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A B S T R A C T

We analyse a series of high-resolution line pro®les of He i 6678 in the periodic Be star 28 CMa.

A simple zeroth-order approximation to the eigenfunctions is used to model the line pro®le

variations in terms of non-radial pulsation. In addition, we use the best available theory for the

eigenfunction in a rotating star. In all cases the calculated ®ts to the observed pro®les are poor.

We conclude that non-radial pulsation is almost certainly not responsible for the line pro®le

variations in this star. In an attempt to understand the very large line pro®le changes, but

negligible light variation, we consider a `patch' model. This consists of a circular area on the

photosphere having the same temperature, but a different intrinsic line width. A simple model

of this kind produces a good ®t to the line pro®le variations and to the photometry. We conclude

that modulation of the pro®le by a patch on, or close to, the photosphere may offer a plausible

starting point for understanding the periodic variations in some Be stars.

Key words: line: pro®les ± stars: early-type ± stars: emission-line, Be ± stars: individual:

28(q) CMa ± stars: oscillations ± stars: variables: other.

1 I N T R O D U C T I O N

A large fraction of Be stars exhibit strictly periodic light and line

pro®le variations with periods of 0.5±2 d, consistent with the

rotational period (the l Eri stars). The shape and amplitude of the

periodic light curve is strongly variable: a single-wave light curve

may change into a double-wave and vice versa (Balona, Sterken &

Manfroid 1991). The amplitude of the periodic variations may be

unobservable in one season, yet may attain a value of 0.1 mag or

larger at another time. On top of this, there may be irregular light

¯uctuations and occasional outbursts. The periodic variations have

been interpreted as non-radial pulsation (NRP), but there is evi-

dence to suggest that they may be better understood in terms of

some form of rotational modulation (Balona 1995). The behaviour

of the light and line pro®le variations is clearly different from the

b Cep and 53 Per (SPB) stars. Therefore, periodic light and low-

order line pro®le variations seem to be a unique characteristic of the

l Eri stars. The connection between the periodic variability and the

enhanced mass loss is still an open question.

One of the stars studied by SÏte¯ et al. (1998) is the bright Be star

28 CMa (B2±3 IV±Ve). Apart from the well-known spectroscopic

period of P1 � 1:37 d, they found a transient period of P2 � 1:48 d

which is weakly present in most He i lines, attains more power in

Si ii, Mg ii and the higher Balmer lines, and is entirely dominant in

Ha and Hb. The transient period had already been suspected in the

light curve by Balona et al. (1987), but with an amplitude too small

to be considered signi®cant. In SÏte¯, Aerts & Balona (1999, here-

after Paper I), we examined new spectroscopic data and new and

existing photometry. We found that P1 is still the dominant period in

the He i 6678 line, but there are indications that P2 may be present in

the line wings. Evidence from the photometry is less conclusive, but

indications of both periods were found.

One of the puzzles that remains unresolved is the contrast

between the very large radial velocity variation and the negligible

light variation at the same period. In the NRP model, a low light

amplitude may be expected for modes of high degree, but the lack of

more than one wave in the line pro®le variations and the large radial

velocity amplitude implies a low degree. It cannot be a matter of the

angle of inclination, since this has the same effect on the radial

velocity as on the light amplitude. Clearly, the NRP model needs to

be investigated more thoroughly. The starspot hypothesis has not

been investigated.

In this paper, we investigate the NRP and rotational modulation

hypotheses by attempting to model the variations of the He i 6678-AÊ

line using the light amplitude and phase as a constraint. The detailed

investigation of this bright star should assist in our understanding of

the periodic variations in other Be stars.

2 T H E N R P M O D E L

In a star in which the pulsation period is much smaller than the
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period of rotation, the eigenfunction is well described by a simple

spherical harmonic of degree , and azimuthal order m. Since the

period of rotation for Be stars is 1±2 d and the observed period in

28 CMa is 1.37 d, this condition does not hold. It is therefore

necessary to include higher order terms in the expansion of the

eigenfunction. Expressions for the pulsational velocity in the ®rst-

order theory are given by Carroll & Hansen (1982) and Aerts &

Waelkens (1993). These theories express the rotationally modi®ed

pulsation variables as a truncated power series in Q=q, where Q and

q are the rotation and pulsation frequencies respectively. It is

evident that such expressions will be inaccurate for Q=q > 1,

which limits their applicability. The results of ®rst-order theory

when Q=q > 0:5 cannot be trusted.

Another technique, which does not rely on series expansion, has

been developed by Berthomieu et al. (1978) and extended by Lee &

Saio (1987). This theory, like the ®rst-order theory, neglects the

effect of centrifugal force and the gravitational perturbation. As a

result, the equations can be cast in a form in which they resemble

those of a non-rotating star. This similarity transformation techni-

que provides a complete treatment of the Coriolis force for all

values of Q=q. Although it is still not a full treatment, it can be

expected to provide more reliable results than the ®rst-order theory,

especially for Q=q > 0:5. Townsend (1997) discusses the eigenfunc-

tion of rapidly rotating early-type stars using this theory.

We estimate the radius of 28 CMa as R < 6 R( from its spectral

type (Balona 1995). Using v sin i � 80 km sÿ1 gives a rotation

period Prot < 3:8 d; therefore Q=q > 0:36 if m � 0. The frequency

ratio, Q=q, will be higher for prograde modes (m < 0) and lower for

retrograde modes (m > 0). For such a large ratio, departures of the

eigenfunctions from pure spherical harmonics will be signi®cant.

The zeroth-order approximation, which has been used in the past, is

very unlikely to give a good ®t to the line pro®les.

For pulsation with a relatively long period, as may occur in

28 CMa, most of the motion will be in the horizontal plane. This

follows from the boundary condition that the pressure variation

tends to zero at the surface of the star. The ratio of horizontal to

radial displacement amplitudes in the approximation of a slowly

rotating star is given by K � g=�q2R� where g is the gravitational

acceleration at the surface and q is the angular frequency of

pulsation in the corotating frame. If P1 � 1:37 d is an axisymmetric

mode (m � 0), then K < 6, assuming a mass of about 9 M(. For

non-axisymmetric modes, the frequency in the corotating frame

depends on the (unknown) period of rotation. The value of K will be

larger for prograde modes, smaller for retrograde modes.

A rotating star with a non-uniform azimuthal temperature dis-

tribution will produce line pro®le variations because the component

of rotational velocity will be weighted according to the non-uniform

surface brightness distribution. Balona (1987) discusses this effect

and introduces a pseudo-velocity, vf , as a convenient measure of

this effect. Clearly, vf < v sin i. Normally, the periodic compression

of the atmosphere during NRP will produce a temperature variation.

Rapid rotation will then introduce signi®cant pro®le variations. In

principle, it is possible to predict the relative temperature variation

given the relative radial or horizontal amplitude. Alternatively, the

relative temperature amplitude and phase may be left as free

parameters to be determined from the line pro®le itself (Balona

1987).

It is a simple matter to calculate the line pro®le variations, given

the pulsation parameters. The inverse problem is far more dif®cult.

There are two approaches currently in use: the Doppler imaging

method and the method of moments. Doppler imaging is very easy

to apply and is the most common method, but while it can be used to

estimate , and (possibly) m, it is not capable of giving the velocity

amplitudes and phases which are required to model the pro®les. On

the other hand, the method of moments does give these data. It uses

a ®rst-order approximation to the eigenfunction, which is probably

still not a suf®ciently good approximation in the case under study.

The bruce code developed by Townsend (1997) uses the Lee &

Saio (1987) expansion for the eigenfunction and is the best

available approximation for modelling NRP in 28 CMa. With this

code we can generate line pro®les given the pulsational parameters.

What we would like to do, however, is to solve the inverse problem.

Although two periods are present in 28 CMa, it is fortunate that

the P � 1:365 d period dominates the He i 6678 line pro®le. The

transient period may be important in the line wings, but the duration

of the time series does not allow full resolution. Therefore it is

probably safe to describe the core of the line by only one period and

only one NRP mode. For a single mode, we need to solve for the

following parameters: the projected rotational velocity, v sin i; the

intrinsic Gaussian line width, Wi; the velocity amplitude, Vr, and its

phase, fr, and the angle of inclination, i. In modelling the line

pro®les of 28 CMa, we assume that there is no temperature

variation. This is not physically realistic, but is necessary if the

resulting light variation is to have a negligible amplitude, as

observed in 28 CMa. Our aim is to show that, even under this

unphysical assumption, the line pro®les predicted by NRP still do

not match the observed line pro®les.

The intrinsic line pro®le is most often approximated by a

Gaussian. To obtain a better estimate of the intrinsic pro®le, Dr J.

KubaÂt (Astronomical Institute, OndrÏejov) kindly provided theore-

tical pro®les for the He i 6678 line at various angles of incidence. An

effective temperature Teff � 23 000 K, log g � 3:8 was assumed in

the atmospheric models. The theoretical intrinsic pro®le is actually

very well described by the Gaussian I � I0 exp�Dl2=2W2
i �with Wi =

10.2 km sÿ1. In the line pro®le modelling, we searched for the best

®t using this ®xed value of Wi. Since we found extremely poor

agreement, we decided to relax the restriction on Wi and perform

another set of solutions in which Wi was adjusted for best ®t. In the

theoretical intrinsic pro®le, the linear limb-darkening parameter, u,

is not equal to the continuum value, as is sometimes assumed, but

varies between u � 0:07 and 0:26.

Since neither the Doppler imaging nor the method of moments is

applicable, we decided to attempt the most direct approach. For a given

mode (,;m), and given Wi, v sin i, Vr, fr and i, we computed 10 line

pro®les at intervals of 0.1 period with P � 1:365 d. These calculated

pro®les were normalized to have the same equivalent width as the

observed pro®le. As a measure of the goodness of ®t, we used the

standard deviation in the intensity, j, over all 10 pro®les as determined

for that part of the pro®le within 100 km sÿ1 of line centre. The most

likely pulsation parameters are those that minimize j.

To ensure that the value of j is a global minimum, not a local

minimum, we calculated values of j in a grid where

0 < Vr < 100 km sÿ1 with an interval of 10 km sÿ1, 0 < f < 1

period with an interval of 0.2 period and 10± < i < 90± with an

interval of 10±. The procedure is computationally intensive and

would not be possible to apply for more than one period. The

parameters on the grid point with smallest j were then used as

starting values to a routine which minimized j by varying v sin i, Vr,

fr and i. The Levenberg±Marquardt method of optimization by

non-linear least-squares was used (Press et al. 1992).

2.1 Solutions using the zeroth-order approximation

Although the zeroth-order approximation (Q=q < 0) is not
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appropriate, it is still widely used in mode identi®cation and line

pro®le modelling. Therefore, we felt it would be important to

discuss the results obtained using a simple spherical harmonic

eigenfunction for comparison with previous work. One important

point to bear in mind is the correct value of K, the ratio of horizontal

to vertical displacement. The answer to this in the zeroth-order

approximation is unequivocal: K � g=�q2R� where g is the gravita-

tional acceleration, R the stellar radius and q � qobs � mQ the

pulsation frequency in the corotating frame. However, the ®rst-

order approximation for K given by Schrijvers et al. (1997) was also

used to determine the effect of a variation in K. We found solutions

using both values of K, but the results are not signi®cantly different.

Mode identi®cation was accomplished by direct ®tting, as

described above. For a given value of (,;m), the following quan-

tities were determined: the projected rotational velocity, v sin i, the

vertical velocity amplitude, Vr, the initial phase, f, and the angle of

inclination, i. No attempt was made to allow for polar ¯attening of

the star, gravity darkening or variation of temperature with latitude.

Solutions were made using the intrinsic line pro®le calculated from

a suitable model atmosphere, as described above. Solutions were

also made in which the width of the intrinsic line pro®le (assumed

Gaussian) was allowed to vary for the best ®t. For physically

realistic cases, where K is ®xed by the boundary conditions as

described above, the ®ts were all extremely poor.

We therefore took the step of allowing K itself to be a free

parameter, to be determined for the best ®t. The reason for this is

that we are not sure of the correct boundary conditions for rapidly

rotating stars. Making this a free parameter at least gives an

indication as to whether a reasonable ®t can be achieved. Results

were, once again, very disappointing. Finally, we allowed the

intrinsic width, Wi, also to be determined by the ®t instead of

being ®xed at the most physically plausible value of 10.2 km sÿ1.

The solutions, with and without ®xed Wi, are shown in Table 1.

The best ®t is obtained, not surprisingly, when both K and Wi are

allowed to vary. The best solution (, � 2;m � �1 and

Wi � 29:3 km sÿ1) is shown in Fig. 1. The poor ®t unequivocally

demonstrates that it is impossible to obtain a satisfactory ®t with a

simple spherical harmonic approximation to the eigenfunctions,

even when we drop the constraints on K and Wi imposed by physics.

2.2 Solutions using the similarity transformation

The similarity transformation developed by Lee & Saio (1987) is

the best approximation we have at present for calculating the

eigenfunctions of a rotating star. Townsend's bruce code, which

implements the method, allows for variations in gravity and

temperature with latitude. This, in turn, affects the equivalent

width of the intrinsic line pro®le. The effect with temperature was

taken into account using results of theoretical models.

Results using the bruce code are shown in Table 2. The code

automatically determines the horizontal velocity amplitude, Vh,

from the given vertical velocity amplitude, Vr, using the standard

boundary condition. Vh is extremely large for prograde modes

because the period in the corotating frame tends to in®nity for

these modes. Also shown in the table are results where the intrinsic

line width is allowed to vary for the best ®t, as was done for the

zeroth-order approximation. Once again, a better ®t is obtained for

Wi > 20 km sÿ1. In fact, all ®ts with Wi � 10:2 km sÿ1 are rather

poor. The effect of ®xing the line width at this value is to introduce

many more wiggles in the ®tted curve which are not present in the

observations. The larger intrinsic width smears out these wiggles

and gives a better ®t.

Contrary to expectations, the best ®tting mode is a retrograde

mode. The ®ts for (,;m) = (1, +1), (2, +1) and (3, +1) are almost

equally good. The solution for (3, ÿ3) can be eliminated at once.

Although the ®t is reasonable near the line core (where the

discriminant is calculated), it completely fails in the line wings.

This is because the model assumes a horizontal pulsational velocity

amplitude of over 100 km sÿ1, which is unphysical. The most

plausible solution is (2, +1) for which the angle of inclination is

23±. The low value is expected for 28 CMa which is known as a

`pole-on' Be star. The ®t for this mode with Wi � 37:2 km sÿ1 is

shown in Fig. 2. The ®t is not too bad, apart from the absorption

`blip' in the core. However, the pulsation parameters need to be

physically plausible. Apart from the unphysically large intrinsic

width, there is also a problem with the pulsation amplitudes. The

vertical and horizontal displacement amplitudes vary with long-

itude and latitude. For the best-®tting m � �1 modes, the max-

imum vertical amplitude exceeds 0.15 stellar radii, while the

maximum horizontal amplitude exceeds 0.25 stellar radii in all

cases.

These large relative amplitudes pose a serious problem for the

model. Not only are they larger than for almost any other pulsating

star, but also they should give rise to considerable temperature

variations and therefore a large light amplitude, which is not

observed.

2.3 Biperiodic model

One might argue that, although He i 6678 is dominated by P1, the
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Table 1. Best solutions using the zeroth-order approximation (the eigen-

function is a pure spherical harmonic). The columns give the mode (,;m),

projected rotational velocity, intrinsic line width, vertical component of

velocity amplitude (Vr), horizontal component of velocity amplitude (Vh),

initial phase (f, in periods), angle of inclination (i degrees) and the standard

deviation of the ®t in intensity units (j, unit continuum). The ®rst line is the

best solution with Wi ®xed at the calculated value of 10.2 km sÿ1; the second

line is the best solution when Wi is allowed to vary. In all cases, Vh was

obtained by minimizing the error of the ®t. Using standard boundary

conditions to ®x Vh from Vr produced worse ®ts.

�,;m� v sin i Wi Vr Vh fr i j

(1,ÿ1) 101.5 10.23 0.60 6.05 0.398 81.8 0.01974

96.7 27.27 2.24 32.90 0.071 48.4 0.01897

(1, 1) 100.6 10.23 10.11 8.60 0.002 21.2 0.01973

95.0 31.04 10.39 20.36 0.015 89.3 0.01892

(2,ÿ2) 104.1 10.23 3.41 327.49 0.088 90.0 0.02913

68.5 35.89 11.65 373.82 0.713 53.2 0.02293

(2,ÿ1) 25.7 10.23 92.12 416.06 0.656 90.0 0.02160

96.4 27.84 0.00 0.00 0.345 90.0 0.01916

(2, 1) 100.8 10.23 9.30 17.50 0.024 80.6 0.01960

95.7 29.26 6.22 8.51 0.039 35.5 0.01886

(2, 2) 110.0 10.23 10.00 3.01 0.000 20.0 0.02108

96.6 27.36 0.79 0.28 0.404 19.8 0.01916

(3,ÿ2) 67.6 10.23 12.23 196.89 0.873 89.9 0.01980

68.6 30.14 9.88 164.00 0.633 90.0 0.01929

(3,ÿ1) 83.8 10.23 19.45 176.40 0.330 62.8 0.02154

96.3 29.07 0.43 4.71 0.476 62.3 0.01907

(3, 1) 101.0 10.23 2.59 1.00 0.068 10.8 0.01972

95.1 30.60 4.24 6.14 0.005 38.5 0.01895

(3, 2) 101.4 10.23 18.73 21.56 0.759 90.0 0.01956

96.2 28.06 1.72 2.07 0.545 90.0 0.01916

(3, 3) 100.9 10.23 21.02 3.66 0.005 19.1 0.01964

95.5 29.76 50.13 10.35 0.124 20.2 0.01901
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line pro®les can be better ®tted if one considers a biperiodic

pulsational model for the periods P1 and P2. Direct ®tting for

such a model implies unrealistic computation times. For this reason

we applied the biperiodic moment method by using a ®rst-order

approximation to the eigenfunction. We again ®nd retrograde

modes with m � �1 as best candidates. However, they once more

do not lead to an acceptable ®t for physically justi®ed parameters.

Because of all the above-mentioned problems, we do not believe

that the line pro®le variations in 28 CMa are the result of NRP.

3 T H E S TA R S P OT M O D E L

Balona (1990, 1995) has pointed out that the period/v sin i relation-

ship for the periodic Be stars is consistent with the photometric

period being identical to the rotational period of the star. Moreover,

limits can be placed on how much the ratio of these periods may

differ from unity. The data allow a deviation of about 5 per cent (one

standard deviation). Since the period of Be stars is so close to the

rotational period, the simplest hypothesis is to assume that it is the

rotational period and try to model the pro®le and light variations by

some kind of rotational modulation. This may take the form of a

starspot, similar in nature to sunspots, or a corotating obscuration.

In principle, it is possible to obtain a crude image of the stellar

surface as is done for some Ap and RS CVn stars. However, we

prefer to model the simplest possible spot ± a single circular patch ±

in the hope that this may be suf®cient to allow us to understand the

line pro®le variations.

The effect of a circular spot has been discussed by Budding

(1977), who derives mathematical expressions for the light curve. It

may be possible to determine these parameters from the line pro®le

by moments. The number of free parameters is about the same as for

singly periodic NRP, so a search for the best ®t between observed

and calculated pro®les is computationally feasible.

The line pro®le variations caused by a circular spot are deter-

mined by the following parameters: Re;Rp ± the equatorial and

polar radii; Fe;Fp ± the ®ducial photospheric equatorial and polar

¯uxes; v sin i ± the projected rotational velocity; i ± the angle of

inclination; u ± the linear limb-darkening coef®cient; Wi ± the

intrinsic line pro®le width in the photosphere; l ± the longitude

(relative to some arbitrary epoch); b ± the latitude; g ± the spot

radius in degrees; F ± the ¯ux from the spot; Ws ± the intrinsic line

pro®le width in the spot. The same direct-®tting technique

described above was used. First, a coarse solution was found by

®tting to pro®les spaced at 0.2 period, then the best solution was

used as a starting value for the Levenberg±Marquardt optimization

method.
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Figure 1. Observed line pro®les (solid line) and pro®les from a model with

(,;m) = (2, 1) pure spherical harmonic. The observed line pro®les have been

co-added in discrete phase bins. The pro®les have been shifted so that the

continuum measures the time in fractions of the period P1 � 1:37 d. The

abscissa is in km sÿ1 relative to the mean radial velocity of the star.

Table 2. Best solutions using the similarity transformation method and

bruce. The columns give the mode (,;m), projected rotational velocity,

intrinsic line width, vertical and horizontal components of velocity ampli-

tude (Vr;Vh), initial phase (f, in periods), angle of inclination (i degrees) and

the standard deviation of the ®t in intensity units (j, unit continuum). The

®rst line is the best solution with Wi ®xed at the calculated value of 10.2

km sÿ1; the second line is the best solution when Wi is allowed to vary. The

value of Vh is obtained from Vr and the standard boundary condition.

�,;m� v sin i Wi Vr Vh fr i j

(1,ÿ1) 99.6 10.2 61.3 7236.9 0.802 19.8 0.0406

120.6 17.5 2.2 462187.0 0.809 29.4 0.0179

(1, 1) 99.8 10.2 23.2 56.7 0.797 88.8 0.0163

54.3 51.1 39.0 126.1 0.789 82.2 0.0097

(2,ÿ2) 100.0 10.2 20.9 1474.1 0.281 40.4 0.0170

97.8 24.9 17.5 1225.3 0.275 39.3 0.0122

(2,ÿ1) 102.9 10.2 44.5 978.4 0.214 52.5 0.0227

99.9 20.2 21.9 53.2 0.800 19.8 0.0156

(2, 1) 95.9 10.2 23.6 57.2 0.787 71.3 0.0140

79.7 37.2 35.5 51.1 0.785 23.0 0.0086

(2, 2) 104.6 10.2 70.8 22.1 0.780 16.9 0.0176

99.7 20.7 83.5 24.9 0.808 15.6 0.0169

(3,ÿ3) 107.1 10.2 1.2 44.6 0.282 74.9 0.0085

102.3 21.4 4.5 120.4 0.239 61.7 0.0139

(3,ÿ2) 100.7 10.2 20.6 1236.2 0.807 39.9 0.0174

100.6 20.6 20.1 1129.0 0.806 39.5 0.0137

(3,ÿ1) 82.9 10.2 19.5 268.0 0.283 56.6 0.0126

100.0 20.6 12.8 231.5 0.223 58.0 0.0181

(3, 1) 98.5 10.2 11.1 21.0 0.779 42.0 0.0134

84.4 27.3 19.9 41.7 0.783 41.5 0.0084

(3, 2) 101.6 10.2 27.1 38.5 0.280 78.7 0.0167

93.8 26.3 27.2 41.1 0.284 76.0 0.0161

(3, 3) 103.1 10.2 108.0 31.3 0.764 24.2 0.0156

100.5 23.5 61.6 34.1 0.769 39.0 0.0149

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/305/3/519/982977 by guest on 16 August 2022



One of the most important constraints is the very low light

amplitude observed in 28 CMa. The very high ratio between the

radial velocity and light amplitudes is one of the most puzzling

aspects of Be stars. This led Balona (1995) to the conclusion that

neither NRP nor conventional starspots could account for this ratio.

In a conventional starspot, the spot has a different temperature from

the surrounding photosphere. This leads to substantial light varia-

tions for even a moderately sized spot. In 28 CMa, the radial

velocity amplitude is very large. To generate this amplitude requires

a large spot. This automatically leads to a large light amplitude.

Although it is possible to obtain a very good ®t to the line pro®le

variations in this way, the large light variations resulting from such a

spot contradict observations. This, of course, is exactly the same

problem as we encountered for NRP.

We have estimated, for example, that a spot model which

matches the line pro®le variations and has the same intrinsic pro®le

in the spot and in the photosphere requires that the spot brightness

be one-quarter of the photospheric brightness. The resulting light

amplitude is at least 0.2 mag. The parameters of some of these

models are shown in Table 3. The following physical parameters

were used for the star: Re � Rp � 6:0 R(; Fe � Fp � 1:0;

v sin i � 80 km sÿ1; u � 0:24.

Clearly, if the light amplitude is to be very small, the difference in

temperature between the spot and the photosphere must be small.

To obtain the observed pro®le variations, one must assume that the

intrinsic line pro®le in the spot differs from the intrinsic line pro®le

in the photosphere. One way in which this might be achieved is if

the spot is the result of a difference in abundance of a particular

element. This is indeed the case in the Bp and Ap stars. However, it

cannot be true in 28 CMa because all elements show substantial line

pro®le variations which are in phase (Baade 1982a,b). If helium is

overabundant in the spot, then hydrogen is less abundant in the spot

so that the radial velocities will be phase-shifted by 180± relative to

each other. This is not observed.

If differences in equivalent width (i.e. abundance differences) are

excluded by the above argument, then the only other way in which a

radial velocity can be generated is by keeping the equivalent width

of the intrinsic line pro®le in the spot the same as in the photosphere,

but allowing the rms width of the intrinsic pro®le to differ: in other

words, by assuming a difference in `macroturbulence'. Instead of a

spot, we will refer to a `patch' when the temperature is the same as

the surrounding photosphere.

A patch model can indeed reproduce the observed line pro®les. A

sequence of models is shown in Table 4. Models with Lorentzian

intrinsic pro®les agree a little better than those with Gaussian

pro®les, but the difference is not very signi®cant. The deduced

values of Wi and Ws are much larger than expected. They can be

reduced to some extent by including the effects of varying gravity
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Figure 2. Observed line pro®les (solid line) and pro®les from a model with

(,;m) = (2, 1) using the rotationally-corrected eigenfunction generated by

bruce.

Table 3. Spot parameters for a selection of best-®tting

spots using the following ®xed parameters:

Re � Rp � 6:0 R(; Fe � Fp � 1:0; ve sin i � 84

km sÿ1; u � 0:24 (see text). The spot parameters are as

follows: l ± the longitude in degrees (relative to

HJD 245 0000.000); b ± the latitude in degrees; g ± the

spot radius in degrees; F ± the ¯ux from the spot relative

to the photosphere. The standard deviation of the ®t to the

observed line pro®les is given by j; Dm is the expected

peak-to-peak light amplitude.

i Wi l b g F j Dm

25 20 80 30 40 2.0 0.00162 0.24

25 20 70 20 50 2.0 0.00149 0.29

35 20 70 10 60 2.0 0.00150 0.41

15 30 70 0 50 4.0 0.00094 0.36

25 30 70 0 60 4.0 0.00098 0.65

15 40 70 40 30 4.0 0.00086 0.24

20 40 65 30 40 4.0 0.00085 0.45

25 40 60 40 40 4.0 0.00087 0.50

Table 4. Spot parameters for a spot model in which the rms width of the

intrinsic pro®le in the spot, Ws, is allowed to differ from the rms width in the

photosphere, Wi. A Gaussian (top two lines) or Lorentzian (bottom two

lines) intrinsic line pro®le is assumed. Refer to Table 3 for a description of

the other symbols.

Model v sin i i Wi Ws l b g F j Dm

G1 94 13 33 18 88 42 40 1.0 0.00060 0.000

G2 81 15 48 25 88 25 45 1.05 0.00052 0.005

L1 77 10 31 14 88 23 43 1.0 0.00046 0.000

L2 78 9 30 14 89 25 42 1.05 0.00045 0.005
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and temperature, but we do not show the calculations here. Our

intention is not to propose that such a patch does indeed exist in

28 CMa, but to illustrate how easy it is to account for the line pro®le

variations even with an extremely idealistic patch model. Fig. 3

shows the comparison with the observed pro®les for one of these

models. Even the characteristic absorption blip is rather well

modelled.

4 W E A K A B S O R P T I O N F E AT U R E S I N T H E

FA R W I N G S

It can be seen from Figs 1, 2 and 3 that, during some phase ranges, a

weak absorption feature appears in the far wings of the line. It is

dif®cult to determine whether these features are at ®xed wave-

lengths but have varying intensity, or whether they have a variable

velocity. If the velocity is variable, it is conceivable that the period

may differ slightly from that of the main absorption line. We looked

very carefully at the possibility that these weak features may be an

observational artefact, but are convinced that this is not the case.

To investigate the nature of this weak absorption feature, the

variations of the main He line need to be removed. To do this, we

used model G2 of Table 4. We could have used any of the other

starspot or NRP models, but we chose G2 because it is one of the

most effective in removing the variations (because the ®t is better

than any of the NRP models). Fig. 4 shows the periodogram for 10

wavelength bins across the residual pro®les. There appears to be

nothing signi®cant, suggesting that the weak absorption features are

probably at constant radial velocity but variable intensity. However,

the result is not conclusive.

What mechanism is responsible for this weak absorption feature?

Clearly, it cannot be explained in terms of NRP, spot or patch. The

feature is situated at 6150 km sÿ1 from the main He i line. Since the

projected equatorial velocity is no more than 90 km sÿ1, it would

have to be formed above the photosphere. If the material is in

corotation, it must lie at a distance of nearly one stellar radius above

the photosphere, assuming a Keplerian orbit. One possibility is an

optically thick ring of varying thickness at this distance.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have attempted to ®t the line pro®le variations of He i 6678 by an

NRP model which uses a zeroth-order approximation to the

eigenfunction. The best ®t is a mode with m � �1, i.e. a retrograde

mode, but the ®t is too poor to be acceptable. We then used a much

better approximation to the rotationally modi®ed eigenfunction

using the Lee & Saio (1987) theory. Using Richard Townsend's

bruce code, we again found that the best ®t is given by an m � �1

mode. The ®t is still poor, but becomes acceptable if we are allowed

to increase the intrinsic line width from the expected value of

Wi � 10 km sÿ1 to at least 20 or 30 km sÿ1. The most likely solution

is , � 2;m � �1 with Wi � 37:2 km sÿ1 and i � 23±. The intrinsic

line width seems to be unacceptably large. Even more serious,

however, is the fact that the pulsation amplitude is much too large to

be physically realistic and leads to a large light variation, in

contradiction to observations.

In our analysis of NRP, we have gone far beyond what would be

considered physically acceptable constraints in an attempt to

reconcile the observed and predicted line pro®le variations. We

have accepted parameters, such as a very large intrinsic line width,

that would normally not be acceptable on physical grounds. Even

then, the ®t is poor. Thus, even if we assume that some other

(unknown) factor is responsible for the large line broadening, NRP
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Figure 3. Observed line pro®les (solid line) and pro®les from spot model G2

of Table 4. Note the weak absorption features at about +150 km sÿ1 in the

phase interval 0.3±0.7 and at ÿ150 km sÿ1 at the other phases.

Figure 4. Periodograms of 10 wavebands across the line pro®le after

starspot model G2 is removed. Refer to Table 4 for parameters of the model.
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is still not an acceptable solution. We conclude that a physically

plausible NRP model cannot be found. The principal conclusion of

this paper is therefore that NRP is not responsible for the P1 � 1:37-

d variation.

We know from the heros results (SÏ te¯ et al. 1998) and from the

analysis in Paper I that, apart from the period P1 � 1:37 d which

dominates most of the He i 6678 line, there is another period,

P2 � 1:49 d, which is present only in those lines (or parts of a line)

formed high in the atmosphere. We have not considered this

periodicity because it does not play a signi®cant role in the

He i 6678 line. We can say, however, that NRP cannot be respon-

sible for this transient period either. Owing to the fact that it has

negligible amplitude in the photosphere and an increasing ampli-

tude above the photosphere, it must be a trapped mode. Therefore

the period of such a mode must be of the same order as the thermal

time-scale. In the upper atmosphere, however, the thermal time-

scale is of the order of minutes, not days. Therefore no such mode

can exist.

Because the observed periods of Be stars are consistent with the

rotational period, it is natural to model the line-pro®le variations

by means of a starspot. It is quite clear, however, that a normal

starspot, in which there is a signi®cant temperature difference

between the spot and the photosphere, cannot produce the radial

velocity variations and, at the same time, a very low light

amplitude. The only way to avoid this is to assume that there is

very little temperature difference. Instead, it is a difference in

intrinsic line pro®le shape in the spot and in the photosphere

which is largely responsible for the line pro®le variations. This

would certainly explain the large velocity/light ratio in other Be

stars as well (Balona 1995). The difference in intrinsic line pro®le

is probably not a result of equivalent width differences, i.e.

abundance differences, because the radial velocities measured

for a variety of elements all appear to be in phase (Baade

1982a,b). We conclude that a difference in rms width, i.e.

macroturbulence, is required. We will call this a `patch' rather

than a spot.

It turns out that a simple circular patch with a radius of about 45±

situated at moderate latitudes gives a good ®t to the line pro®les

while producing negligible light variations. Once again, however,

we ®nd intrinsic line widths which are much larger than expected.

All this suggests that the atmospheres of Be stars are extremely

turbulent. We do not understand why this should be the case, but we

can at least state that a patch model, unlike NRP, does ®t the line

pro®les quite well. Unfortunately, we know too little about Be stars

to construct a detailed model that can be defended. It is clear, for

example, that the role of magnetic ®elds is probably an important

consideration (Smith 1994).

We may speculate that the patch in 28 CMa may be a cloud of gas

suspended above the photosphere by a magnetic ®eld. Attempts to

detect magnetic ®elds on Be stars directly have not been successful

(Barker 1986; Bohlender 1994). For example, Bohlender (1994)

mentions the negative result of several seasons of polarimetric

observations of o And. It should be remembered, however, that

detection will succeed only if the magnetic ®eld is organized over a

large scale. Indirect evidence for the presence of magnetic ®elds in

Be stars comes from the observations of X-ray ¯ares in some of

these stars, such as g Cas. This star is well known to undergo rapid,

chaotic X-ray ¯uctuations. There is evidence that the source of the

X-ray ¯aring is on, or close to, the photosphere rather than from a

compact companion (Smith et al. 1998). X-ray and UV ¯aring has

also been found in l Eri (Smith et al. 1997). The existence of ¯aring

in the photosphere can only be explained by the presence of

magnetic ®elds. One possibility is that energy released by the

connection and disconnection of magnetic ®eld lines triggers

explosive ablations, causing the X-ray ¯aring.

One of the most puzzling aspects of 28 CMa, and one not

reported in any other Be star, is the presence of weak absorption

features ¯anking the He i 6678 line. These features do not seem to

vary in velocity, but undergo changes in intensity with the

P1 � 1:37 d period. There are at present insuf®cient data to under-

stand why they exist. It would certainly be interesting if the same

phenomenon were to be found in other Be stars. There is a

resemblance between these absorption features and the much

stronger, stationary, absorption feature reported by Smith (1985)

in the non-Be star a Vir. In this star a `spike', or strong, narrow

absorption feature, is ®rst seen on the red wing of the Si iii triplet

lines. It grows and recedes, only to appear on the blue wing about

four hours later. Smith attributes this to a quasi-toroidal mode of

high degree. Short persisting spikes and ramps were observed on

opposite wings of the He i and Si iii lines in m Cen (Rivinius et al.

1998). The authors argue that they are of photospheric origin. It is

not clear how strong the correspondence is to 28 CMa; the

impression we have is that the two weak absorption features in

28 CMa are always present, but are less visible as the wings of the

He i 6678 strengthen. Con®rmation of similar weak absorption

features in other spectral lines in 28 CMa are required to remove

entirely the possibility that they are an artefact.

The explanation for the transient period P2 is at present unknown.

Again, one can offer a speculation: that it may be the result of an

obscuration just above the photosphere. Material ¯owing from the

photosphere will tend to lag behind the rate of stellar rotation owing

to loss of angular momentum with height. If there is a condensation

of such material above the photosphere, it may give rise to the

observed effects with a period somewhat smaller than the period of

rotation.
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