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Abstract

In recent years, more and more disasters occurred. Additionally, the amount of peo-
ple affected by disasters increased. Because of this, it is of great importance to per-
form the relief operations efficiently in order to alleviate the suffering of the disaster 
victims. Immediately after the occurrence of a disaster, there is an urgent need for 
delivering relief goods to demand locations and affected regions, respectively. Due 
to roads being blocked or damaged by debris, some demand locations may be out of 
reach and therefore the delivery of relief goods is hampered. This paper investigates 
the basic problem of simultaneously unblocking roads in order to make demand 
locations accessible and delivering relief goods in order to satisfy demand. Strict 
deadlines for the delivery of relief goods are considered at the demand locations. A 
formal problem statement is provided, and its computational complexity is analyzed. 
Additionally, a mixed integer programming model is developed and an exact solu-
tion method based on a branch and bound approach is proposed. A computational 
study investigating the performance of the model formulation and the branch and 
bound algorithm is conducted.
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1 Introduction

In recent years, the number of natural disasters such as hurricanes, earthquakes 
and tsunamis has grown. Furthermore, more and more people have been affected 
by disasters (see Coppola 2015; Guha-Sapir et al. 2016). Hence, an efficient plan-
ning of relief operations is of utmost importance. In the response phase, immedi-
ately after the occurrence of a disaster, it is an urgent task to supply relief goods 
to the disaster victims in the affected region. The last mile delivery is mainly 
carried out by road vehicles. Of course also helicopters are used for last mile 
delivery in disaster relief. But the number of helicopters is limited, and their 
operation is costly. Moreover, helicopters are needed for tasks like assessing dam-
ages from the air or transporting injured people to hospitals. Therefore, we focus 
on last mile deliveries using the road network. In such cases, fast delivery and 
direct routing are hampered by debris which blocks parts of the road network or 
parts of the road network being destructed. Due to blocked or damaged roads, 
some locations may be isolated or vehicles may have to make detours to reach 
victims at these locations. Road clearance operations can be performed in order 
to clear the blocked roads, so that isolated locations become accessible again or 
detours are not necessary anymore. Because road clearance is a time-consuming 
task, the deployment of road clearance operations should be well thought out. 
From a methodological point of view, two planning problems arise. On the one 
hand, the delivery of relief goods has to be planned in a way that the demand of 
the disaster victims is fulfilled in a timely manner. On the other hand, a subset of 
all blocked roads has to be selected and a sequence in which these blocked roads 
are cleared has to be determined. The motivation for clearing the selected roads 
in sequence instead of clearing them in parallel is as follows. By concentrating 
the scarce resources for road clearance on one blocked road after another, the 
duration of road clearance operations can be reduced in total as a single road gets 
cleared faster due to the concentrated resources.

Obviously, there exists an interdependence between the two mentioned plan-
ning problems. The sequence and duration of road clearance operations affect 
the distribution of the relief goods. For example, the later an isolated location is 
made accessible again, the later relief goods can be distributed to that location. 
Delivery order, arrival times and deadlines in the context of the distribution of 
relief goods have an influence on the road clearance operations. If, for example, 
an isolated location should be supplied in the beginning of the planning horizon, 
road clearance operations have to focus on blocked roads towards this location 
first. Because of this interdependence tackling, both planning problems simulta-
neously may be beneficial.

Consequently, in this paper, we deal with the simultaneous problem, which we 
name Basic Simultaneous Road Clearance and Distribution Problem (BSRCDP) 
and focus on the following basic scenario. We consider a region which is hit by 
a disaster. Often various locations within the considered region are affected dif-
ferently by the disaster. Also the density of the population varies among the loca-
tions in the region. This results in different demand for relief goods such as water, 
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food, shelter and medical supplies at different locations. Some locations have a 
higher priority and need their relief goods earlier than other locations. Thus, with 
every demand location a demand volume and a certain deadline are associated. A 
deadline determines the point in time when the amount of requested relief goods 
at a demand location has to be completely fulfilled. Note that the deadlines are 
strict, a late delivery of the relief goods is not allowed. Certain amounts of goods 
can be supplied from several locations in the region. The supplies are not subject 
to any time restrictions and are available from the beginning of the planning hori-
zon. Furthermore, some only slightly affected locations in the region may exist 
which have neither demand nor supply of relief goods, but they have to be con-
sidered as they represent road intersections. Regarding the roads in the region, 
we distinguish between blocked and unblocked roads because not all roads are 
blocked. A delivery of relief goods from a location with supply to a location with 
a demand is possible if these two locations are connected by at least one path of 
unblocked roads. Note that such an unblocked path can exist at the beginning of 
the planning horizon. If no path of unblocked roads between a location with sup-
ply and a location with a demand exists, a delivery is possible as soon as one path 
between these two locations is cleared. As we focus on a basic scenario in order 
to explore the fundamental structure, no vehicles and no related routing are con-
sidered. Moreover, we do not incorporate transportation times for the delivery of 
supply because in comparison with the time needed for road clearance, the trans-
portation time is negligible. In contrast to some other papers dealing with road 
clearance, e.g., Özdamar et al. (2014), we assume that each blocked road can be 
reached instantly regardless which other roads are blocked. Generally, we assume 
all parameters to be deterministic and known at the beginning of the planning 
horizon. Although a disaster environment is faced, information about road dam-
ages and blockages can often be obtained by satellite images and by the use of 
helicopters and aerial drones. Information regarding the demand of the affected 
people is provided by aid organizations which are on site first (possibly by heli-
copter). BSRCDP can generally be applied to disasters occurring in cities as well 
as in rural areas. But as the road network is dense in cities, the probability of iso-
lated locations is lower in cities than in rural areas. Thus, BSRCDP is more likely 
to be applied in rural areas.

A feasible solution to BSRCDP ensures that the demand is fulfilled and the cor-
responding deadlines as well as the supply amounts are respected. We aim to find 
a feasible solution that minimizes the duration of road clearance. The motivation 
is twofold: First, a faster road clearance allows for earlier deliveries. Second, after 
a disaster struck resources are scarce. The faster the road clearance operations are 
completed, the earlier machines and manpower can be used for further disaster 
response tasks.

In this paper we provide a mixed integer programming (MIP) model for BSRCDP 
which we name BSRCD-MIP. As we will see in the following section, the litera-
ture on the simultaneous problem of road clearance and distribution of relief goods 
is limited. To the best of our knowledge, in papers dealing with the simultaneous 
problem no strict deadlines are considered. Additionally, only heuristic solution 
approaches are provided in papers focusing on deterministic variants. In addition to 
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the consideration of strict deadlines, the main contribution of our paper is a branch 
and bound (B&B)-based exact solution approach. The paper is organized as fol-
lows: In Sect. 2, an overview of the relevant literature is given. A detailed problem 
description including two formal problem statements and some complexity results 
are presented in Sect. 3. BSRCD-MIP is explained in Sect. 4. In Sect. 5, the B&B-
based exact solution approach is introduced. The performance of BSRCD-MIP and 
the exact solution approach are evaluated in a computational study. The results are 
presented in Sect. 6 which is followed by a short conclusion in Sect. 7.

2  Literature overview

We focus on the papers dealing with the simultaneous problem which are most 
related to BSRCDP. The literature regarding solely relief distribution is reviewed 
by, e.g., de la Torre et al. (2012), Anaya-Arenas et al. (2014), Zheng et al. (2015) 
and Özdamar and Ertem (2015). In contrast, Çelik (2016) gives a comprehensive 
overview of the literature focusing only on road clearance and network restoration, 
respectively.

Regarding the simultaneous problem, the works of Liberatore et al. (2014) and 
Ransikarbum and Mason (2016) are long-term oriented and rather belong to the 
recovery phase. In contrast to the papers considering the response phase and to our 
study, neither Liberatore et  al. (2014) nor Ransikarbum and Mason (2016) incor-
porate any time dynamics or scheduling aspects. But in the short-term oriented 
response phase, e.g., points in time when blocked roads get cleared are important for 
a smooth distribution.

The papers in the following focus on the response phase. Çelik et al. (2015) and 
Fikar et al. (2018) consider uncertainty. In the stochastic debris clearance problem 
studied by Çelik et  al. (2015), the resource requirements of a blocked road to be 
cleared are assumed to be stochastic. A partially observable Markov decision pro-
cess model is proposed to solve small- to medium-sized instances to optimality. 
Three heuristics are developed to solve larger instances. Additionally, the authors 
remark that their problem can be modeled using penalties for unsatisfied demand 
in a given period. In contrast to BSRCDP, the deadline mentioned by Çelik et  al. 
(2015) is not strict. In the problem studied by Fikar et al. (2018), distribution points 
and a plan how to supply relief goods from a single depot to these points have to 
be determined. Network disruptions in terms of blocked roads due to aftershocks 
can occur at random times during the planning horizon. Different vehicle types are 
available for the transportation of relief goods. One type is additionally equipped 
with gear for road clearance. Also, interactions between people affected by the dis-
aster are considered. An agent-based simulation and optimization framework is 
developed.

The following papers focus on deterministic scenarios within the response phase. 
In the paper by Yan and Shih (2009), one time–space network for road clearance 
considering several work teams and one for relief distribution are considered. Both 
networks are linked in such a way that a flow of relief goods on a damaged or 
blocked arc is only possible if the arc has been cleared before. Thus, both time–space 
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networks are integrated into one multi-objective, multi-commodity network flow 
problem which is formulated as a MIP model. A weighted objective function is 
used to tackle both objectives (minimizing the duration needed for clearance and 
for delivering relief goods to all demand locations), and a heuristic is developed to 
solve the weighted objective problem. Nurre et al. (2012) consider an integrated net-
work design and scheduling problem. An operational network including supply and 
demand nodes is given. A set of work teams can add arcs to the network that can be 
used to maximize the cumulative weighted flow of relief goods sent from the supply 
locations to the demand locations over the planning horizon. The problem is mod-
eled as an integer programming model, and valid inequalities for the model are dis-
cussed. Additionally, a heuristic dispatching rule is developed. Based on this work, 
Nurre and Sharkey (2014) define several integrated network design and scheduling 
problems with different performance metrics and scheduling objectives. Moreover, a 
general heuristic dispatching rule framework is developed. Cavdaroglu et al. (2013) 
consider not only the interdependence between the distribution of relief goods and 
road clearance tasks in a transportation network, but also the interdependencies 
between different networks or, more precisely, infrastructures like power, transporta-
tion, water and telecommunications. For each infrastructure, the flows of goods and 
the unmet demands as well as a restoration schedule including a selection of arcs to 
be repaired, an assignment of the corresponding tasks to work teams and sequences 
of the assigned tasks for each work team are determined. The problem is formulated 
as a MIP model, and a heuristic solution method is proposed. Sharkey et al. (2015) 
continue the work by Cavdaroglu et al. (2013) and consider different classes of res-
toration interdependencies. Additionally, different decision-making environments 
including centralized, decentralized and information sharing are discussed. The cor-
responding integer programming models depicting these environments are solved 
with a generic solver. González et  al. (2016a) and González et  al. (2016b) study 
a similar problem to Cavdaroglu et  al. (2013) considering cost reductions associ-
ated with recovering multiple co-located components at the same time. Extending 
the approach from Sharkey et al. (2015), Smith et al. (2017) provide a game theo-
retical model to obtain recovery strategies depicting decentralized decision making. 
They extend the time-dependent model of González et al. (2016a). Morshedlou et al. 
(2018) integrate a work team scheduling problem with a vehicle routing problem. 
Several work teams are dispatched to restore an infrastructure network in order to 
increase the flow from supply nodes to demand nodes during the planning horizon. 
One additional aspect is the consideration of a dynamic restoration process where 
work teams are able to work cooperatively. Two MIP models are proposed. In the 
first one a blocked component is not operational unless it is fully cleared, whereas 
in the second model blocked components can be partially operational during clear-
ance. A lower bound is obtained integrating a relaxed model formulation and valid 
inequalities. Additionally, a feasibility algorithm is introduced. Shin et  al. (2019) 
consider a scenario containing one work team and one relief vehicle emanating from 
the same depot. The proposed MIP model simultaneously determines sequences of 
roads to be cleared by the work team and of demand nodes to be visited by the relief 
vehicle. An ant colony optimization algorithm is proposed for large-scale data.
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3  Problem description and complexity results

In this section, a formal problem statement for BSRCDP is given and some com-
plexity results are presented. In Sect. 3.1 an initial problem formulation with a cor-
responding example is introduced. A less straightforward but more concise problem 
formulation is presented in Sect. 3.2. The second problem has a smaller graph repre-
sentation and is therefore named the reduced problem in the following. Complexity 
results are derived in Sect. 3.3.

3.1  The initial problem

Let an undirected graph G = (V, E) with V = S ∪ D ∪ H and E = E
F
∪ E

B be given. 
The elements in the node set S represent the locations of relief good supply. We 
associate a positive supply �

�
∈ ℝ

>0
 of relief goods with every supply node � ∈ S . 

The elements in the node set D represent the locations with demand for relief goods. 
With every demand node � ∈ D , we associate a positive demand �� ∈ ℝ

>0
 for 

relief goods and a positive deadline �� ∈ ℕ . The length of the planning horizon 
is defined to be T = max{�� ∣ � ∈ D} . Additionally, the elements in the node set 
H represent locations without supply or demand. Such locations may be worth to 
be considered in order to mark, e.g., the end points of street sections. The edges 
of the graph are the elements in the sets E

B
⊆ {(�,�) ∈ V × V|� < �} and 

E
F
⊆ {(�,�) ∈ V × V|� < �} with EF

∩ E
B
= � . An edge (�,�) ∈ E

B represents 
a blocked or damaged road or a section of such a road, whereas an edge (�,�) ∈ E

F 
stands for an unblocked road. As highlighted in Sect.  1, usually not all roads are 
blocked by debris. The planning horizon is divided into time units of equal length 
which we name periods in the following. Only one blocked edge (�,�) ∈ E

B can 
be cleared per period. We assume that in one period a predefined length of a real 
blocked road or, more specifically, a predefined amount of blocking debris can be 
cleared. This predefined length of a blocked road is represented by one blocked 
edge (�,�) ∈ E

B . In other words, clearing one blocked edge (�,�) ∈ E
B takes 

one period. Note that if in reality a blocked road needs more than one period to be 
cleared, as many blocked edges (�,�) ∈ E

B (with clearance time of one period) as 
periods needed and additional nodes h ∈ H are taken to depict such a blocked road 
with clearance time of more than one period as a sequence. We further assume that 
all blocked roads require an integer number of periods to be cleared. An example for 
such a graph is given in Fig. 1. The supply nodes S are depicted as triangles and we 
have S = {1,… , 6} . We have the set of demand nodes D = {7,… , 15} which are 
illustrated as squares. Nodes of set H are depicted as pentagons. In the example, we 
have H = {16, 17, 18} . The unblocked edges EF are drawn as continuous lines and 
the blocked edges EB are drawn as dashed lines in Fig. 1.

A solution to the initial problem gives answers to the following questions: a) 
How many relief goods are delivered from which supply node to what demand 
node in what period? b) Which blocked road is cleared in period � such that the 
transports mentioned in a) can be carried out? The latter can be represented by a 
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sequence Ω of � ≤ T  edges in EB such that each edge is contained at most once. 
Let Ω(�) be the edge at position � of Ω . Position � corresponds to the period in 
which the corresponding blocked edge is to be cleared. Sequence Ω of length � 
induces graphs G0,… , GT  with G0 = (S ∪ D ∪ H, E

F) , G
�
= (S ∪ D ∪ H, E

F

�
) with 

E
F

�
= (EF ∪

⋃�

��=1
{Ω(��)}) for each � ≤ � , and G

�
= G

�
 for � < � ≤ T  . Clearing 

blocked edge Ω(�) ∈ E
B unblocks this edge and makes it passable from period 

� on. Note that the edge set EB

�
 can be obtained by EB

�
= (EF ∪ E

B) ⧵ E
F

�
 for each 

� ≤ T  and that a sequence of graphs can be induced using edge sets EB and EB

�
 

instead of EF and EF

�
 . This idea is used in Sect. 3.2.2.

A solution is feasible if the following restrictions hold. A delivery from a sup-
ply node � ∈ S to a demand node � ∈ D in period � can only be carried out if 
� and � are connected in G

�
 . It is assumed that a delivery is always made at the 

end of a period. All demands �� must be fulfilled. A demand �� is fulfilled 
if the sum of deliveries of relief goods from supply nodes to this demand node 
is at least �� and if these deliveries reach this demand node no later than �� . 
Note that a demand node can receive deliveries from a supply node as soon as the 
demand node and the respective supply node are connected in G

�
 . Furthermore, a 

supply node can only send at most that many relief goods as there are available 
at this node, that is �

�
 for � ∈ S . We assume that the overall supply is equal or 

greater than the overall demand. Note that not necessarily all blocked edges need 
to be cleared to obtain a feasible solution and that due to the strict deadlines for 
some instances no feasible solution exists.

Each feasible solution can be evaluated by the length of a corresponding 
sequence Ω , i.e., the number of blocked edges to be cleared. Among the feasible 

Fig. 1  Graph of the initial problem
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solutions we seek one with a sequence of minimum length which is equivalent to 
the minimum duration of road clearance.

A solution consists of a sequence of blocked edges to clear and specific deliveries 
of supply. Note that for a given feasible sequence of blocked edges to clear the spe-
cific deliveries can be easily determined. This aspect is used in a reduced problem 
which is presented in Sect. 3.2.

3.2  A reduced problem formulation

In this section, a formal problem statement for the reduced problem that is equiva-
lent to the initial problem is presented. Before providing the formal problem state-
ment in Sect. 3.2.2, some preliminary considerations on the graph representation are 
presented in Sect. 3.2.1.

3.2.1  Aggregating nodes into components

The aim of the following considerations is to obtain a smaller but equivalent repre-
sentation of graph G of the initial problem.

Graph G of the initial problem contains nodes V = S ∪ D ∪ H . We focus on 
subsets of V that are connected components with respect to the unblocked edges. 
Because all nodes within a component are directly or indirectly connected by 
unblocked edges and no transportation times need to be considered, deliveries 
within a component are immediately possible. Therefore, no further blocked edges 
need to be cleared to connect any pair of nodes within the same component. Con-
sequently, every component in G can be replaced by a single node which represents 
the whole component. The whole node set V of G can be replaced by a set of compo-
nents C

0
 . In order to obtain an equivalent representation of the whole node set as a 

set of components, the supplies �
�
 of the supply nodes � ∈ S as well as the demands 

�� and the deadlines �� of the demand nodes � ∈ D have to be transformed for 
every component as explained in the following.

• Every component c ∈ C
0
 has a supply s

c
 which is the total supply in the com-

ponent. In the case where there is no supply node in a component s
c
 is equal to 

zero.
• With every component c ∈ C

0
 a parameter �

c
 is associated which represents the 

number of demands with different deadlines in component c. Note that �
c
 can 

also take value zero if no demand exists in a component. Parameter dcp is the p-
th, p = 1,… , �

c
 , demand in component c ∈ C

0
 and tcp is its corresponding dead-

line (if �
c
> 0 ). Demands with same deadlines in a component are summarized 

to one demand. Note that tcp < tcp+1
.

Graph G of the initial problem contains edge sets EF and EB . If the node set V is 
replaced by a component set C

0
 , also the set of edges changes. Obviously, the 

whole set of unblocked edges EF of the graph of the initial problem does not need 
to be incorporated as they form the components which are depicted as single nodes. 
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But also several blocked edges (�,�) ∈ E
B can be omitted. On the one hand, the 

blocked edges between nodes of a component in the initial problem can be omit-
ted. The reason is again the depiction of the whole component as a single node. On 
the other hand, if in the initial graph G several blocked edges exist between a pair 
of components, only one edge has to remain if the two components are depicted 
as single nodes. Clearing any of the blocked edges between the two components 
in the initial problem means clearing the one edge between the two as single nodes 
depicted components. Even if in graph G of the initial problem several blocked edges 
between two components exist, in a sequence Ω of an optimal solution to the initial 
problem never more than one blocked edge between a pair of components will be 
part of this sequence, because we have assumed that transportation times are zero on 
unblocked edges. Generally, the edge set E = E

F
∪ E

B can be replaced by a reduced 
set of blocked edges EB

0
.

Altogether, graph G = (V, E) with V = S ∪ D ∪ H and E = E
F
∪ E

B can be substi-
tuted by an equivalent, but smaller graph G0 = (C0, E

B

0
) . Only if in graph G the edge 

set EF is empty, graph G
0
 is identical to graph G . The reduced graph of our example 

(given in Fig. 1) can be seen in Fig. 2. Nodes 5, 10, 11, 12 and 18 from Fig. 1 are 
grouped together to form component 19 in Fig. 2. Analogously, nodes 1, 2, 13 and 
14 form component 20, nodes 3 and 16 form component 21, nodes 6, 15 and 17 
form component 22, and node 4 forms component 23. Completing, node 9 forms 
component 24 and nodes 7 and 8 form component 25.

3.2.2  Problem de�nition

Using the considerations from Sect. 3.2.1, the reduced problem can be formally defined 
as follows. An undirected graph G0 = (C0, E

B

0
) is given. Node set C

0
 represents the 

components and with each component c ∈ C
0
 a non-negative supply s

c
∈ ℝ

≥0
 is asso-

ciated. Having �
c
 as the number of demands for each c ∈ C

0
 , parameter dcp ∈ ℝ

>0
 is 

Fig. 2  Graph of the reduced problem
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the p-th, p = 1,… , �
c
 , positive demand in component c ∈ C

0
 and tcp ∈ ℕ is its corre-

sponding deadline (if �
c
> 0 ). Note that tcp < tcp+1

 . Set EB

0
⊆ {(l, m) ∈ C0 × C0|l < m} 

represents the blocked edges between the components. The length of the planning hori-
zon is T = max{tcp ∣ c ∈ C0, p = 1,… , �c, �c > 0} . Note that the length of the plan-
ning horizon is identical to the one in the initial problem. Regarding the road clearance 
times, the same considerations as in Sect. 3.1 are applied. One blocked edge (l, m) ∈ E

B

0
 

represents a blocked road segment of predefined length that can be cleared within one 
period. Again, only one edge can be cleared per period.

A solution to the reduced problem consists only of the decision about which blocked 
edges to clear in which periods. This decision is represented by a sequence � of k ≤ T  
edges in EB

0
 such that each edge is contained at most once. Let �(t) be the edge at posi-

tion t of � . Sequence � of length k induces graphs G0,… , G
T
 with G0 = (C0, E

B

0
) , 

G
t
= (C

t
, E

B

t
) for each t ≤ k , and G

t
= G

k
 for T ≥ t > k . The sets C

t
 and EB

t
 are defined 

as follows. Note that in the reduced problem the components are nodes as we have 
C0,… , C

T
 as the node sets of graphs G0,… , G

T
 . Edge �(t) is specified by (l, m) ∈ E

B

t−1
 

with l ∈ C
t−1

 and m ∈ C
t−1

 . Clearing edge (l, m) ∈ E
B

t−1
 creates an unblocked path of 

length one between components l and m. Thus, the components l and m form a new 
component after clearing edge (l,  m) which can be depicted as a single node in a 
graph. Thus, with every edge �(t) , specified by (l, m) ∈ E

B

t−1
 , the size of the graph G

t
 

is reduced by one node and at least one edge compared to the former graph G
t−1

 . For-
mally this is depicted by deleting components l and m from the set of components and 
adding a new component to the set, this is C

t
= (C

t−1 ⧵ {l, m}) ∪ {n + t} with n as the 
highest index of the components in C

0
 . Accordingly, the supplies s

c
 as well as param-

eters �c, dcp and tcp are updated with every G
t
 . Supply s

n+t
 is the sum of supplies s

l
 and 

s
m
 . �

n+t
 is the number of demands in components l and m. Note that demands with 

the same deadline are counted once only, because if in components l and m demands 
dlp and dmp′ with the same deadline tlp = tmp� exist, they are merged to one demand 
as described beforehand. Regarding the set of edges EB

t
 , it is obvious that the cleared 

edge (l, m) is omitted. But the new component set C
t
 requires some additional changes 

regarding the edges as components l and m are replaced by component n + t . The set of 
blocked edges is defined as given in Eq. (1).

The set of blocked edges EB

t
 contains edges from set EB

t−1
 that are not incident to 

either component l ∈ C
t−1

 or m ∈ C
t−1

 . This is ensured by the first part of the union. 
The second part adds edge (i, n + t) to set EB

t
 if in EB

t−1
 edges (i,  l) or (i, m) exist. 

Edge (j, n + t) is added to set EB

t
 if in EB

t−1
 edges (l, j) or (m, j) exist. Note that any 

edge from any edge set EB

t
 represents an edge from edge set EB

0
 of the underlying 

graph G
0
 , a small example for this is given later in this section.

A solution � changes the component structure over the planning horizon and 
therewith the supplies and demands of components as described beforehand. 

(1)

EB
t
=

{
(i, j) ∈ EB

t−1

|||
i ≠ l ∧ j ≠ l ∧ i ≠ m ∧ j ≠ m

}

∪

{
(i, n + t)

|
||
(i, j) ∈ EB

t−1
⧵ {(l, m)} ∧ (j = l ∨ j = m)

}

∪

{
(j, n + t)

|||
(i, j) ∈ EB

t−1
⧵ {(l, m)} ∧ (i = l ∨ i = m)

}
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Analogously to the initial problem, a solution � to the reduced problem is feasible 
if all demands dcp with c ∈ C

0
 and p = 1,… , �

c
 (if �

c
> 0 ) are fulfilled not after 

their individual deadlines tcp . This is the case if in every period each component has 
enough supply to cover the demands in that component that are due in that period or 
earlier. Thus, a feasible solution � to the reduced problem changes the component 
structure in a way that in each graph G

t
 it holds for each component c ∈ C

t
 that the 

supply s
c
 is equal or greater than the sum of the demands dcp with p = 1,… , �

c
 (if 

�
c
> 0 ) which are due in period t or earlier because of their deadlines tcp . More for-

mally, in each graph G1,… , G
T
 inequality (2) must hold for each component c ∈ C

t
.

Note that like in the initial problem, not necessarily all blocked edges need to be 
cleared to obtain a feasible solution and that for some instances no feasible solution 
exists due to the strict deadlines.

A feasible solution can be evaluated by the length of its sequence � . Like in the 
initial problem, this can be interpreted as the number of blocked edges or the num-
ber of periods that is necessary to clear parts of the road network so that all demands 
can be fulfilled. Again we seek a solution with a sequence of minimum length 
among the feasible ones.

In contrast to the initial problem, a solution to the reduced problem consists only 
of a sequence of blocked edges to clear and neglects specific deliveries of supply. 
Nevertheless, each feasible solution to the reduced problem can be easily trans-
formed into an equivalent feasible solution to the initial problem with a sequence 
of same length and specific deliveries of supply. Regarding the sequence of blocked 
edges to clear, in Sect. 3.2.1 we explained how to replace edge set E or, more specifi-
cally, edge set EB by an equivalent set of blocked edges EB

0
 . Using this explanation, it 

is easily possible to convert a sequence � of a solution to the reduced problem into 
an equivalent sequence Ω of a solution to the initial problem. An edge of sequence 
� is unambiguously converted into an edge of sequence Ω if only one blocked edge 
exists between the corresponding pair of connected components in graph G of the 
initial problem. If more than one blocked edge exist between a pair of components 
in graph G , the corresponding edge of sequence � can be converted into any of these 
edges for sequence Ω . Concerning the deliveries of supply, these can be derived 
from a solution to the reduced problem, which is only a sequence � of blocked 
edges to clear, as follows. A feasible sequence � induces graphs G0,… , G

T
 with 

C0,… , C
T
 and ensures that for each component c ∈ C

t
 in each graph G

t
 inequality 

(2) holds so that it is guaranteed that in every period each component has enough 
supply to cover its demands that are due in that period or earlier. Each component 
c ∈ C

t
 with 1 ≤ t ≤ T  represents one or more components c� ∈ C

t−1
 which got con-

nected by clearing blocked edges. Finally, each component c ∈ C
0
 represents a sub-

set of nodes from set V . Following this consideration for every component c ∈ C
t
 

with 1 ≤ t ≤ T  , it can be revealed which components of set C
0
 and which nodes of 

set V = S ∪ D ∪ H are represented by the respective component c ∈ C
t
 in period 

(2)
sc ≥

�c
∑

p=1

tcp≤t

dcp
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t. We refer to this as the structure of component set C
t
 . As stated above, a feasi-

ble sequence � ensures that Eq. (2) holds for each component c ∈ C
t
 . Additionally, 

deliveries are immediately possible within a component. Specific deliveries can then 
be easily determined as follows. In period t a demand at demand node � ∈ D can 
be fulfilled by sending the requested supply from any arbitrary supply node � ∈ S 
within the same component to the respective demand node. If the available supply at 
a supply node is not sufficient, supply from another arbitrary supply node within the 
same component is delivered to the respective demand node. All deliveries can be 
performed in the period in which the respective demand is due. Generally, in order 
to ensure feasible deliveries, in period t only the demands that are due in that period 
or earlier are required to be fulfilled by deliveries of supply. Demands that are due in 
a later period must not be fulfilled.

3.3  Complexity results

In the section at hand, we determine the computational complexity of BSRCDP. We, 
first, derive a feasibility version of the problem defined in the previous sections.

BSRCDP: Given an undirected graph G0 = (C0, E
B

0
) with a number �

c
 of demands 

for each c ∈ C
0
 , a demand amount dcp and a deadline tcp for each c ∈ C

0
 and 

p = 1,… , �
c
 (if �

c
> 0 ), and a supply s

c
 for each c ∈ C

0
 , is there a sequence � of a 

subset of edges such that for each position t in the sequence the total demand amount 
with deadlines not exceeding t in each connected component in (C0,

⋃t

t�=1

�

�(t�)
�

) 
does not exceed the total supply in this component?

The BSRCDP is closely related to the Steiner-Tree-Problem in Graphs (STG) as 
we will only sketch shortly in the following.

STG: Given an undirected weighted graph G
S = (VS

, E
S
, w

S) with a subset 
R

S ⊆ V
S is there a subset F ⊆ E

S such that in (VS
, F) there is a path between each 

pair of nodes in RS and total weights of edges in F do not exceed a given threshold 
P?

STG is strongly NP-complete even if all edge weights equal one, see Garey and 
Johnson (1979). In this special case, we require the cardinality of F not to exceed 
the given threshold P. It is now relatively easy to see that BSRCDP generalizes STG 
with unit weights. We omit a formal proof and shortly sketch the idea for the reduc-
tion instead. Given an instance of STG, we construct an instance of BSRCDP with 
the same node set where all but one node in RS corresponds to a demand node in C

0
 

with no supply and unit demand with deadline P. The remaining node in R
S cor-

responds to a supply node in C
0
 with no demand and a supply of |RS| − 1 . Nodes 

in VS ⧵ R
S correspond to a node in C

0
 with no supply and no demand. Finally, we 

set E
B

0
= E

S . A connected component in (VS
, F) then corresponds to a connected 

component in (C0,
⋃�F�

t�=1

�
�(t�)

�
) if � contains the edges in F in an arbitrary order. 

Thus, the answer to the instance of BSRCDP is yes if and only if the answer to the 
instance of STG is yes.

While the above already establishes NP-completeness of BSRCDP, we can derive 
a stronger complexity result by reduction from 3-PARTITION which is also known 
to be strongly NP-complete, see Garey and Johnson (1979).
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3-PARTITION: Given 3m + 1 integers a1,… , a3m
, B with B

4
< a

i
<

B

2
 for each 

i = 1,… , 3m and 
∑3m

i=1
a

i
= mB . Does there exist a partition of set {1, 2,… , 3m} into 

m subsets A1,… , A
m
 such that 

∑

i∈A
l

a
i
= B for each l = 1,… , m?

Theorem  1 BSRCDP is strongly NP-complete even if each supply is binary, each 

demand amount is binary, and all demands have the same deadline.

Proof For a given instance of 3-PARTITION, we construct the following instance of 
BSRCDP. We have a set C = {1,… , (4 + 2B)m} of nodes. We distinguish between 
supply pooling nodes 1,… , 3m , supply nodes 3m + 1,… , (3 + B)m , demand pooling 
nodes (3 + B)m + 1,… , (4 + B)m , and demand nodes (4 + B)m + 1,… , (4 + 2B)m . 
Each demand node has a single demand with a demand amount of one and deadline 
(3 + 2B)m . Each supply node has a supply of one. Pooling nodes have neither posi-
tive supply nor demands.

Each supply node is connected by an edge to exactly one supply pooling node 
such that exactly a

i
 supply nodes are connected to supply pooling node i. Each 

demand node is connected by an edge to exactly one demand pooling node such that 
exactly B demand nodes are connected to each demand pooling node. Finally, each 
demand pooling node is connected to each supply pooling demand. This completes 
the description of the instance.

Clearly, the construction of the instance of BSRCDP can be done in pseudo-poly-
nomial time. We claim that the answer to the instance of 3-PARTITION is yes if and 
only if the answer to the instance of BSRCDP is yes.

Consider a sequence � constituting a yes-certificate for the instance of BSRCDP. 
The maximum deadline is (3 + 2B)m and, hence, we can assume that � has a length 
of no more than (3 + 2B)m . Clearly, the only edge incident to any supply node or to 
any demand node is in � since otherwise demand remains unsatisfied. Hence, only 
3m edges between supply pooling nodes and demand pooling nodes can be in � . 
In order to deliver the total supply each supply pooling node must be connected to 
exactly one demand pooling node by one of these 3m edges in � . Hence, these 3m 
edges imply a mapping of supply pooling nodes on demand pooling nodes. Since 
each demand is satisfied this mapping connects three supply pooling nodes with 
total supply of exactly B to each demand pooling node. This mapping, hence, consti-
tutes a yes-certificate for the instance of 3-PARTITION.

It is easy to see that we can arrange a sequence � of length (3 + 2B)m if the 
answer to the instance of 3-PARTITION is yes. This concludes the proof.   ◻

4  Mathematical model

BSRCD-MIP is based on the definition of the reduced problem. As explained in 
Sect. 3.2.2, a solution to the reduced problem is completely given by a sequence � of 
length k ≤ T of blocked edges to clear. Such a sequence � induces graphs G0,… , G

T
 

so that with every cleared edge �(t) and thus with every period t ≤ k a new graph G
t
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is associated. By clearing a blocked edge �(t) between two components from graph 
G

t−1
 , an unblocked path of length one is created between them so that these compo-

nents form a new component which is depicted as a single node in graph G
t
 . Accord-

ingly, the supplies and demands of the components get updated. But graphs G1,… , G
T
 

are not known in advance as they depend on sequence � which is the solution to the 
problem. As it is not trivial to implement unknown graphs G1,… , G

T
 in a deterministic 

model, we use only the underlying graph G0 = (C0, E
B

0
) of the reduced problem for the 

formulation of BSRCD-MIP. Nevertheless, the information about which components 
of the underlying graph G

0
 are connected by paths of unblocked edges in period t is 

needed to ensure the fulfillment of the demands. Thus, in BSRCD-MIP a path between 
every pair of components c ∈ C

0
 and q ∈ C

0
 with c ≠ q is determined. Note that this 

requires the assumption that the underlying graph G
0
 is connected by blocked edges 

E
B

0
 . Binary variable a

cqe
∈ {0, 1} is used to determine these paths. The variable takes 

value 1 if edge e ∈ E
B

0
 is on the determined path from component c ∈ C

0
 to compo-

nent q ∈ C
0
 and 0 otherwise. Note that edge e ∈ E

B

0
 represents an edge (l, m) ∈ E

B

0
 in 

BSRCD-MIP. The set of blocked edges incident to component c ∈ C
0
 is represented by 

�(c) ⊆ E
B

0
 . Binary variable z

et
∈ {0, 1} indicates if a blocked edge is cleared in period 

t. In this case, it takes value 1 and 0, otherwise. If up to period t all edges of the deter-
mined path between two components are cleared, these two components are connected 
from that period on. Additionally, for the flow conservation constraint auxiliary binary 
variable r

cqm
∈ {0, 1} is needed which takes value 1 if component m ∈ C

0
 is on the 

determined path from component c ∈ C
0
 to component q ∈ C

0
 and 0, otherwise. The 

aforementioned binary variables are used to determine a solution to the reduced prob-
lem, which is sequence � . It can be derived from variable z

et
 . In the reduced prob-

lem, the fulfillment of the demands is ensured by comparing the updated supplies and 
demands in the components of every graph G

t
 using inequality (2) as it is described 

in Sect. 3.2.2. Having only graph G
0
 in BSRCD-MIP this is not possible. In order to 

keep track of the fulfilled demands and the available supplies, continuous variable xcqt 
defines an amount of supply from component c ∈ C

0
 that is used for fulfilling demands 

in component q ∈ C
0
 in period t. Supplies from component c ∈ C

0
 can only be used to 

cover demands in component q ∈ C
0
 in period t if between these two components an 

unblocked path exists in period t as described beforehand. Additionally, parameter M is 
a sufficient large number. BSRCD-MIP is defined as follows:

(3)min

T
∑

t=1

∑

e∈EB

0

zet

(4)
∑

q∈C0

tcp
∑

t=1

xqct ≥

p
∑

i=0

dci c ∈ C0;p = 1,… , �c;�c > 0

(5)
∑

q∈C
0

T
∑

t=1

xcqt ≤ sc c ∈ C
0
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Objective function (3) minimizes the number of cleared edges which is identical 
to the minimization of the length of sequence � . Constraint (4) ensures that every 
demand is fulfilled up to its individual deadline. Remember from Sects. 3.2.1 and 
3.2.2 that with p = 1 the demand with the lowest deadline, with p = 2 the one with 
the second lowest deadline and so forth are associated. The sum 

∑

q∈C
0

∑tcp

t=1
xqct rep-

resents the amount of supply coming from all connected components q ∈ C
0
 up to 

period tcp . It should be at least as much as the demand of component c ∈ C
0
 due in 

period tcp or earlier. By constraint (5) it is forced that the supply of every component 
c ∈ C

0
 is respected as over the planning horizon only as much supply as initially 

available in component c ∈ C
0
 can be used to fulfill demands. Constraints (6)–(10) 

force that supply from component c ∈ C
0
 can only be used to fulfill a demand in 

component q ∈ C
0
 (with c ≠ q ) in period t if between these components at least one 

path of unblocked edges exists in that period. If at least one edge on the determined 
path between c ∈ C

0
 and q ∈ C

0
 , which is determined by constraints (7)–(10), 

is not cleared up to period t, that is 
∑t

�=1
z

e�
= 0 , then we have xcqt ≤ 0 in con-

straint (6). Thus, no supply from component c ∈ C
0
 can be used to fulfill demands 

(6)

xcqt ≤ M ∗

(

1 − acqe +

t
∑

�=1

ze�

)

c ∈ C0;q ∈ C0;t = 1…T;e ∈ EB
0

;c ≠ q

(7)

∑

e∈�(c)

acqe = 1 c ∈ C0;q ∈ C0;c < q

(8)

∑

e∈�(m)

acqe = 2 ∗ rcqm c ∈ C0;q ∈ C0;m ∈ C0 ⧵ {c, q};c < q

(9)

∑

e∈�(q)

acqe = 1 c ∈ C0;q ∈ C0;c < q

(10)acqe = aqce c ∈ C0;q ∈ C0;c < q;e ∈ EB
0

(11)

∑

e∈EB

0

zet ≤ 1 t = 1…T

(12)zet ∈ {0, 1} e ∈ E
B

0
;t = 1…T

(13)xcqt ≥ 0 c ∈ C0;q ∈ C0;t = 1…T

(14)acqe ∈ {0, 1} c ∈ C0;q ∈ C0;e ∈ EB
0

;c ≠ q

(15)rcqm ∈ {0, 1} c ∈ C0;q ∈ C0;m ∈ C0 ⧵ {c, q};c < q
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in component q ∈ C
0
 in period t. If instead all edges on the path are cleared up to 

period t, we have only xcqt ≤ M and supply from component c ∈ C
0
 can be used 

in component q ∈ C
0
 in period t. As written above, constraints (7)–(10) determine 

a path between every pair of components c ∈ C
0
 and q ∈ C

0
 with c ≠ q . Note that 

constraints (7)–(9) determine such paths for pairs c and q with c < q , but constraint 
(10) ensures that a path for pair c and q is also valid for pair q and c. Constraint (7) 
states that the path starts in component c ∈ C

0
 . Constraint (8) is a flow conserva-

tion constraint which forces the path to enter and leave another component m ∈ C
0
 

if component m is on the determined path from component c ∈ C
0
 to component 

q ∈ C
0
 which is indicated by r

cqm
= 1 . Constraint (9) ensures that the path ends in 

component q ∈ C
0
 . The assumption that at most one edge is cleared per period is 

implemented by constraint (11). The domain of the variables is given by constraints 
(12)-(15).

In order to strengthen the model formulation, some valid inequalities can be 
incorporated. Some computational tests indicate that the valid inequalities given 
below can decrease the computational times.

If a blocked edge needs to be cleared, it is sufficient to clear it just once during the 
planning horizon. As the objective function minimizes the sum of cleared edges, no 
edge will be cleared more than once. But in order to strengthen the formulation, con-
straint (16) is added which additionally forces that an edge is cleared at most once.

Furthermore, there might be more than one optimal solution. The objective function 
minimizes the number of edges to be cleared. Given the minimum number of edges, 
there might be a solution—if deadlines allow for it—in which at least in one period 
no edge is cleared, but in the following periods blocked edges are cleared. To over-
come this, inequality (17) is introduced. It states that clearing an edge in period t + 1 
is only possible if in period t an edge is cleared as well.

5  Branch and bound algorithm

In this section, our exact B&B algorithm to the reduced problem of BSRCDP 
is presented. In Sect.  5.1, the basic idea is introduced, and in Sect.  5.2, the 
basic idea is brought into the structure of a B&B algorithm. The branching is 
described in detail in Sect.  5.3, whereas the bounding procedure of the B&B 
algorithm is explained in Sect. 5.4.

(16)
T
∑

t=1

zet ≤ 1 e ∈ E
B

0

(17)

∑

e∈EB

0

zet ≥

∑

e∈EB

0

ze(t+1) t = 1…(T − 1)
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5.1  Basic idea

The basic idea of the algorithm is to grow a sequence of blocked edges to clear. 
In an initial step for each component c ∈ C

0
 of graph G

0
 which has at least one 

demand, that is �
c
≥ 1 , it is checked if the available supply in this component is 

sufficient to fully cover the demands in this component. Recall from Sect. 3.2.1 
that s

c
 can take value zero if no supply is available in the whole component. For 

each component which has not enough supply to cover all demands, that is 
sc <

∑�c

p=1
dcp , the earliest deadline tcp at which the total amount of the demands, 

which are due at deadline tcp or at an earlier deadline, exceeds the available sup-
ply in this component is determined and noted as t̃

c
 . Note that if no component 

with sc <
∑�c

p=1
dcp exists, the optimal solution is a sequence � of length zero. 

Otherwise, out of deadlines t̃
c
 the lowest deadline t̃ is determined by Eq. (18).

The corresponding component c ∈ C
0
 with the lowest deadline t̃ = t̃

c
 is noted as 

component c̃ and can be interpreted as the component in which the amount of the 
demands exceeds the supply next. Therefore, c̃ is the next component which needs 
to to get access to a subset of other already-connected components by clearing paths 
of blocked edges between component c̃ and the components of such a subset. The 
components of such a subset need to have together a sufficient surplus of supply 
in period t̃ to cover the remaining demand in component c̃ that is due in period t̃ . 
Note that such a subset of other components can consist of only one component. 
Additionally, the surplus of supply of a component in period t̃ is the amount of sup-
ply that is left after subtracting the demands of that component which are due in 
period t̃ or earlier. Demands of that component with deadlines later than t̃ might be 
fulfilled by supply of other components later. The subset of blocked edges forming 
the paths to be cleared between component c̃ and the components of such a sub-
set is referred to as partial sequence in the following. Generally, several subsets of 
components with a sufficient surplus of supply can exist and consequently several 
partial sequences of blocked edges to clear can exist to connect component c̃ with 
these subsets. Moreover, even different partial sequences can exist to connect com-
ponent c̃ with one specific subset of components. But a partial sequence of blocked 
edges to clear can only contain as many blocked edges as periods that are available 
to connect component c̃ with other components. �̃ is the sequence of blocked edges 
which have been cleared so far and õ is its length. As the clearance time of one 
blocked edge is one period as stated in Sect. 3.2.2, õ is also the number of periods 
which have been passed clearing blocked edges. Note that for the initialization the 
sequence �̃ is empty and thus õ is equal to zero because no edges have been cleared 
at the beginning of the planning horizon. The number of available periods to con-
nect component c̃ is thus computed by t̃ − õ . Out of all partial sequences with length 
equal or smaller than t̃ − õ , one is selected. By clearing the blocked edges of the 
selected partial sequence, an unblocked path between the components adjacent to 

(18)
t̃ = min

c∈C
0

sc<
∑�c

p=1
dcp

t̃c
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the blocked edges of the selected partial sequence emerges. Applying the definition 
of a component from Sect.  3.2.1, the components along the emerged path can be 
summarized and depicted as a single component or, more specifically, node with 
the corresponding update of blocked edges as well as supplies, demands and dead-
lines in a new graph as described in Sect. 3.2.2. Note that the transformation pro-
cedure in Sect. 3.2.2 is only described for one cleared edge. If a partial sequence 
contains more than one blocked edge to clear, the transformation procedure has to 
be repeated as many times as the cardinality of the selected partial sequence. �̃ is 
updated by adding the selected partial sequence, and its length is added to õ . The 
procedure described beforehand is repeated for the new graph in order to connect 
the component which demands exceed its supply next with a subset of components 
which have a sufficient surplus of supply by clearing another partial sequence of 
blocked edges.

As described beforehand, our approach is to connect the component which needs 
supply most urgently first before connecting the second most urgent component. 
This is justified as follows. If, although all feasible partial sequences are considered, 
the most urgent component cannot get connected to a subset of components with a 
sufficient surplus of supply, no feasible solution exists, and considering any other 
less urgent component is unnecessary.

5.2  General structure

Bringing the basic idea into the structure of a B&B algorithm, with root node P
0
 

of the search tree always graph G0 = (C0, E
B

0
) of the reduced problem and with 

each other node P
b
 of the search tree a graph G

t
= (C

t
, E

B

t
) is associated. For the 

sake of clarity, we name each node of the search tree B&B node in the following. 
Additionally, for every B&B node t̃ , c̃ , �̃ and õ exist. t̃ and c̃ are determined as 
described in Sect. 5.1. As no edge has been cleared at the beginning of the plan-
ning horizon �̃ is empty for P

0
 and thus the value of õ is zero for P

0
 . Every B&B 

node P
b
 has as many branches as feasible partial sequences exist to connect com-

ponent c̃ within t̃ − õ periods to subsets of other components which each has a 
sufficient surplus of supply in period t̃ . Obviously, each branch represents one 
partial sequence of blocked edges to clear and vice versa. Thus, branch and par-
tial sequence can be used interchangeably. In Sect.  5.3 it is described in detail 
how the branches of a B&B node are obtained. The search strategy is a depth first 
search. The algorithm starts without a feasible solution, because as stated in 
Sects. 3.1 and 3.2.2, it is not known in advance if a feasible solution exists or not. 
The aim of conducting a depth first search is to find a feasible solution as fast as 
possible which then can be used for further bounding of the whole search pro-
cess. The bounding procedure of the B&B algorithm is described in Sect. 5.4. In 
order to obtain a good feasible solution, i.e., a solution with a number of cleared 
edges as small as possible, always the branch representing the shortest partial 
sequence is selected. Taking the parent B&B node, its associated graph and the 
selected partial sequence of blocked edges to clear, the child B&B node and the 
associated graph of the child B&B node are formed by (repeatedly, if the partial 
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sequence contains more than one blocked edge) applying the transformation 
described in Sect.  3.2.2. For the child B&B node �̃ is updated by adding the 
selected partial sequence and õ is updated by adding the length of the selected 
partial sequence. The procedure of identifying component c̃ and period t̃ as well 
as determining all feasible partial sequences, selecting one and forming the next 
B&B node as described beforehand is repeated. If for a B&B node P

b
 or, more 

specifically, in its associated graph no component with uncovered demand, that is 
sc ≥

∑
�c

p=1
dcp for each c ∈ C

t
 , can be identified, a feasible solution is found and 

this B&B node does not have to be branched. The sequence �̃ of this B&B node 
P

b
 is a feasible solution � to the reduced problem. For each graph induced by 

sequence � Eq. (2) holds and thus sequence � is a feasible solution. By consider-
ing all possible and feasible partial sequences to connect a component c̃ with sub-
sets of components with sufficient surplus of supply during the search process, it 
is ensured that an optimal solution is found if a feasible solution exists. If no fea-
sible solution exists, all B&B nodes and branches are fathomed by the bounding 
rules described in Sect. 5.4 without having found a feasible solution.

Figure 3 shows the complete search tree of the B&B algorithm to the example 
given in Fig. 2. The number at each branch is the length of its partial sequence, 
and the letter is an index for the partial sequence. Each partial sequence can 
be found in the second column of Table 1 by this index. Note that the edges in 
Table 1 refer to edge set EB

0
 because any edge from an edge set EB

t
 of a graph G

t
 

can be represented as an edge of graph G
0
 as stated in Sect. 3.2.2. The first col-

umn of the table contains the B&B nodes. In the third column sequences �̃ for 
every B&B node P

b
 are shown.

Fig. 3  Search tree of the example



610 D. Briskorn et al.

1 3

5.3  Branching

For each B&B node P
b
 t̃ , c̃ , �̃ and õ are determined as described beforehand. Given 

these information and a graph G
t
 which is associated with P

b
 , all feasible branches 

or, more specifically, partial sequences can be computed for B&B node P
b
 as 

follows.

Step 1 Determine all necessary subsets of components in graph G
t
 which have a 

sufficient surplus of supply to cover the remaining demand in component c̃ that is 
due in period t̃.
Step 2 For each of these subsets

(a) and for each component in a subset compute all elementary paths with fea-
sible length smaller or equal t̃ − õ from that component to component c̃ . If for 
at least one component of the treated subset no feasible path can be computed, 
Step 2(b) can be skipped for the treated subset.
(b) determine all combinations of paths computed in Step 2(a) so that in each 
combination all components of the treated subset are connected to component 
c̃ . If in a combination one edge appears several times, only one copy is kept. 
Additionally, if after keeping only one copy of edges appearing several times 
the number of edges in such a combination is greater than t̃ − õ , this combina-
tion is infeasible and can be discarded. Each feasible combination represents a 
partial sequence which is a branch of B&B node P

b
 . If the treated subset con-

tains only one component, obviously no combinations need to be determined. 
Instead, each feasible elementary path determined in Step 2(a) for such a sub-
set is a partial sequence.

Table 1  Branches and sequences �̃ of the example

Branches �̃

P
0

a: ((19, 20)) b:((19, 24), (23, 24)) 
c:((19, 24), (21, 24)) d:((19, 20), (20, 21))

–

P
1

e: ((19, 22)) ((19, 20))

P
2

f: ((20, 21)) g:((19, 24), (21, 24)) 
h:((21, 25), (22, 25))

((19, 20), (19, 22))

P
3

i:((21, 24)) j:((23, 24), (23, 25), (21, 25)) k:((21, 24
), (21, 25), (23, 25)) l: ((23, 24))

((19, 20), (19, 22), (20, 21))

P
4

m: ((23, 25)) ((19, 20), (19, 22), (20, 21), (21, 24))

P
5

– ((19, 20), (19, 22), (20, 21), (21, 24), (23, 25))

P
6

– ((19, 20), (19, 22), (20, 21), (23, 24))

P
7

– ((19, 20), (19, 22), (19, 24), (21, 24))

P
8

– ((19, 20), (19, 22), (22, 25), (21, 25))

P
9

– ((19, 24), (23, 24))

P
10

– ((19, 24), (21, 24))

P
11

– ((19, 20), (20, 21))
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Step 3 If in graph G
t
 component c̃ is the only component left with uncovered 

demand, out of all feasible partial sequences only one with a minimum number of 
blocked edges is kept and all other partial sequences are discarded.

In Step 1 let C+

t
 be the set of components in graph G

t
 with a surplus of supply in 

period t̃ . So for each component c ∈ C
+

t
 inequality (19) must hold.

Each of these components can contribute to cover the demand in component c̃ that is 
due in period t̃ . In order to find all necessary feasible partial sequences and thus to 
guarantee the optimality of the B&B algorithm, initially all subsets of C+

t
 except the 

empty set are considered. Out of these the subsets whose combined surplus of sup-
ply is smaller than the uncovered demand in component c̃ that is due in period t̃ are 
not further considered for the computation of the partial sequences. The remaining 
subsets have a sufficient surplus of supply, but considering all of them could lead 
to the computation of superfluous partial sequences. Therefore, from the remaining 
subsets for each subset with cardinality greater than one is checked if at least one of 
its own strict subsets has a combined surplus of supply which is already greater or 
equal than the uncovered demand in component c̃ that is due in period t̃ . All subsets 
having at least one of these strict subsets are removed from the remaining subsets. 
The remaining subsets are forwarded to Step 2.

The aim of Step 2 is to generate partial sequences of blocked edges to clear for 
each subset which connect component c̃ with the components of the respective 
subset.

In Step 2(a) for each component of the treated subset, all elementary paths with 
feasible length from that component to component c̃ are computed as a preparation 
for Step 2(b). It is not sufficient to compute only the shortest path of blocked edges 
to clear for each component because it can be easily shown that in order to obtain 
a feasible solution it might be necessary to clear a longer path of blocked edges 
between component c̃ and a component with surplus of supply. A subset cannot be 
considered for generating partial sequences in Step 2(b) if for at least one of its com-
ponents no feasible path to component c̃ can be generated, because of this connect-
ing all components of this subset to component c̃ is impossible.

In Step 2(b) the partial sequences are generated as described above.
The aim of Step 3 is to avoid generating branches in the search tree which can-

not lead to an optimal solution. If component c̃ is the last component that needs to 
be connected to a subset of components with a sufficient surplus of supply and at 
least one feasible partial sequence of blocked edges to clear exist, the resulting child 
B&B node does not need to get further branched regardless the length of the chosen 
partial sequence as no component in the graph associated with the child B&B node 
will have a lack of supply and will need to get connected to other components. Thus, 
as we seek a sequence of minimum length for the overall solution, it is optimal to 
consider only the partial sequence with minimum length in this case.

(19)sc >

�c
∑

p=1 tcp ≤ t̃

dcp
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5.4  Bounding

As explained in Sect.  5.2 the B&B algorithm starts without a feasible solution. 
Before obtaining a feasible solution during the search process which can be used for 
further bounding, the following bounding rules are used to fathom branches or B&B 
nodes.

A branch of a B&B node P
b
 is fathomed if the current length õ of sequence �̃ of 

B&B node P
b
 plus the number of edges of the respective branch is larger than an 

initial upper bound. The value of the summation can be interpreted as the number of 
blocked edges cleared after choosing the respective branch. The initial upper bound 
is computed as |C

0
| − 1 . A cleared sequence � of length |C

0
| − 1 forming a spanning 

tree connects all components c ∈ C
0
 directly or indirectly and thus all demands can 

be covered if a feasible solution exists. Clearing an additional blocked edge only 
deteriorates the objective value, that is the length of sequence �.

A B&B node cannot be branched and is therefore fathomed if no partial sequence 
exists, i.e., no partial sequence with length smaller or equal t̃ − õ that connects com-
ponent c̃ with a subset of components with sufficient surplus in period t̃ exists.

A B&B node P
b
 with b ≠ 0 is also fathomed if the structure of the component 

set C
t
 of graph G

t
 which is associated with B&B node P

b
 is identical to the struc-

ture of component set C
t′
 of a graph G

t′
 which is associated with a B&B node P

b′
 

with b′
< b . Note that this can be observed even if different sequences �̃ have been 

cleared so far. The structure of component set C
t
 with t > 0 reveals which compo-

nents of graph G
0
 of the root B&B node P

0
 are depicted by a single component 

c ∈ C
t
 (see Sect. 3.2.2). If the component structure of B&B node P

b
 is identical to 

the one of P
b′
 , the sub-tree of B&B node P

b
 would be identical to the one of B&B 

node P
b′
 which has already been fully explored. Therefore, B&B node P

b
 can be 

fathomed.
After obtaining a feasible sequence � during the search process, additional 

bounding rules are applied.
A branch of a B&B node is fathomed if the current length õ of sequence �̃ of 

B&B node P
b
 plus the number of edges of the respective branch is larger than the 

length of the shortest feasible sequence found so far. Obviously, this bounding rule 
is similar to the first one presented in this section. Only the initial upper bound 
|C

0
| − 1 is replaced by a regularly better upper bound given by the shortest feasible 

sequence found so far.
A B&B node P

b
 is fathomed if a lower bound computed for this B&B node is 

equal or larger than the length of the shortest feasible sequence found so far. A 
lower bound for B&B node P

b
 is computed as follows. To the number of cleared 

edges õ of B&B node P
b
 , the number of components with in total less supply 

than demand, that are all components c ∈ C
t
 in graph G

t
 associated with B&B 

node P
b
 for which inequality sc <

∑�c

p=1
dcp hold, is added. Each of these compo-

nents needs to get connected to at least one other component. For this at least 
one edge per component with in total less supply than demand has to be cleared. 
Additionally, the minimum length of the shortest paths from each of these com-
ponents with in total less demand than supply to each nearest component with in 
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total more supply than demand, that is sc >
∑�c

p=1
dcp , is added. Finally, value one 

is subtracted to avoid a double counting of an edge.

6  Computational study

In this section, the main results of a comprehensive computational study are pre-
sented. In Sect.  6.1 the performances of BSRCD-MIP and of the B&B algo-
rithm are compared. The performance of the B&B algorithm with respect to big-
ger instances and to the structure of the tested instances is further examined in 
Sect. 6.2.

BSRCD-MIP is implemented in AMPL and solved by the commercial solver 
Gurobi (version 8.1). The B&B algorithm is coded in C. All studies are con-
ducted on a computer equipped with an Intel(R) Core(TM) i5-3470 CPU (3.2 
GHz), 16 GB memory and Windows 7 Professional (64 bit).

In our computational study, we randomly generated instance sets for 8, 10, 12, 
16, 20 and 25 components. Regarding the parameter settings, we consider differ-
ent parameters with different levels. The first parameter is the number of compo-
nents with a positive supply. The total number of demands is the second param-
eter. The third parameter is the number of components to which the demands are 
randomly assigned during instance generation. For each of the three aforemen-
tioned parameters, two different levels are considered. The fourth parameter is 
the density of the graph. For the instance set with 8 components, only one level 
of density is considered. For the instance sets with 10 and 12 components, two 
different levels are taken into account while for the instance sets with 16, 20 and 
25 components three different levels are considered. One can refer to Table  4 
for more details about these parameter settings. Dozens of instances for each 
combination of these parameters, which totals to several hundreds of instances, 
are generated for each number of components. For each of these instances, the 
B&B algorithm without all bounding rules is run for 10 s and the number of fea-
sible solutions obtained, if any, is counted. Obviously, the B&B algorithm also 
detects many instances as infeasible due to the strict deadlines of the demands 
within 10 s. These instances are not considered for the test bed. The remain-
ing instances with varying numbers of feasible solutions (including the instances 
with no feasible solutions returned by the B&B algorithm within 10 s) are sorted 
with respect to the number of feasible solutions in descending order. Then, for 
each number of components and each combination of parameter settings, the top 
five instances are assigned to the first instance group, while the bottom five are 
assigned to the second instance group. Results regarding the two instance groups 
are discussed in Sect.  6.2. For more details on the parameter settings and the 
instance structure, respectively, we refer to Sects. 6.1 and 6.2. Additionally, a 
detailed documentary of the instance structure can be inquired from the authors. 
Note that the results are presented in a highly aggregated form in the following 
sections.
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6.1  Comparison of BSRCD‑MIP and the B&B algorithm

The aim of the computational study presented in this section is to demonstrate the 
computational advantage of the B&B algorithm over BSRCD-MIP which is solved 
including the presented valid inequalities.

Table 2 shows the main results of this study. The first column gives the number 
of components of the tested instances. 80 (160/160) instances with 8 (10/12) compo-
nents are tested using a time limit of 1800 s for each instance. In Table 2 three col-
umns are depicted for BSRCD-MIP and the B&B algorithm. The first out of these 
three columns gives the number of instances solved to optimality within the time 
limit. The second and third columns depict the average computational time given in 
seconds and the percentage standard deviation of the computational time. Both are 
computed based on the solved instances. The percentage standard deviation is not 
given if the results would cause a division by zero.

Comparing BSRCD-MIP with the B&B algorithm, we can state that the B&B 
algorithm clearly outperforms BSRCD-MIP. Whereas all of the instances with 
8 components and most of the instances with 10 components can be solved by 
BSRCD-MIP, it is obvious that the number of instances solved within the time limit 
decreases significantly for instances with 12 components. Computational tests show 
that instances with more than 12 components are generally not solvable within the 
time limit and are thus not depicted. Throughout the tested instances regularly a high 
standard deviation in terms of computational time can be observed for BSRCD-MIP. 
Further analysis reveals that at least 90% (50%) of the instances with 10 (12) com-
ponents are solved in less or equal 10 s. 10% (50%) or less of the instances have 
partially high computational times which cause the high standard deviation. In con-
trast, the B&B algorithm is able to solve all instances shown in Table 2 to optimality 
instantly.

6.2  Performance of the B&B algorithm

In this section, the performance of the B&B algorithm is examined in terms of the 
number of solved instances and of the computational time for different instance 
sizes. Additionally, the influence of different instance groups as well as the effect of 
different parameter settings and the quality of feasible solutions obtained during a 
run of the B&B algorithm are investigated.

The main results are depicted in Table 3. The first column of Table 3 gives the 
number of components. The second column presents the number of solved instances. 

Table 2  Results for BSRCD-
MIP and the B&B algorithm

|C
0
| BSRCD-MIP B&B

# Solved Time SD time # Solved Time SD time

8 80 0.0 - 80 0.0 –

10 158 26.2 592% 160 0.0 –

12 114 68.1 336% 160 0.0 –
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Columns three and four give the average computational time and the average compu-
tational time until a first feasible solution is found. Both are computed based on the 
number of solved instances and are given in seconds. The fifth column depicts the 
average absolute gap between the objective value of the first feasible solution and 
the optimal objective value for the solved instances. Columns six to eight of Table 3 
show the percentage standard deviation for the computational time, the computa-
tional time until the first feasible solution and the gap based on the solved instances. 
The time limit is 1800 s for each instance.

Regarding the number of instances solved to optimality, all 120 tested instances 
with 16 components are solved in the first instance group and in the second instance 
group a vast majority (112) of 120 instances with 16 components is solved. In 
terms of the instances with 20 components, in the first instance group 84 out of 120 
instances are solved, whereas in the second instance group 52 out of 120 instances 
are solved. Regarding instances with 25 components, only 17 instances in the first 
instance group and 5 instances in the second instances group are solved at a total 
of 120 instances per group. Out of these figures it appears that for instances with 
16, 20 as well as 25 components significantly more instances are solved for the first 
instance group than for the second instance group. Obviously, instances of the sec-
ond instance group seem to be harder to solve. This observation is supported by the 
average computational times. In the first instance group, instances with 16 compo-
nents are solved in 2.5 s on average, whereas in the second instance group the aver-
age computational time is 61.8 s. Similar results are obtained for instances with 20 
and 25 components where the average computational times are 88.7 s and 485.4 s 
for the first instance group and 155.4 s and 660.1 s for the second instance group. 
However, studying the percentage standard deviation of the computational times 
reveals that on the first glance the computational times vary intensely. But further 
analysis shows that in the first instance group 95% (72%) and in the second instance 
group 87% (56%) of the tested instances with 16 (20) components are solved in 10 s 
or less.

Considering the quality of the feasible solutions obtained for an instance during 
a run of the B&B algorithm, we first investigate the gap as well as its percentage 
standard deviation depicted in the fifth and eighth column of Table  3. It appears 

Table 3  Aggregated results for the B&B algorithm

|C
0
| # Solved Time Time first Gap SD time (%) SD time 

first (%)
SD gap (%)

Instance group 1

 16 120 2.5 0.6 0.6 340 433 133

 20 84 88.7 0.8 0.9 312 325 89

 25 17 485.4 1.9 0.9 122 126 100

Instance group 2

 16 112 61.8 29.7 0.3 364 422 200

 20 52 155.4 26.7 0.9 198 252 89

 25 5 660.1 15.1 0.8 107 156 88
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that the gap is quite small as for each number of components and for both instance 
groups the average gap does not exceed 0.9 which is approximately only one blocked 
edge. Although the percentage standard deviation of the gap is relatively high, its 
absolute values seldom exceed one blocked edge. Thus, a first conclusion is that 
the B&B algorithm is able to find (first) feasible solutions of high quality in terms 
of the objective value. As the test bed for the computational study contains mostly 
instances for which at least one feasible solution can be obtained within 10 s of com-
putational time, it is not remarkable that the average computational time until a first 
feasible solution is found is comparatively low. But like for the average computa-
tional times, the average computational times until a first feasible solution are higher 
for the second instance group and the percentage standard deviations are compara-
tively high as one can see in the fourth and seventh column of Table 3. Neverthe-
less, not only because of the promising results for the first feasible solutions, one 
assumption is that the B&B algorithm used as a heuristic, which terminates as soon 
as a feasible solution is found, is deployable for bigger instances. Computational 
tests disprove this assumption as out of 3120 instances with 25 components only 
573 instances are immediately detected as infeasible, and for 590 instances a first 
feasible solution is found within the time limit of 600 s.

In order to analyze the influence of different parameter settings, we refer to 
Table  4. The instances with 16, 20 and 25 components (120 instances each) pre-
sented in Table 3 are shown in a less aggregated way in Table 4. For instances with 

Table 4  Results of the parameter analysis for the B&B algorithm

|C
0
| % # Solved Time

Instance 
group 1

Instance 
group 2

Instance group 1 Instance group 2

16

 Supply 20 60 60 1.3 23.8

40 60 52 3.8 105.6

 Density 15 40 40 0.0 0.0

20 40 40 1.7 13.2

25 40 32 6.0 199.8

20

 Supply 20 53 33 57.5 100.1

40 31 19 141.9 251.5

 Density 15 40 37 35.4 114.7

20 25 12 112.3 281.7

25 19 3 169.7 152.8

25

 Supply 20 15 5 346.5 660.1

40 2 0 1527.3 –

 Density 15 11 3 468.0 507.4

20 6 2 517.3 889.1

25 0 0 – –
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16, 20 and 25 components two of the four introduced parameters, namely the num-
ber of components with a positive supply given as a percentage of |C

0
| and the den-

sity of the graph given as a percentage of the maximum number of possible edges in 
the graph of the reduced problem, are depicted in the first two columns. The maxi-

mum number of possible edges is |C0
|∗(|C

0
|−1)

2
 . Although the road system mostly is a 

planar graph, BSRCDP is not restricted to planar graphs so that non-planar road sys-
tems with bridges and tunnels can also be handled. Columns three and four give the 
number of solved instances for each instance group, and columns five and six depict 
the average computational times given in seconds. Following observations can be 
made. One main observation is that the density of the graph has a comparatively 
large influence on the number of solved instances as well as on the average compu-
tational times. Regarding the number of solved instances with 16 components, the 
density does not have a real influence, but it has on the computational time as the 
average computational time increases from 0.0 to 6.0 s in the first instance group 
and from 0.0 to 199.8 s in the second instance group, respectively. With respect to 
the instances with 20 and 25 components, the increasing density regularly causes a 
comparatively strong decrease in the number of solved instances in both instance 
groups. Correspondingly, the average computational time of these instances regu-
larly increases significantly with the density of the graph. Another observation is 
that the number of components with supply has a considerably impact on the perfor-
mance of the B&B algorithm. Regarding the number of solved instances, it stands 
out that with exception of the instances with 16 components of the first instance 
group the number of solved instances decreases significantly when 40% instead of 
20% of the components have a positive supply. A similar effect is observable for the 
average computational times of both instance groups. A doubling of the percent-
age of the number of components with positive supply leads to an increase of the 
average computational times of at least two times. Note that while the percentage 
of components with positive supply is doubled, the amount of total supply but also 
the amount of total demand is doubled. Also the other two parameters, namely the 
number of demands and the number of components to which these demands are ran-
domly assigned, are investigated. But as we observe no significant influence on the 
number of solved instances or the average computational times, the results are not 
depicted.

7  Conclusion

This paper investigates a basic scenario of the deterministic simultaneous problem 
of disaster road clearance and relief distribution taking strict deadlines for the fulfill-
ment of demands into account. Two equivalent problem statements with different 
graph representations are introduced. Aspects of the inherent structure of the prob-
lem are used to transform an initial problem into a reduced problem with a smaller 
graph representation. One MIP model based on the reduced problem is presented. 
Further focusing on the reduced problem, we propose a B&B-based exact solution 
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approach. In a computational study, the performances of the MIP model and the 
B&B algorithm are tested.

A first result of the computational study is that the B&B algorithm outperforms 
the MIP model. Second, next to the number of components, the number of com-
ponents having a strictly positive supply and the density of the graph have a rela-
tively strong impact on the performance of the B&B algorithm. A third result is 
that the first feasible solution found by the B&B algorithm tends to be of relatively 
good quality. The deployment of a heuristic based on the B&B algorithm for bigger 
instances, which terminates with a first feasible solution, lacks in stable computa-
tional times.

This paper provides algorithmic ideas and structural insides rather than a decision 
support system that can be readily applied. Thus we encourage other researchers to 
step further ahead and develop such a system. A further aspect of future research is 
the additional consideration of multiple work teams for road clearance and coop-
eration between them. On the one hand, cooperation of work teams leads to faster 
clearance of single blocked roads, but on the other hand such cooperation hampers 
the simultaneous clearance of different blocked roads due to work teams working 
cooperatively on a blocked road at the same time. This aspect is known from the 
literature focusing only on road clearance, but to the best of our knowledge it is only 
scarcely investigated for the simultaneous problem. Another field of future research 
is the investigation of other factors than the distribution of relief goods that affect 
the the road clearance activities. One factor is the accessibility of restoration crews 
to the disrupted sectors of critical infrastructures.
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