU
	(mm)	(µm)	(µm)	(S)	(mm)	(µm)	(µm)	(S)
Mcc1	102	21	7.1	107	100	13	6.8	13
Mcc2	1,463	18	7.7	2,719	1,456	13	7.5	2,608
Struct	127	17	7.5	5	126	12	7.0	5
Primary1	154	16	7.4	7	154	12	6.9	7
Primary2	626	16	7.4	37	625	12	6.7	35
S5378	18	11	7.3	9	19	10	6.9	9
S9234	14	12	7.4	9	14	10	6.8	9
S13207	42	10	7.5	31	42	10	7.0	30
S15850	53	13	7.4	38	52	12	7.1	37
S38417	114	12	7.4	95	113	11	7.0	93
S38584	160	15	7.3	369	158	11	7.0	354
Avg.	1.00	1.00	1.00	1.00	0.99	0.81	0.94	0.98

 $\mathsf{EPE}_{\mathsf{Max}}$ and $\mathsf{EPE}_{\mathsf{Avg}}$ are computed by Calibre-OPC

Comparison of CMP-Aware Routers

□ Compare CMP-MR with TTR [Chen et al., TCAD'09]

- 19% improvement in post-CMP peak-to-peak thickness (T_{PP})
- 25% improvement in post-CMP thickness variation (T_{Var})

	Ratios of the CMP-MR results vs. TTR's							
Design	Metal 1		Metal 2		Metal 3		Metal 4	
	T _{PP}	T _{Var}	T _{PP}	T _{Var}	T _{PP}	T_{Var}	T _{PP}	T _{Var}
Mcc1	0.83	0.63	0.72	0.65	0.81	0.73	0.70	0.78
Mcc2	0.68	0.46	0.70	0.52	0.78	0.49	0.87	0.53
Struct	1.03	0.78	1.04	0.71	1.05	1.11		
Primary1	1.64	1.23	0.40	0.63	1.13	1.05		
Primary2	0.86	0.63	0.93	1.09	1.16	1.14		
S5378	0.75	1.05	0.90	0.75	0.95	0.83		
S9234	0.72	0.72	0.55	0.57	0.54	0.50		
S13207	1.03	1.09	0.92	0.75	0.99	0.84		
S15850	0.66	0.56	0.69	0.71	0.70	0.71		
S38417	0.72	0.74	0.92	0.83	0.91	0.79		
S38584	0.61	0.83	0.85	0.94	0.78	0.83		
Avg.	0.87	0.79	0.78	0.74	0.82	0.82	0.79	0.66

 T_{PP} and T_{Var} are computed by TSMC VCMP

Effectiveness of DFM-MR

Compare DFM-MR with QL-MGR and TTR

- 13% and 5% improvements in EPE_{Max} and EPE_{Avg} (vs. QL-MGR)
 - Improvements if considering OPC only (OPC-MR): 19% and 6%
- 18% and 16% improvements in T_{PP} and T_{Var} (vs. TTR)
 - Improvements if considering CMP only (CMP-MR): 19% and 25%

	DFM-MR v	s. QL-MGR	DFM-MR vs. TTR		
Design	EPE _{Max}	EPE _{Avg}	T _{PP}	T _{Var}	
Mcc1	0.80	0.97	0.81	0.72	
Mcc2	0.87	0.98	0.78	0.75	
Struct	0.82	0.93	0.95	0.84	
Primary1	0.81	0.95	0.90	0.88	
Primary2	0.76	0.94	0.91	0.95	
S5378	0.92	0.95	0.81	0.93	
S9234	0.92	0.93	0.82	0.98	
S13207	0.89	0.94	0.72	0.81	
S15850	1.01	0.97	0.70	0.81	
S38417	0.94	0.96	0.79	0.79	
S38584	0.84	0.96	0.76	0.80	
Avg.	0.87	0.95	0.82	0.84	

Routing Solutions for Mcc2

Conclusion

- Present the first work simultaneously considering OPC and CMP during the routing stage
- Propose efficient and sufficiently accurate cost models for OPC and CMP-aware routing
- Experimental results show that the router contributes a significant improvement for layout integrity

Thank You!

National Taiwan University