
JOURNAL OF AIRCRAFT

Vol. 40, No. 4, July–August 2003

Simultaneous Optimization of a Multiple-Aircraft Family

Karen Willcox¤

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
and

Sean Wakayama†

The Boeing Company, Huntington Beach, California 92647

Multidisciplinarydesign optimization is considered in the context of designing a family of aircraft. A framework
is developed in which multiple aircraft, each with different missions but sharing common parts, can be optimized
simultaneously.The new framework is used togain insight to the effect of designvariablescaling on the optimization
algorithm. Results are presented for a two-member family whose individual missions differ signi� cantly. Both
missions can be satis� ed with common designs. Moreover, optimizing both airplanes simultaneously rather than
following the traditional baseline plus derivative approach vastly improves the common solution. A cost modeling
framework is outlined that allows the value of commonality to be quanti� ed for design and manufacturing costs.
A notional example is presented to show the cost bene� t that may be achieved by designing a common family of
aircraft.

Introduction

I N today’s competitive environment, the aerospace industry is
faced with the challenge of designing aircraft not only with su-

perior performance, but also at a lower cost. Multidisciplinary de-
sign optimization (MDO) is a tool that has been used successfully
throughout the design process to enable improvements in aircraft
performance.When the effects of aerodynamics,structures,propul-
sion, � ightmechanics,anddynamicsare consideredsimultaneously,
as well as the complicated interaction between them, substantially
improved performance can be achieved.

Studies show that the aircraft industry has evolved to a “domi-
nant design”and that factors such as cost are becoming increasingly
important.1 In the“better,faster,cheaper”era, theaerospaceindustry
is searching for ways to lower costs without compromising aircraft
performance.MDO provides a natural context in which to consider
the tradeoffs between cost and performance. In the same way that
MDO has been used to � nd “optimal” tradesbetween aerodynamics
and structural dynamics, one can conceive of expanding the opti-
mization framework to consider the trades between, for example,
aerodynamics, structural dynamics, cost, and revenue. Whereas in
the past,MDO for aircraft design has focusedalmost exclusivelyon
engineering disciplines and performance-related issues, there is a
clear need to expand its scope to include nontraditionaldisciplines
such as cost.

The question then arises regarding the de� nition of optimal in
the expandedframework. In the past, optimal has been synonymous
with minimum weight; however, this choice of objective function
re� ects the performance-driven design mentality. Whereas weight
is often used as a surrogate for cost, it is clear that the minimum-
weight and minimum-costaircraftdesignsare not the same. Design-
ing exclusively for minimum cost is also not a practical approach
because the impact on revenue potential could be so adverse as to
outweigh the cost savings.This leads us to the concept of designing
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for maximum value, where value is de� ned relative to a particular
stakeholderand captures all relevantconsiderations(such as perfor-
mance, cost, revenue, environmental impact, etc.). The de� nition
of a value metric for aircraft design has been explored recently by
several authors.2;3

One way to reduce costs is to conceive of a family of aircraft
that share common parts and characteristics, such as planform and
systems, but each aircraft satis� es a different mission requirement.
Traditionallythishasbeenachievedthroughtheuseof derivatives.A
baseline aircraft is designed and subsequentlymodi� ed to produce
a number of derivatives to satisfy different missions, for example,
longer range, more payload. When commonality with the existing
base model is taken advantage of, it is possible to achieve the new
mission at a far lower cost than would be incurred if a completely
new airplane were designed. Often, the modi� cations can be sub-
stantial, resulting in an almost entirely new airplane. For example,
the 737 Next Generation has a completely new wing.

In this work, the concept of commonality is taken a step further.
We considernot just commonalitybetweenderivativeaircraftwhose
missions are similar, but between two airplaneswhose missionsdif-
fer signi� cantly. For example, if one could design a small capacity
and a large capacityaircraftwith common characteristics,for exam-
ple, a common wing, substantial savings could be realized in both
recurring cost (manufacturing)and nonrecurringcost (design effort
and tooling cost). The savings from commonality come at a price:
The weight of these common airplanes will be higher than if each
were optimized separately for its own mission. The question then is
whether it is possible to design a family of common airplanes that
satis� es all missions but whose cost saving outweighs the weight
penalty.An example of this exists in practice:The Airbus A330 and
A340 airplanes share common wings.

Fujita et al.4 discuss the simultaneousoptimizationof a family of
products; however, they assume that a baseline has been designed
and then consider the design of derivatives from this baseline. The
mission of these derivatives is fairly close to the original: In the
example they present, the only change to the derivativemission is to
extend the range.In all cases, the derivativecarries the same payload
and retains the original fuselage.

In this paper, we will design a common family from a more fun-
damental approach. We consider the blended-wing–body (BWB),
a revolutionaryconcept for transport that integrateswing, fuselage,
engines, and tail to achieve a substantial improvement in perfor-
mance over a conventional transport5¡7 (Fig. 1). The speci� cs of
the MDO approach are described, and then the simultaneous op-
timization and commonality structure are outlined. An example is
presented in which a family of two BWB aircraft is designed: a
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Fig. 1 BWB.

Fig. 2 WingMOD BWB model.

large, 475-passengerairplaneand a smaller, 272-passengerairplane,
both with 8550-nm range. The framework for value optimization is
described, and an example of program cost analysis is presented.
Finally, we present some conclusionsand directionsof ongoing and
future work.

MDO Framework
As described by Wakayama and Kroo8 and Wakayama,9

WingMOD is an MDO code that optimizes aircraft wings and
horizontal tails subject to a wide array of practical constraints.
WingMOD was initially applied to the design of a composite wing
for a stretchedMD-90 aircraft (Ref. 10) and then went throughcon-
siderable modi� cation for application to the BWB.11;12 The BWB
planform is modeled as a series of spanwise elements as shown in
Fig. 2. Optimization services for WingMOD are provided by the
Genie framework.11

WingMOD uses intermediate� delity analyses to analyzequickly
an aircraft in over 20 design conditions that are needed to address
issues from performance, aerodynamics, loads, weights, balance,
stability, and control. The low computational cost of the interme-
diate � delity analyses allows the examination of all of these issues
in an optimization with over 100 design variables while achieving
reasonable computation time.

The basic WingMOD method models an aircraft wing and tail
with a simple vortex-lattice code and monocoque beam analysis,
coupled to give static aeroelastic loads. The model is trimmed at
several � ight conditionsto obtain loadand induceddrag data. Pro� le
and compressibilitydrag are evaluatedat stations across the span of
the wing with empirical relationsusing the lift coef� cients obtained
from the vortex-lattice code. Structural weight is calculated from
the maximum elastic loads encountered through a range of � ight
conditions, including maneuver, vertical gust, and lateral gust. The
structure is sized based on bending strength and buckling stability
considerations. Maximum lift is evaluated using a critical section
method that declares the wing to be at its maximum useable lift
when any section reaches its maximum lift coef� cient, which is
calculated from empirical data. Balance is evaluated by distributing
weight over the planform.13

The optimizationalgorithmused is sequentialquadraticprogram-
ming (SQP). This algorithm has been shown to work effectively
on the large, nonlinear problems encountered in engineering appli-
cations. In particular, several other unconstrained algorithms were

found to have convergencedif� culties with the largenumberof con-
straints in problems of interest.The nonlinearproblemcan be stated
as

minimize F.x/

subject to ci .x/ ¸ 0; i D 1; 2; : : : ; m (1)

where the vector x contains the n design variables, F.x/ is the
objectivefunction,andci are them constraintfunctions.The Hessian
matrix of F.x/ contains the second-ordervariationsof the objective
function with respect to each design variable and is given by the
n £ n matrix H .x/:
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The SQP algorithmusesa sequenceof line searchesto determinethe
optimum solution to the nonlinearproblem (1). The design space is
modeled as a quadraticobjectivewith linear constraints,using � nite
difference gradient calculations.An approximate Hessian matrix is
constructed from information gathered over the sequence of iter-
ations using the Broyden–Fletcher–Goldfarb–Shanno update (see
Ref. 14). A quadratic programming problem is solved in the ap-
proximate design space to determine an estimated best direction for
improvement. A line search is then executed in the actual design
space, which seeks improvement in the solution.

Amongst other things, convergenceof the algorithm is critically
dependent on the conditioning of the Hessian matrix. Given the
computed optimal solution Nx and the actual optimum x¤, the error
in the computed solution is given approximately by14

kNx ¡ x¤k
2

¼
2"A

pT H .x¤/p
(3)

where "A is the absolute precision and p is any perturbation vector
of unit length. Equation (3) shows that if H .x¤/ is ill conditioned,
then the error in the computed solution can be very large along
certain directions. As stated by Gill et al.,14 because the objective
function will vary much more rapidly in some directions than in
others, an ill-conditioned Hessian is a form of bad scaling. This
scaling problemmay also have an adverseeffect on the optimization
algorithm itself because the objective may vary extremely slowly
along directions associated with a small eigenvalue. In this case,
changes in the objective that are signi� cant may be lost, and the
algorithm will have trouble converging to the exact solution.

The ill conditioning of the Hessian matrix can be quanti� ed by
its condition number given by

·.H / D
¸max.H /

¸min.H / ¸ 1 (4)

where ¸max.H / and ¸min.H / are the maximum and minimum eigen-
values of H , respectively. (Note that because H is a symmetric
matrix, its eigenvalues and singular values are the same.) A matrix
is said to be well conditioned if its condition number is small (»1)
and ill conditioned if · is large.

Therefore, we can ensure that problem (1) is a well-scaled prob-
lem by choosing a linear transformation of the design variables
that minimizes the condition number of the Hessian matrix at the
solution. In practice this is done a posteriori: Once the algorithm
has converged to the calculated optimum, the Hessian matrix is in-
spected,and the designvariablesare scaled if necessary.Experience
has shown that the approachcan be simpli� ed: When only the diag-
onal elements of H .Nx/ are considered and each of these are scaled
to be O(1), the problem becomes suf� ciently well scaled.
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Fig. 3 Modular structural breakdown of BWB.

Simultaneous Optimization with Commonality
The MDO framework described in the preceding section was

altered to allow the simultaneous optimization of multiple aircraft
with varying levels of commonality. Constraints arising from each
of the disciplines were generated for each aircraft in the family.
Commonality between family members was de� ned by dividing
each airplane into components. There were four main structural
components: centerbody, inner wing, outer wing, and winglet, as
shown in Fig. 3. Each of these components can be speci� ed to be
either common or uncommon between family members. If just a
particular component is allowed to vary, then the interface with
a neighboring common component is kept common. An example
might be allowing the centerbodyto vary between family members,
but keeping a common wing. In this case, the interface between the
centerbody and the wing will be kept common.

Because making parts common is a discrete decision, the effect
of varying levels of commonality is assessedvia trade studies rather
than being determined through the optimizer. In the problem setup,
parts can be made common by either enforcing explicit constraints
on their dimensions or linking the dimensions so that they always
have the same value. The ability to link variables was added to the
Genie framework that supportsWingMOD. When a chordat a span-
wise location on airplane 1 is linked to the correspondingchord on
airplane 2, Genie causes changes on either chord to be immediately
re� ected on the other. The optimizer then views each set of linked
variables as a single quantity. This approach is more ef� cient than
havinga designvariablefor each chord and an explicitcommonality
constraint to force the variables to be equal: It eliminates a design
variable and constraint for each linked variable, thus, reducing the
overall size of the combined optimization problem.

Fujita et al.4 state that when the differencebetween product char-
acteristics is large, two independentproducts must be designed be-
cause “commonalization of parts cannot meet with performance
requirement, even though it is effective for cutting cost.” They do
not attempt to quantify a “large difference,” although the examples
they discuss (stretching a baseline design to extend range/payload)
suggest that the missions of each family member are only incre-
mentally different. When the methodology developed here is used,
a solution can be determined that does satisfy all performance re-
quirements, even when the product characteristics are signi� cantly
diverse. Subsequently, a cost analysis can be applied to determine
whether such a design is a viable option.

One approachto designinga common familymightbe to � rst opti-
mize one familymember and thenforce subsequentfamily members
to shareappropriatecommonfeatureswith the establishedplanform.
For example, in designing a small and a large airplane with com-
mon planforms, one could � rst optimize the large aircraft, and then
construct a smaller aircraft from the resulting planform. There are
two problems with this approach. First, as pointed out by Fujita
et al.,4 there is no guarantee that the solution obtained from the � rst

optimization will satisfy all constraints on other family members.
In the two-airplane example, it is likely, although not certain, that
the planform arising from optimizing a large airplane will satisfy
all requirements on the smaller airplane. Moreover, adding a third
member reduces the likelihood of the optimal large airplane plan-
form satisfying requirements of all family members. The second
issue is that this sequential design approach results in a subopti-
mal family. For example, by trading some optimality on the larger
airplane, signi� cant improvement could be obtained in the smaller
plane, resulting in an overall better family solution. This raises the
issue of what the objective should be in the family optimization:
Should the combined weight of the family be minimized, or should
the objectivebe more heavily biased towards a certain family mem-
ber? The results presented in the following section will demonstrate
that simultaneous optimization of an aircraft family overcomes the
limitations of sequential design. A discussion of the choice of ap-
propriate objectives will also follow.

Family Optimization Examples
Results will be presentedfor design of a two-member BWB fam-

ily. The two aircraft satisfy the following mission requirements:
airplane 1, 8550-nm range and 475 passengers and airplane 2,
8550-nm range, and 272 passengers. These two airplanes repre-
sent what might be the smallest and largest aircraft of a family with
more members, that is, this would be the greatestmission difference
of interest. In all cases, the objective is to minimize the maximum
takeoff weight (MTOW).

Example 1: Simultaneous Point Optimization of Two Aircraft
To investigate the new multiple-aircraftoptimization framework,

a test problem was set up. The two airplanes were designed si-
multaneously,but with no commonality constraints.Obviously, the
solution to this problem could be obtained by optimizing each air-
plane separately. Because the actual solution of the problem can
be determined using the conventional approach, validation of and
insight to the new framework can be gained.

This example highlights the importance of design variable scal-
ing discussed earlier. Initially the simultaneousdesign problem was
set up by simply concatenatingthe design variables and constraints
for each airplane and attempting to minimize the sum of the take-
off weights. This combines the 139 design variables and 883 con-
straints of the small airplane with the 150 design variables and 973
constraints of the large airplane, to generate a system with 289 de-
sign variables and 1856 constraints. A detailed description of the
design variables and constraints may be found by Wakayama.13

Both single-aircraft problems were also optimized individually to
determine the minimum-weight solution for each plane. In each
individual case, the optimizer convergedwithout dif� culty. Despite
identicalsystemsbeingused in the simultaneoussettingwith nocou-
pling between them, the optimizer could not converge to the correct
optimal solution. The minimum-weight solution was obtained for
airplane 1 (the larger airplane); however, the solution for airplane
2 was signi� cantly suboptimal when the algorithm claimed to have
converged. At the conclusion of optimization, the Genie optimiza-
tion framework reports � nite difference estimates for the diagonal
entriesof the Hessian matrix.This informationshowed that geomet-
ric variables associated to airplane 2 were badly scaled because the
diagonal entries of the Hessian associatedwith these variableswere
O(10¡2/ and O(10¡3/. In particular, the thickness and incidence
angle variables for the spanwise elements on the smaller aircraft
showed poor scaling.

These troublesome variables were rescaled, and the simultane-
ous optimization was performed again. Now the optimizer had no
trouble converging to a solution that agreed with the individually
obtained optimal designs. The calculated weights for the � nal 100
iterations are plotted in Fig. 4. Shown are the calculated takeoff
weights for each plane, normalized by the known point-optimum
solution.The resultsare very similar for airplane1 in both the scaled
and unscaledcases. In the unscaledcase, the solutionhas converged
to a suboptimum level for airplane 2.
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Fig. 4 Objective history for optimization algorithm: calculated
weights for each airplane over the last 100 iterations, normalized by
the appropriate point-optimum solution.

Fig. 5 Quadratic approximation to a two-
dimensional design space.

This result suggests that, in the simultaneous framework, the op-
timization algorithm is much more sensitive to poor scaling of the
design variables. This can be explainedmathematicallyby compar-
ing the Hessian matrices of the individualand combined systems. If
the Hessian of the system for airplane 1 alone is H1 and for airplane
2 is H2, then the Hessian of the combined two-aircraft system is
given by

H D
µH1 0

0 H2

¶
(5)

because there is no coupling between the planes. The condition
numbers of the single-airplaneHessians are

·.H1/ D ¸1
max

¯¸1
min; ·.H2/ D ¸2

max
¯¸2

min (6)

and for the combined system,
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max¡¸1

max; ¸2
max

¢

min¡¸1
min; ¸2

min
¢ (7)

From Eq. (7), we can see that in the best case the condition number
of the combined system will be equal to the worst of ·.H1/ or
·.H2/ and could in fact exceed both. Note that, in practice, the full
Hessian matrix is not computed, but rather the scaling is determined
by consideringonly the diagonal elements of the Hessian; however,
considering the eigenvalue structure and condition number of the
matrix can lend insight to the numerical issues.

In particular, one can gain an understanding of how poor scal-
ing might affect the convergence of the optimization algorithm by
consideringa simple geometric representationof the problem. Con-
sider a system with two design variables. In the SQP algorithm, at
each step the design space is modeled as a quadratic objective with
linear constraints. If we were to plot the objective vs each of the
design variables, we would obtain a paraboloid as shown in Fig. 5.
If the designvariablesare perfectlyscaledso that the Hessianmatrix
has a condition number of unity, then the cross-sectional slices of
the paraboloid are circles. If one (or both) of the variables is badly
scaled, then the cross sections of the paraboloid are elliptical. In
fact, the relative lengths of the major and minor axes of the ellipse
are described by the minimum and maximum eigenvalues of the
Hessian matrix.

a) Well scaled case

b) Badly scaled case

Fig. 6 Geometric interpretation of quadratic programming line
search.

Figure 6 demonstrateshow the SQP algorithmmight be adversely
affected by poor scaling of the design variables. In both Figs. 6a
and 6b, the optimum is located at the origin. In the well-scaled case
(Fig. 6a), theobjectivecontoursare circles,and the linesearchmoves
the solutionin thecorrectdirection.Nowconsiderthe case in Fig. 6b,
where design variable x1 is well scaled, but x2 is badly scaled. The
line search will choose a direction that captures the correctbehavior
for x1 , but achievesvery little improvementin x2 . If the scalingof the
problemis suf� cientlypoor, theoptimizerwill convergeto a subopti-
mal solution representedby the star in Fig. 6b, where the remaining
improvement in x2 is dif� cult to identify. Figure 6b describes the
BWB example very closely. One could consider x1 as represent-
ing all design variables for airplane 1 and x2 as representing all of
those for airplane 2. Because the set of variables in x2 was poorly
scaled, the optimizer achieved the true minimum-weight solution
for airplane1, but convergedto a suboptimal solution for airplane2.

The preceding discussion describes the effect for the SQP algo-
rithm, which uses a quadratic approximation to the design space
at each iteration. Other gradient-based optimization methods use a
different approach to search the design space; however, in general
they will also be affected by design variable scaling because com-
putational arithmetic is not exact. Achieving good scaling within a
problem is an important aspect of applying optimization methods
successfully, but is often overlooked.

Example 2: Optimizing a Two-Aircraft Common Family
We now present results for the two-aircraft family with common-

ality. The airplanes are constrained to have completely common
wings (inner wing, outer wing, and winglet in Fig. 3), but different
centerbodies.The interface between the inner wing and the center-
body is also common. This example is one family combination that
was investigated in a larger study. Varying levels of commonality
were consideredfor the two-aircraftfamily, includingthe following:
common wing and common centerbodies, common wing and dis-
tinct centerbodies;and common inner wing, common centerbodies,
distinct outer wing. The questionof how to choose the level of com-
monality is very interesting in itself, but will not be addressedhere.
Instead, the results from the family optimization described earlier
will be used to assess the value of the new, simultaneous design
approach.

The two-aircraft family was � rst designed using a conventional,
sequential technique. The larger airplane was optimized for mini-
mum takeoff weight as if it were a point design. The smaller plane
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Table 1 Optimization results for simultaneous family design

Weighta Total family, % Airplane 1, % Airplane 2, %

MTOW ¡0.2 C0.1 ¡0.3
OEW ¡0.9 ¡0.3 ¡0.6

aChanges in maximum MTOW and OEW are relative to the sequential design
solution and are normalized by the point-design weight of airplane 2.

Fig. 7 Planforms for airplane1: wings commonwih airplane 2, center-
body optimized; sequential (black line) and simultaneous (gray shade)
designs.

was then optimized to achieve its minimum takeoffweight, but con-
strained to have an identical wing to its predetermined larger mate.
This resultedin what we refer to as the sequentialfamily design.The
new optimization framework was used to design the two airplanes
simultaneously by minimizing the sum of the takeoff weights, re-
sulting in the simultaneous family design. Table 1 summarizes the
results for the simultaneous optimization. Weights are normalized
by the weight of the point-design small aircraft [MTOW or operat-
ing empty weight (OEW) as appropriate].The total takeoff weight
for the simultaneous family is 0.2% less than that of the sequential
family. Although the percentage is small, in actual pounds the re-
duction is signi� cant. This weight reduction is achieved by a small
increase in the takeoff weight of airplane 1, which allows a signif-
icant decrease in the takeoff weight of airplane 2, resulting in an
overall better solution. Note in Table 1 that the empty weight of
both aircraft is decreased.

Further interrogationof the solutionsshowshow theoptimizerhas
made tradeoffsto achievethis weight reduction.The wing area (and,
hence, structural weight) of airplane 1 has been slightly reduced
at the expense of aerodynamic ef� ciency. A decrease in structural
weight of 0.45% is traded for a reduction in average cruise lift-to-
drag ratio of 0.35%. Therefore, the empty weight of this aircraft
decreases while the total takeoff weight increases. Although this
means that the takeoff weight for airplane 1 is slightly greater than
the point-optimum solution, the reduced wing area has very posi-
tive bene� ts for airplane2. In the sequential design, the constrained
wing area for airplane 2 is signi� cantly larger than is actually re-
quired. Reduction of the area lowers the structural weight without
compromising aerodynamic ef� ciency, which means that a further
cut in weight is achieved via a lowered fuel requirement.

Figures 7 and 8 show the two different planforms for airplanes
1 and 2, respectively. Although very little difference can actually
be observed, the comparison shows how the diminished wing area
has been achieved: reduced chords and slightly increased sweep.
There are a total of 195 constraints active on the two aircraft. A
detailed description of which constraints are critical may be found
in Wakayama13 for a single aircraft optimization. For the family
optimization example presented in this paper, similar trends were
observed.

Table 2 Optimization results for different objectivea

MTOW, %

s1 s2 Airplane 1 Airplane 2 Total

0.5 0.5 C0.1 ¡0.3 ¡0.2
0.1 0.9 C0.3 ¡0.4 ¡0.1
0.9 0.1 C0.05 ¡0.1 ¡0.05

aChanges are relative to the sequential design solution and are
normalized by the point-design MTOW of airplane 2.

Fig. 8 Planforms for airplane 2: wings common with airplane 1,
centerbody optimized; sequential (black line) and simultaneous (gray
shade) designs.

Choice of Objective
When more than one aircraft is designed, the objective should

be chosen by careful consideration of the problem at hand. As al-
ready mentioned, commonality between family members results in
a tradeoff between increased operating cost (weight) and reduced
acquisitioncost (manufacturing/development).Ultimately, cost and
revenue models will be incorporated to the MDO framework, and
the family will be optimized by maximizing pro� t rather than by
minimizing weight. In this expanded framework, the appropriate
objective will be clear: Maximize the overall pro� t associated to
the family. In the current model where we consider takeoff weight,
it is necessary to choose an appropriate objective that includes a
weighted contributionfrom each family member. For a family with
N f members, the objective takes the form

min
( N f

X
i D 1

si Wi

)
(8)

where 0 < si < 1 is a weighting factor for the i th plane and Wi is
its takeoff weight. In many cases, simply minimizing the sum of
the family takeoff weights will be a suitable approach (si D 1=N f ,
i D 1; : : : ; N f /. If other factors are taken into consideration, such
as relative market demands or competing aircraft, then an objective
should be chosen that favors the most critical family members. The
usual caveats apply to using a weighted sum objective function, and
a better approach, which will be investigated in the future, is to
formulate the problem as a multiobjective system.

Investigation into the effect of objective weighting factors was
performed for the two-airplane common-wing family. Three opti-
mizations were carried out with varying weighting factors si on the
takeoffweightsof eachplane.The resultsare summarized in Table2.

Whereas the � rst optimization provides the lowest total takeoff
weight, the weight of the smaller airplane can be further reduced
by biasing the objective function in its favor. Again, a reduction
of the aerodynamic ef� ciency of the large airplane is traded for
reduced wing area. With a large weighting placed on airplane 1, the
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simultaneous design begins to approach its point-optimal solution;
however, note that even with a smaller weight increase of 0.05% on
the larger aircraft, larger savings can still be made on airplane 2.
Note that it is not advised to try a case with any si set to zero.
The sequential design solution can be approached in the preceding
exampleby making s1 close to unity and s2 close to zero; however, if
s2 is chosen to be identically zero, there will be a number of design
variables with no in� uence on the objective function, which could
lead to convergenceproblems.Within the simultaneousoptimization
framework, the objective choice can be used to balance rigorously
the compromise between family members. It would be extremely
dif� cult to identify these tradeoffs when working with a sequential
design method.

Value Optimization and Analysis
The precedingmethodologydescribes an effective way to design

multiple aircraft sharing common characteristics. However, � nd-
ing the best possible family design using simultaneousoptimization
does not answer the following question: Is commonality desirable,
and if so, at what level? This question cannot be answered by con-
sidering performance alone. Instead, one must determine whether
the cost bene� ts of commonality outweigh the performancepenalty
incurred. To achieve this, � nancial elements must be incorporated
to the design framework.

To date, MDO has been applied primarily in an engineeringcon-
text, andobjectivesare typicallya technicalmeasureof performance
such as takeoff weight. With the increasing focus on cost and af-
fordability, it is a logical extension to consider life cycle cost as
yet another discipline to be incorporated to the multidisciplinary
framework. However, this raises the question of what to choose as
an objective function.Focusing on performance alone does not cap-
ture cost considerations;however,designingto minimumcost could
easily result in an aircraft that is unappealing to airlines and, thus,
has a low potential for revenuegeneration.It is important to balance
performance and cost in a quantitative way. This can be achieved
by introducing the concept of value.

Several de� nitions of a value metric have been explored for air-
craft design.2;3 Many candidate metrics draw on � nancial concepts
such as net present value. For the purposesof this paper, we empha-
size that the speci� c de� nition of value is � exible. It will vary de-
pending on the stakeholderconsideredand on the particular project
at hand. Although many value frameworks might include perfor-
mance, cost, and revenue considerations,more general frameworks
that include other factors, such as noise and emissions, could also
be constructed. Note that the concept of value as a metric does
not preclude the option to focus exclusively on performance, if so
desired.

Figure 9 shows one possible value framework for design in an
MDO context.The performancemodule contains the traditionalen-
gineering disciplines that are currently considered in MDO. The
complete cost module contains all relevant pieces of the life cycle

Fig. 9 Expanded MDO framework integrates performance, cost, and
revenue considerations.

Table 3 Categories for recurring and nonrecurring cost

Recurring cost Nonrecurring cost

Labor Engineering
Support Tool engineering
Materials and equipment Tool fabrication

Other

cost rangingfrom designand developmentthroughmanufactureand
operation to disposal. Finally, to address quantitatively the tradeoff
between cost and performance, it is necessary to include a revenue
module. This module relates the performance and cost characteris-
tics of an aircraft family to the revenue that can be generated, and
may also include factors such as market variation and competition.

In this paper, we begin to assess the value of commonality by
consideringthe developmentand manufacturingcost savingsfor the
familydesignpresentedearlier.The costmodelmust bedevelopedin
such a way that the advantagesof commonality can be capturedand
quanti� ed. To achieve this effectively,a shift in thinkingis required:
Rather than considering a � eet to be composed of various aircraft,
it must be thought of as composed of various parts. (Here, a part is
taken to be a subassembly,which can range in size and complexity.)
For example, a � eet might be thoughtof as comprising25 of aircraft
1 and 50 of aircraft2, with details on the part breakdownand content
capturedat a secondarylevel for each of these aircraft.Here we take
a different approach, the fundamental constituents of the � eet are
not aircraft, but rather parts. For example, the � eet might be thought
of as comprising 25 of part A, 50 of part B, 75 of part C, and so on.
Part A would be unique to aircraft 1, part B unique to aircraft 2, and
part C common to both. In this way, one considers not the design
and manufacture of aircraft, but rather the design and manufacture
of the parts. A part can also range in size and level of detail. For
example, a part could be an entire wing, or it could be a particular
rivet on the wing. Moreover, it is not necessary that the level of
detail be constant throughout the model.

For the results presented here, a simple weights-based costing
method was used. In the cost model, each part has certain properties
associated with it, including its weight, geometric data, and cost
information. For each part, costs per pound were de� ned in the
categoriesshown in Table 3. Within each categoryof recurringcost,
the costs may be further broken down. For example, labor may be
further divided into fabrication, major assembly, minor assembly,
and assemblyand integration.The level of detail can vary according
to the information available.

Calculatingaircraft componentcost as a linear functionof weight
is a simple approximation, and more sophisticated cost estimating
relationshipswill be investigatedin the future.Althoughthebaseline
component costs vary linearly with weight, the total cost is built up
as a summation of these baseline values modi� ed by learning curve
and commonalityeffects. The total developmentand manufacturing
costs of the aircraft are, thus, not simple linear functions of total
weight.

Cost Analysis of Two-Aircraft Family
Representativedevelopmentand manufacturingcosts for the two-

aircraft family designed in the preceding section will be presented
here. Two options are considered: the simultaneously optimized
family with common wings and minimum combined takeoff weight
and the point-design family in which each aircraft is designed for
minimum takeoff weight. The takeoff weight penalties of the com-
mon family comparedto the point designsare approximately0.05%
for airplane 1 and 2% for airplane 2, where the percentagesare rel-
ative to the combined takeoff weight of the point-design family.

Figure 10 shows notional design and manufacturing program
costs for the aircraft family. Design of the family begins in year
Y0 and production begins in year Y1 . Production rates are assumed
constant at 50 units per year for airplane1 and 100 units per year for
airplane2. In the beginningof the program,cost savingsare realized
for the common family because design work and tooling require-
ments are reduced. During production, further bene� t is obtained
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Fig. 10 Notional recurring and nonrecurring costs for two-airplane
family.

from commonality due to increased learning curve effects; how-
ever, the baseline unit cost of the common family is higher due to
increasedwing weight. For the notionalexample shown, the bene� ts
outweigh the cost penalty.Note that Fig. 10 is a strictly hypothetical
case to describe the kind of output the cost analysis might generate,
and is not intended to represent actual BWB costs.

As demonstrated, the cost tool enables the development and
manufacturing cost of various design options to be assessed and
compared; however, the question of what level of commonality is
desirable has still not been answered. To close the loop between
performance and � nance completely, a revenue model is required
to estimate the penalty associatedwith the lower performance com-
mon family. The value of commonality may then be assessed by
comparing this penalty with the cost savings such as those shown
in Fig. 10. This is the subject of ongoing research. Furthermore, the
cost analysis shown here is performeda posteriorionce the simulta-
neousoptimizationhas been completed(basedonly on performance
considerations),and thus, the cost analysis has no direct impact on
the simultaneous optimization framework. In an expanded frame-
work, � nancialmodelswill be a part of the optimizationso that they
can impact the optimal family solution directly.

Conclusions
Simultaneous optimization of multiple aircraft offers consider-

able bene� t to the design process.By the design of family members
with common parts, substantial savings can be realized in man-
ufacturing and development costs. The simultaneous optimization
methodologypresentedhere not only ensures that a common design
can be found that satis� es all constraints on each family member,
but also determines the best overall family solution by applying ap-
propriate tradeoffs between aircraft. The results presented demon-
strate that a common solution can be found even when mission
requirementsdiffersigni� cantlybetweenfamily members. Substan-
tial weight savings can be achieved by designing family members
simultaneously and allowing the optimizer to make apt tradeoffs.

To determine the most appropriatelevel of commonalitybetween
aircraft family members, � nancial models must be developed and
applied to the problem.Much bene� t can be gained throughexpand-
ing the role of MDO in aircraft design and incorporating nonengi-

neeringdisciplines,such as cost and revenue.A cost model has been
developed that can be applied to a multiple-aircraftfamily to deter-
mine the cost bene� ts of commonality. Preliminary cost analysis
indicates that the weight penalties incurred by the common design
are more than offset by savings in manufacturing and development
cost. A revenue model is currently under development that will en-
able the tradeoff between cost and performance to be quanti� ed
more accurately. It is also desirable to close the design loop and
allow � nancial considerations to feedback and impact engineering
design decisions. In future work, the cost and revenue models will
be incorporatedto the MDO framework in such a way that the opti-
mizer can make decisions based on performance,cost, and revenue.
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