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Abstract

Prediction of transmembrane spans and secondary structure from the protein sequence is generally 
the first step in the structural characterization of (membrane) proteins. Preference of a stretch of 
amino acids in a protein to form secondary structure and being placed in the membrane are 
correlated. Nevertheless, current methods predict either secondary structure or individual 
transmembrane states. We introduce a method that simultaneously predicts the secondary structure 
and transmembrane spans from the protein sequence. This approach not only eliminates the 
necessity to create a consensus prediction from possibly contradicting outputs of several predictors 
but bears the potential to predict conformational switches, i.e., sequence regions that have a high 
probability to change for example from a coil conformation in solution to an α-helical 
transmembrane state. An artificial neural network was trained on databases of 177 membrane 
proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each 
residue in the sequence that combines three secondary structure types (helix, strand, coil) and 
three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% 
for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-
state transmembrane span prediction. These accuracies are comparable to state-of-the-art 
predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). 
The method is available as web server and for download at www.meilerlab.org.
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INTRODUCTION

The prediction of secondary structure (SS) and transmembrane (TM) segments from 
sequence is the first step toward structural characterization of proteins. It is typically applied 
before more laborious experimental methods are employed: CD spectroscopy only yields an 
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overall SS composition of the protein—no amino acid specific values. The chemical shift 
index (CSI) derived from NMR experiments requires signal assignment of the protein 
backbone, which is a time-consuming task. Moreover, identification of SS and TM spans is 
the first step of computational modeling of (membrane) proteins. The output of SS and TM 
prediction tools are therefore a basic requirement for algorithms performing sequence 
alignment, fold recognition, and de novo protein structure prediction. Furthermore, it 
facilitates the design of EPR experiments to find an optimal position for MTSL spin labels1 

or to select detergents to screen for membrane protein NMR experiments based on the 
thickness of the hydrophobic region of the membrane protein.

The identification of SS and TM spans is typically accomplished using a variety of SS and 
TM prediction methods in parallel (see below). However, the formation of SS and TM spans 
is interrelated because the occurrence of SS is greatly increased in the TM region. Peptides 
or proteins can exist in a disordered state in a polar solution because backbone carbonyls and 
amide protons form hydrogen bonds with the surrounding water molecules. When these 
peptides are inserted into the membrane the hydrophobic environment drives the same polar 
groups to form intramolecular hydrogen bonds, SS is formed. BCL::Jufo9D leverages this 
interrelation by simultaneously predicting SS and TM segments, i.e., predicting SS 
propensity in polar and apolar environments. It thereby enables the prediction of 
conformational switches, i.e., sequence regions that are stable in two different 
conformations, for example, as coil in solution or an α-helix in the membrane. This is an 
important achievement as isolated prediction of secondary structure might recognize a high 
helix and coil probability, and isolated prediction of transmembrane spans might recognize 
the ability to exist in solution or as a TM span; however, the correlation between these 
probabilities is missing.

Machine learning techniques are widely used for prediction of SS and TM placement

Methods for SS prediction use machine learning techniques (see Ref. 2) such as Artificial 
Neural Networks (ANNs), Hidden Markov Models (HMMs), or Support Vector Machines 
(SVMs). These algorithms are pattern recognition techniques that associate a given input 
(e.g., the sequence information of a protein) to an output (e.g., the structural information 
such as SS or TM spans). For supervised learning the output is provided during the training 
process using structural information of proteins with known structure. When training is 
complete, the algorithms predict, i.e., the SS for a target sequence. The use of machine 
learning approaches in SS prediction has been pioneered by Rost et al. through the 
development of their PhD program.3,4

For soluble proteins SS prediction tools usually provide a three-state probability for each 
residue being either in helix, strand, or coil. Accuracy is often reported as a Q3 value, which 
is the percentage of correctly predicted SS if the state with the highest predicted probability 
is compared with the experimentally determined SS. Accuracies of up to 80% are achieved5 

with Psipred6,7 being one of the most accurate SS prediction tools available.5 Psipred is a 
two-stage feed-forward ANN that was trained on a sequence database of soluble proteins 
with position-specific scoring matrices (PSSM) from PSIBLAST8 as an input. JUFO9,10 is 
an ANN that uses dimension-reduced amino acid representations to predict the SS of soluble 
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proteins. It is trained on a database of 430 soluble peptides from the FSSP database11 using 
an input window of 31 residues. JUFO was applied to the simultaneous prediction of 
secondary and tertiary structures probing their interrelation.9 The SS prediction tool 
PROFPHD4,12,13 as part of the PredictProtein server is also based on ANNs. It is a three-
layer feed-forward ANN trained on sequence-to-structure and structure-to-structure context 
that uses a multiple sequence alignment and global amino acid composition as inputs. The 
developers state a three-state accuracy of 76%.

TM span prediction methods are specialized to either α-helical proteins or β-barrels

Early attempts to predict the location of TM spans in membrane proteins (MPs) involve 
averaging hydrophobicity values over a sequence window. Many different hydrophobicity 
scales have been developed using a variety of experimental,14–20 theoretical,21–25 and 
consensus approaches,26–28 some of them are reviewed in reference 25. Most of these scales 
consider the two states membrane bilayer and solution. The scales of Wimley & White16,29 

as well as a recently developed knowledge-based unified hydrophobicity scale (UHS)25 take 
a third interface region into account. Considering an interface region is important as the 
dielectric environment characterized by the polar lipid head-groups is distinctly different 
from the aqueous solution, as well as from the membrane core region. Aromatic residues 
like Tyr or Trp as well as amphipathic α-helices usually reside there.16,25 Predicting the 
location of TM-spans using averaging schemes for hydrophobicity values achieves 
accuracies up to 73% in the two-state scenario (membrane bilayer and solution) and up to 
60% in the three-state scenario (with interface region).25

Considerable improvement is achieved by the application of machine learning approaches; 
however, these methods are specialized to either TM α-helical bundles or β-barrels: For 
identification of TM spans in α-helical MPs OCTOPUS30 is one of the best methods 
available. It uses four separately trained ANNs to identify one of the four states (membrane, 
interface, loop, globular) at the residue level and combines the predictions globally using a 
Hidden Markov Model (HMM). It is designed as a topology predictor and is able to model 
re-entrant/membrane dipping regions and TM hairpins. The prediction accuracies on an 
independent benchmark dataset were reported to be as high as 94% for identification of the 
correct topology. Other available methods use HMMs (such as TMHMM31 and TMMOD32), 
SVMs (such as MEM-SAT-SVM33) or a consensus of multiple SS prediction servers, such 
as ConPredII.34,35

For identification of TM β-barrels, TMbeta-Net36 is one of few methods available. It 
consists of an ANN that was trained on 13 outer membrane proteins with a jack-knife 
approach for cross-validation. Other methods, mostly HMMs, include ProfTMB37,38 as part 
of the PredictProtein server39 and TMBHMM.40

The method presented here seeks to simultaneously predict SS and TM regions leveraging 
their interrelation. It alleviates the necessity to combine multiple contradicting outputs into a 
single prediction. Moreover, it overcomes the specialization of TM span prediction tools for 
either α-helical bundles or β-barrels and the specialization of SS methods to soluble 
proteins. BCL::Jufo9D is a set of ANNs that predicts a nine-state probability distribution 
combining three SS states (helix, strand, and coil) and three protein environment states 
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(membrane, interface, solution) for each residue in the protein sequence. The ANNs were 
trained on databases of 226 MP chains in 177 MPs and 6223 soluble protein chains in 6048 
soluble proteins. The approach achieves per residue accuracies of 70.3% in a nine state 
prediction scenario for the independent dataset compared with an accuracy of a random 
prediction of 11.1%.

METHODS

Establishing the membrane protein database

A list of all membrane protein chains, for which a structure has been determined, was 
downloaded from the PDBTM41,42 website (Nov. 2011). Similar sequences were excluded 
by culling this list with the PISCES server.43,44 The parameters included a percent sequence 
identity ≤ 30%, resolution 0–3 Å, R-factor 0.25, sequence length 40–10,000 residues, non-
X-ray entries, as well as CA-only chains were included. BCL::PDBConvert (server at 
www.meilerlab.org) was used to convert non-natural amino acids into their natural 
counterparts and to transform the protein into the membrane coordinate frame using the 
membrane definitions provided by the PDBTM website. The membrane normal aligns with 
the z-coordinate in the PDB file with the membrane center being at z = 0. We assume a 
constant thickness of 20 Å for the membrane core and 10 Å for the transition region on 
either side of the membrane [Fig. 1(A)]. Residues in the 2.5 Å gap regions between 
membrane core and transition region, or transition region and solution, were disregarded to 
obtain more distinct regions for the ANN to identify. DSSP45 (version of 2011) was used for 
all PDB structures to obtain a consistent SS identification. Helices with less than five 
residues and strands with less than three residues were disregarded to focus the prediction on 
long SS elements. This procedure resulted in a list of 226 chains in 177 membrane proteins.

Establishing the database of soluble proteins

A precompiled list of PDB chains was downloaded from the PISCES protein sequence 
culling server (date 12/02/2011).43,44 The list contained sequences with a percentage 
sequence identity ≤ 30%, resolution 0–2 Å, R-factor 0.25, sequence length 40–10,000 
residues, non-X-ray entries, as well as CA-only chains were excluded. Membrane proteins 
were excluded from this list. BCL::PDBConvert (server at www.meilerlab.org) was used to 
convert non-natural amino acids into their natural counterparts and DSSP45 was used to 
identify SS elements. Helices shorter than five residues and strands shorter than three 
residues were disregarded. The result was a list of 6223 chains in 6048 soluble proteins.

The residue counts for all regions both for MPs as well as soluble proteins are shown in 
Supporting Information Figure 2. The counts for soluble proteins are much higher and there 
are almost twice as many soluble helix residues present in the database (~113,000) than 
soluble strand residues (~66,000). The counts range from 1852 for coil residues in the 
membrane core to ~137,000 for coil residues in solution.
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Experimental design allows for cross-validation

The databases were split into five subsets for cross-validation. For the membrane proteins, 
α-helical bundles as well as β-barrels were distributed as equally as possible. The soluble 
proteins were distributed randomly.

To train a single ANN, three of the five subsets were used for training [see Fig. 1(B)] and 
one subset was used for monitoring the training process to avoid overtraining. The fifth 
subset was used as an independent test set for computing the prediction accuracies. 20 
networks were trained such that the independent as well as the monitoring permuted through 
the five datasets [Fig. 1(B)].

Evolutionary and property profiles are used as ANN input

Figure 2 shows the input parameters used (see Supporting Information Table S1): (a) five 
amino acid properties including steric parameter, volume, polarizability, isoelectric point, 
solvent-accessible surface area10; (b) six free energies for SS type (helix, strand, coil), 
residue environment (membrane bilayer, interface, solution)25 and the nine combinations of 
both; (c) the position-specific scoring matrices (PSSM) from PSIBLAST8 after six iterations 
(see Ref. 46). For each residue all of these parameters were collected over a sequence 
window of 31 residues. The optimal size of the input window was determined by testing all 
odd window sizes between 15 and 39 residues.

In addition, “global” parameters were considered for each protein: (a) the number of 
residues in the protein chain; (b) the oligomeric state (monomer vs. oligomer); (c) the 
average of all amino acid specific parameters over the entire protein chain including their 
properties, free energies, and the PSSM values. This resulted in [31 residues × (20 numbers 
from PSSM + 20 amino acid properties)] + (2 parameters: oligomeric state, length) + (40 
averages) = 1282 input parameters that represent the residue at the center of the window.

Balanced training avoids prediction bias toward over-represented states

The datasets (the term “dataset” corresponds to the input and output parameters for each 
residue in a protein sequence) were randomized and balanced for each protein subset 
independently. For balancing, an over-sampling procedure was used to represent each of the 
nine states equally often and avoid a bias in the predictions toward the more abundant states. 
This approach also increases the entropy in the input data and maximizes the information 
gain the ANN can achieve.

The ANNs were three-layer feed-forward networks with a sigmoidal activation function and 
trained through back-propagation of errors. The hidden layer contained 32 neurons—a 
number that was optimized by testing 4, 8, 16, 32, 64, and 128 neurons. The three subsets 
used for training contained a total of 270,000 instances, 90,000 instances were in the 
monitoring dataset, and 90,000 instances in the independent dataset. The training protocol 
consisted of three consecutive steps using a simple propagation algorithm: (1) 50 steps with 
weight update after each step with momentum α = 0.0 and the learning rate η = 10−3; (2) 10 
steps with batch update with momentum α = 0.5 and the learning rate η = 5×10−6; (3) 100 
steps with weight update after each step with momentum α = 1.0 and the learning rate η = 
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5×10−6. As a post-processing step the outputs of the four ANNs were averaged that used the 
same independent subset.

Prediction accuracies are calculated on a per-residue basis on independent datasets as an 
average over four ANNs used for cross-validation

To report the prediction accuracies as well as the confidence measure, an average of four 
network outputs was computed only considering ANNs belonging to a single set that share 
the same independent dataset [Fig. 1(B)]. This setup (a) ensures that the reported accuracies 
originate from ANNs that were not trained on the test set, and (b) prediction accuracies can 
be reported for each protein in the dataset as always four ANNs exist that were trained with 
this particular protein in the independent dataset. The final output from the web server is the 
average over all 20 ANNs and computes a confidence measure that constitutes the difference 
between the highest and second highest output probability for each residue.

To calculate the per-residue prediction accuracies, the outputs of the four ANNs in a single 
set were averaged. The outputs per set were compared with the actual state on a per-residue 
basis: if the predicted state was a TM helix and the actual state was a TR helix, the counts in 
this particular 9 × 9 matrix element (see Fig. 3) was increased by one. After obtaining all 
counts for the 9 × 9 matrix over a single set, the counts were divided by the number of 
residues in this region (sum over each row) to arrive at the percentage of predicted residues 
in each matrix element. The percentages of predicted residues were then averaged over the 
five sets of ANNs. This cross-validation and averaging procedure circumvents that a “bad 
choice” of proteins in an independent dataset biases the prediction accuracies.

The counts for the three-state SS prediction, three-state TM span prediction, or two-state TM 
helix/TM strand prediction were calculated as described in Supporting Information Figure 
S1. The counts were divided by the total number of counts per row to arrive at the 
percentages of predicted residues and these percentages were later averaged over the five 
sets of ANNs.

Consolidating per-residue predictions into two-state prediction of complete TM spans 
increases accuracy

To directly compare the nine-state output of BCL::Ju-fo9D to the two-state output of, for 
instance OCTOPUS, we summed the non-TM helix probabilities to arrive at a two-state 
prediction (Supporting Information Fig. S1). To remove the resulting bias toward non-TM 
states from adding background probabilities of 11.1%, the result needs to be corrected by 
adding or subtracting ½·(8·11.1%–11.1%) = 38.9% from the two states, respectively. This 
procedure ensures that the total of all prediction probabilities remains 100%. The identical 
correction was applied to the TM strand prediction.

Furthermore, a postprocessing step has been applied for noise reduction. Lengths of SS 
elements were calculated where kinks of one or two residues were regarded as TM helix 
residues but were retained in the final prediction. Because the topology prediction output 
considers only long SS elements that can span the membrane, helices shorter than 11 
residues (including kinks) and strands shorter than five residues were removed. Including 

Leman et al. Page 6

Proteins. Author manuscript; available in PMC 2016 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this postprocessing step resulted in an increase in prediction accuracy of ~3% over all 
residues in the dataset.

RESULTS AND DISCUSSION

BCL::Jufo9D achieves nine-state per-residue accuracies of 70.3%

Figure 3 shows the percentage of predicted residues for all 9 states, whereas the percentages 
are averages over all independent datasets. The rows correspond to the “true” state as 
represented in the structure and the columns correspond to the predicted state. Ideally, 
highest percentages should be seen in the matrix diagonal.

Overall, in the nine-state scenario BCL::Jufo9D predicts the correct state for 70.3% of the 
residues in the independent dataset.

As seen from Figure 3, “true” soluble states are distinguished most accurately from the 
membrane core or the interface region because their characteristics are distinctly different. 
Furthermore, helices and strands in solution and the membrane core have highest prediction 
accuracies (up to 74%), whereas the states in the transition region have lower accuracies 
ranging up to 60%. We attribute the reduced prediction accuracy in the transition region to 
two causes: First, the transition region borders to soluble and membrane core regions 
allowing for two types of errors - prediction as membrane core residues or prediction in the 
soluble region. In contrast, membrane core and soluble region border only to the transition 
region eliminating one source of error for these regions. Second, membrane proteins cover a 
range of thicknesses of the membrane core region. Choosing a constant membrane thickness 
of 20 Å for training BCL::Jufo9D introduces some error in classifying amino acids as 
membrane core, transition region, or solution. This effect is partly offset through the 
introduction of the 2.5 Å gaps between the regions. Excluding the gap regions for the 
predictions results in on average 0.3% improved prediction accuracies where largest 
improvements up to 4% are seen for the membrane core and the transition region 
(Supporting Information Figs. S3 and S4). Nevertheless, the transition region continues to 
contain most misclassified residues.

Variable membrane thickness does not improve prediction accuracy

Membrane thicknesses can be computed from experimental MP structures using specific 
algorithms. We tested the TMDET algorithm provided by the PDBTM42,47 to compute the 
membrane thicknesses of the proteins and used these variable thicknesses for training (data 
not shown). The performance was overall comparable to usage of a constant membrane 
thickness. A constant membrane thickness was chosen to circumvent a potentially circular 
influence of the TMDET algorithm onto BCL::Jufo9D.

Common mistakes include swapping of coil regions with helix or strand and membrane 
core with transition regions

Whereas helices and strands in solution and the membrane core have highest prediction 
accuracies, the prediction accuracies of coil states are lower, irrespective of their 
environment (Fig. 3). This is expected, as the coil regions are more diverse in sequence 
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lacking some of the characteristic properties that enable the identification of patterns. Coil 
states in TM spans are under-represented complicating their reliable identification. 
Additionally, helix and strand states were rarely mixed irrespective of their environment. 
This is expected because the properties characteristic for helices with a periodicity of 3.6 are 
distinctly different than for strands with a periodicity of 2. The trends for swapping 
predictions between membrane core and transition region (but not solution) and helix/coil 
and strand/coil is observed most readily when considering the three-state SS and TM 
prediction as seen in Figure 3.

Three-state secondary structure predictions or TM span predictions achieve accuracies of 
73.2% and 94.8%

The ANN output can be analyzed by summing the three probabilities for each of the SS 
states helix, strand, and coil. The resulting three-state SS prediction accuracies are shown in 
Figure 4(A). On average, in the three-state scenario the SS is correctly identified for 73.2% 
of the residues. Similar accuracies are obtained for helix and strand states for each of the 
different environments (Fig. 3); however, the accuracies in the transition region are lower 
than for membrane core or solution for reasons discussed earlier.

Figure 4(A) also shows the prediction accuracies for the other SS prediction methods 
Psipred, ProfPhD, and JUFO. Even though accuracies of BCL::Jufo9D are marginally lower 
than for Psipred or JUFO, accuracies of competing methods are likely somewhat inflated as 
the testing dataset is not independent from their training set. As discussed below, Psipred has 
very high accuracies at the termini of SS elements which is presumably one reason for the 
differences in overall prediction accuracies. However, we believe that BCL::Jufo9D’s ability 
to predict the protein environment in addition to the SS more than compensates for these 
minimal differences in prediction accuracy.

The ANN output can also be analyzed by summing the three probabilities for each of the 
TM states membrane core, transition region, solution to arrive at a three state TM span 
prediction. The accuracies are given in Figure 3. Overall, the environment of 94.8% of the 
residues in the independent datasets is correctly identified, a number that reflects the bias 
toward soluble proteins in the datasets. For training, the oversampling procedure guarantees 
that this bias does not impact the weights in the ANNs.

Nine output states contain more information than both SS prediction and TM span 
prediction combined

As stated earlier, BCL::Jufo9D overall classifies 70.3% of the residues correctly into the 9 
possible states. This compares to an expected accuracy of 11.1% for a random predictor. We 
wanted to explore how the 70.3% in nine possible states compared with the typical ~73% 
prediction accuracy of a three-state SS prediction and whether it contains more information. 
As a direct measure, we computed the information gain for the three-state SS prediction, 
which is 0.173 ± 0.003, and for the three-state TM prediction, which is 0.294 ± 0.004. 
Therefore, the sum of the information gain for both SS and TM prediction is with 0.467 
± 0.005 lower than the information gain of the nine-state prediction which is 0.527 ± 0.004. 
This supports the hypothesis that the nine-state prediction generally contains more 
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information than both of the three-state predictions combined, possibly because the 
influence of residue environment onto the formation of hydrogen bonds and therefore SS.

Two-state TM span identification yields accuracies of up to 97.9%

Available TM span prediction tools predict their output in two states: OCTOPUS, for 
instance, identifies whether a residue is located in a TM helix or not. To directly compare 
BCL::Jufo9D to OCTOPUS we summed the non-TM helix probabilities to arrive at a two-
state prediction and applied a postprocessing step as described in the Methods section. Using 
the described consolidation of per-residue predictions, BCL::Jufo9D correctly predicts 
97.9% of the residues in the independent data-sets [Fig. 4(B)]. OCTOPUS correctly predicts 
the states of 97.3% of the residues in our dataset. Note that the accuracies of alternative 
methods tend to be somewhat inflated as these might have been trained on membrane 
proteins from our independent dataset.

For the TM strand prediction, BCL::Jufo9D correctly predicts 94.6% of the residues, 
whereas TMBetaNet correctly identifies 50.9% of the residues. This number is rather low 
due to the high over-prediction rate that this method achieves [see Fig. 4(B)].

We want to point out that our method is not set up to directly distinguish TM β-barrels from 
other proteins. However, we do believe that the high accuracy in TM strand prediction is 
useful to identify proteins that could be TM β-barrels solely from sequence information. A 
difference of BCL::Jufo9D to other TM strand prediction methods is that most other 
methods are trained solely on TM β-barrels and do not include barrels that are formed by 
multiple chains in the protein. For example, TMBeta-Net extensively over-predicts TM β-
barrels. BCL::Jufo9D, in contrast, is trained on these proteins and higher prediction 
accuracies may be expected.

The ultimate goal would be the establishment of a topology prediction method that 
distinguishes different protein orientations in the membrane. Currently, the challenges with 
establishing such a method are the small number of β-barrel MPs resulting in small residue 
counts in the membrane and interface regions. Training of BCL::Jufo9D splits these few 
counts into nine output states multiplied by five datasets for cross-validation; further 
separation would ultimately result in lower prediction accuracies and more noise in the 
predictions.

Over and under prediction

In addition to the two-state predictions Figure 4(B) also shows the over and under 
predictions of TM spans for complete datasets. For TM helix prediction methods, the 
percentage of over-predicted residues is 2.0% for BCL::Jufo9D and 2.6% for OCTOPUS, 
for under prediction 9.1% for BCL::Jufo9D, and 9.8% for OCTOPUS. Similar trends are 
seen for TM strand prediction methods, where the percentage of over-predicted residues is 
5.4% for BCL::Jufo9D and 49.2% for TMBetaNet, for under prediction 9.3% for 
BCL::Jufo9D and 24.6% for TMBeta-NET. The tendencies to over-/or under-predict certain 
states are a result of the training procedure and postprocessing steps and represent 
advantages/disadvantages of certain methods for certain applications.
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The BCL::Jufo9D server available at www.meilerlab.org provides the two-state outputs in 
addition to nine-state and three-state outputs. If, for instance, it is known that a particular 
protein is an α-helical MP, the two-state output more accurately defines the membrane 
boundaries compared with a nine-state output which, in contrast, is more useful to describe 
the overall architecture of the protein without a priori knowledge.

Examples demonstrate high prediction accuracies

Figure 5 shows some example cases where the protein sequence was used to predict the SS 
and TM regions with BCL::Jufo9D. These predictions were mapped onto the known protein 
structures. The examples are the outer membrane protein OmpX (PDB: 1qj8), the TolC 
receptor (PDB: 1yc9), the photosynthetic reaction center of cyanobacteria (PDB: 1jb0), and 
the E.coli quinol fumarate reductase (PDB: 1kf6). The prediction accuracies are reported in 
the figure. For these examples, the SS prediction accuracy ranges from about 70%–90% 
correctly predicted residues and the TM span prediction accuracy ranges from 68%–90%.

Challenges and limitations

Panel B in Figure 5 shows challenges of our method where some of the residues are 
incorrectly identified. The first example is the human mitochondrial ABC transporter (PDB: 
4ayt) with 76.8% of the residues correctly identified in terms of SS, and 54.8% of the 
residues for TM span prediction. Whereas the TM region in 4ayt is accurately identified, a 
number of residues in solution are predicted to be in the transition region or even in the 
membrane. Interestingly, the SS prediction does not suffer from the inaccurate identification 
of TM regions.

For the main porin of mycobacteria smegmatis (PDB: 1uun), the SS is correctly predicted 
for 76.9% and the TM spans are correctly identified for 44.6% of the residues. In this 
example, stretches of residues in the membrane are predicted to be soluble. In addition, a 
large number of residues in solution are identified as transition region or membrane states. 
Again, the SS prediction does not suffer from this incorrect identification. We point out that 
overall the percentage of incorrectly classified amino acids remains low and the examples 
presented here are extreme outliers of a generally very accurate method.

Inevitably, prediction of SS and TM spans from the sequence only is affiliated with some 
error margin as formation of secondary and tertiary structure is coupled.9 Specific mistakes 
made by BCL::Jufo9D, especially for β-barrel MPs do not uniformly correlate with β-barrel 
diameter, number of charged residues in the TM region, or orientation of an amino acid side 
chain toward a polar interior cavity within a membrane protein (data not shown). We tested 
an ANN architecture with additional output states for residues that point toward polar 
interior cavities in the membrane region and observed no improved prediction accuracy. We 
further tested if the limited space of MP sequences could be supplemented with sequence 
information from homologous MPs; however, no improvement in prediction accuracy was 
observed.
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Secondary structure prediction accuracies are higher for soluble proteins than for soluble 
parts of membrane proteins

Supporting Information Figure 6 shows the prediction accuracies for soluble parts of MPs. It 
can be seen that in panel (A) that the prediction accuracies for soluble states (columns-
predicted) in solution (rows-actual) seem with up to 40% very low. The major cause for this 
is the difficulty of the method to distinguish residues in solution from the interface region. 
Conversely, SS prediction for soluble proteins is very accurate (panel B), i.e., BCL::Ju-fo9D 
recognizes soluble proteins well. The lower prediction accuracies for soluble parts of MPs 
are primarily explained by a few MP examples with large soluble domains which bias these 
prediction accuracies, as shown in the examples in Figure 5(B). We found that training 
solely on MPs would alleviate these errors and increase the prediction accuracies for the 
soluble domains of MPs. Currently, this procedure also decreases the accuracies for some 
membrane and transition states (up to 5%), as well as for the SS prediction of soluble 
proteins (up to 9%) at the same time. This result repeatedly demonstrates the interrelation 
between SS and protein environment, and suggests that the establishment of a “perfect” 
prediction method remains challenging since optimizing one aspect is only achieved at the 
expense of another.

At the current stage one possible reason for the reduced prediction accuracy might be the 
conditions under which MP structures were determined. Artificial membrane-mimicking 
environments used in crystallography and NMR spectroscopy perturb the structure from its 
native state to an unknown degree. Domains outside the membrane might be pushed into a 
non-native location by the artificial conditions imposed by a three-dimensional crystal lattice 
or by detergent environments, such as micelles, typically used for NMR spectroscopy. This 
leads to misclassification of residues in particular in the non-membrane regions of 
membrane proteins when training the method, ultimately reducing its prediction accuracy.

One example is the cholera cytolysin heptamer (PDB: 3o44) whose cytolysin domain 
contains many aromatic residues that are expected to reside in the transition region. In the 
crystal structure, which was determined in detergent, the cytolysin domain is most likely 
placed on the micelle surface.48 However, if considered in a membrane bilayer, this domain 
incorrectly protrudes deep into the membrane. Another example is the recently determined 
crystal structure of the β2 adrenergic receptor-Gs protein complex (PDB: 3sn6), where a 
helical domain that resides in the soluble region is incorrectly placed in the transition 
region.49,50 It is currently difficult to account for such structural perturbations and as a flat 
membrane bilayer is defined for training BCL::Jufo9D few examples of incorrect predictions 
in these regions may be the result.

To obtain a three-state SS prediction accuracy, the accuracies from all predicted regions need 
to be added together [Supporting Information Fig. 6(C)]. This is a feature of our nine-state 
prediction and does not apply to other SS prediction methods. Therefore, panel C as the sum 
of three regions should be compared with panel D, which displays the prediction accuracies 
of the soluble parts of MPs for the old JUFO (version from 2003), Psipred, and ProfPhD.

For BCL::Jufo9D, the accuracy for helix and strand states (panel C) is comparable to the old 
JUFO, which is more accurate for helices and coil states in solution than in the membrane. 
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Psipred has much higher accuracies in the membrane (up to 16% higher–data not shown). 
ProfPhD has similar accuracies in both the membrane as well as solution, except the 
accuracy for coil regions, which is higher for soluble states (data not shown).

Prediction percentages level off after five residues from the termini

The percentages of per-residue predictions at the beginnings and ends of SS elements and 
TM spans have been investigated (Fig. 6) and compared with Psipred and OCTOPUS. As 
described in the figure legend, the N-and C-termini were not distinguished. Generally, the 
prediction percentages for both SS and TM span prediction increase at the termini and level 
off after the fifth residue where further increase is only marginal. In the figure, an ideal 
prediction is denoted by the dotted line with the black dot as the inversion point. Psipred has 
about 70% prediction accuracy for the first residue and remains at higher accuracies for the 
SS prediction than BCL::Jufo9D.

For the TM span prediction, the percentages for BCL::Jufo9D were determined using the 
two-state “topology prediction” discussed earlier. This is necessary to not distort the 
prediction percentages by comparing the three SS states from BCL::Jufo9D to the two-state 
output of OCTOPUS. Furthermore, a distinction between shorter and longer TM helices is 
needed as OCTOPUS does not predict short TM helices, i.e., is unable to predict half-helices 
or re-entrant helices; it only predicts TM helix lengths of 15, 21, and 31 residues. When 
averaging over TM helices of length 8–19 residues OCTOPUS has accuracies up to 40% 
lower than BCL::Jufo9D. When considering helices of length 14–19 residues only, 
OCTOPUS’ accuracies are between 3%–8% lower than for BCL::Jufo9D.

Both BCL::Jufo9D and OCTOPUS do not match the 50% inversion point very well. This is 
due to the fact that for the true states only residues in the membrane core were considered, 
whereas residues in the transition region were counted toward “solution.” This means that 
the membrane core by itself is too thin to represent the full membrane and the two-state 
prediction methods predict the membrane longer than just the core. This should not be 
considered as an error as the transition region is not predicted by two-state TM span 
prediction methods. In contrast, if the transition region was considered as belonging to the 
membrane, the prediction percentages for both BCL::Jufo9D as well as OCTOPUS would 
be substantially lower (data not shown) as the termini of the predicted spans are located 
closer to the center of the transition region.

BCL::Jufo9D correctly predicts more than one third of kinks in TM helices

We defined a kink as one or two coil residues in TM helices longer than 11 residues. We 
considered the kink as accurately identified if it was predicted within five residues in either 
direction (N- or C-terminal of the actual kink). Out of 115 kinks in the database, 41 (36%) 
were correctly predicted by BCL::Jufo9D, whereas Psipred correctly predicted 19 (17%). 
Although Psipred is extremely good at predicting exact lengths of TM spans as discussed 
earlier, the prediction of kinks is lacking behind BCL::Jufo9D. It is possible that the second 
layer ANN from Psipred reduces noise and smoothes out these features. We omit this step 
but use a simple averaging procedure as a postprocessing step, which does not remove 
features such as kinks. OCTOPUS correctly predicted 4 kinks corresponding to a prediction 
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of 3% of the total number of kinks. However, this result is expected as OCTOPUS is 
designed to predict long TM spanning helices, not kinks.

TMkink, a method recently developed in the Bowie lab specifically designed to predict kinks 
in TM helices, predicted 59 out of 115 kinks which corresponds to an accuracy of 51%. A 
direct comparison of the results of BCL::Jufo9D with TMkink remains difficult for several 
reasons: Both methods were trained on MPs so the data-sets are overlapping. Many of the 
proteins that were used for training TMkink were in our database; others had a high 
sequence similarity. To report accuracies for BCL::Jufo9D the proteins were in the 
independent data-set. For TMkink, these proteins were in the training set, which inflates its 
prediction accuracy. Furthermore, the definition of a kink is completely different in our work 
compared with Bowie’s work. Whereas, we use a very simplified method of considering one 
or two coil residues in TM helices which is not necessarily an indication of an actual kink, 
Bowie et al. defines a kink by the bend angle and uses a much more sophisticated definition. 
Our definition also results in rather low prediction accuracies for all tested methods, even for 
TMkink. In contrast, the bend angle definition results in the identification of several “kinks” 
in a single helix, which is frequently observed in the TMkink output. This is likely to be the 
observation of a bent helix rather than a single kink.

Re-entrant helices are correctly predicted for three examples

Re-entrant helices were identified by considering helices that dipped into the membrane to a 
distance of 5–7 Å away from the membrane center but not entering the opposite leaflet of 
the membrane. This definition systematically excluded amphipathic helices that reside in the 
transition region. Using this definition three examples of re-entrant helices were found in our 
database. The examples are MHP1, a nucleobasecation transport protein (PDB: 2jln), the 
photosynthetic reaction center of cyanobacteria (1jb0), and the potassium channel MthK 
(3ldc). The SS and TM span predictions are presented in Figure 7. For MHP1, the two half-
helices are clearly identified as sitting in the membrane. For the photosynthetic reaction 
center, the reentrant helix is partially identified as in the membrane core, the other half is 
predicted to be in the transition region. For MthK, the part dipping deepest into the 
membrane is predicted to be in the membrane core, the other half “sticking out” is predicted 
to be in the transition region. On the basis of these examples we consider the prediction of 
re-entrant helices successful; however, better statistics are needed to fully support this 
conclusion.

BCL::Jufo9D has the potential to predict protein conformational switches

Because BCL::Jufo9D is designed to produce a high probability in one of the nine output 
states representing the most likely combination of SS and TM state it maps the correlation 
between both states and can therefore potentially identify protein conformational switches. 
We expect that regions of the protein chain that can adopt two different states in terms of SS 
or TM placement will have a predicted high probability for these two states out of nine 
states. We investigated on four examples whether BCL::Jufo9D identifies such switches: (a) 
the 40 residue form of the amyloid β peptide (PDB: 1iyt), which forms either a TM helix or 
can exist as a two-stranded β-sheet fibril in solution (PDB: 2beg); (b) the pore-forming toxin 
perfringolysin where a soluble helix unwinds and inserts into the membrane as a β-sheet 
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conformation51,52; (c) the pore-forming toxin α-hemolysin where a soluble β-sheet detaches 
from the rest of the protein to insert into the membrane, the β-sheet remains intact during 
that process 53,54; (d) elongation factor thermo unstable (EF-TU), which contains two switch 
regions switching from a soluble helix to soluble strand (switch I) or to soluble coil (switch 
II).55,56.

Table I details the specific switch regions with states and summarizes the prediction of four 
different prediction methods for these examples. The BCL::Jufo9D outputs are shown in 
Supporting Information Figure S8. For the Aβ peptide (1iyt), BCL::Jufo9D unambiguously 
identifies the correct switch regions and states. OCTOPUS identifies a single TM helix 
which is correct for one state, whereas Psipred predicts two soluble strands, which 
represents the correct identification of the second conformational state. TMBetaNet 
incorrectly predicts two TM strands.

For perfringolysin (1pfo), BCL::Jufo9D identifies the switch regions and states, although the 
probabilities are somewhat reduced. OCTOPUS identifies a signal peptide and “outside” 
topology, whereas Psipred predicts a single, unambiguous state for the first switch region, 
and two helices for the second switch region representing one conformation. TMBetaNet 
predicts 20 TM spans over the whole protein; the correct switch regions are included, 
representing the second conformation.

BCL::Jufo9D also identifies the switch region and states for α-hemolysin (7ahl) where 
OCTOPUS predicts a globular protein. This is expected as OCTOPUS is not able to identify 
TM strands. Psipred identifies three strands, even though only two are truly observed. 
TMBetaNet predicts 12 TM spans, again distributed over the whole protein but also 
including the correct strand locations.

Even though these results seem encouraging, BCL::Ju-fo9D does not always correctly 
identify conformational switches. The elongation factor thermo unstable EF-TU (1eft) 
contains two switch regions, which are both incorrectly identified by BCL::Jufo9D. 
OCTOPUS correctly predicts this protein to be globular and Psipred does not recognize the 
helix-strand conversion either. TMBetaNet incorrectly identifies 22 TM spans over the entire 
protein which is a soluble protein.

In summary, specific examples show that BCL::Jufo9D is potentially able to predict protein 
conformational switches. However, there are examples where BCL::Jufo9D does not 
identify the switch region and/or switch states. This is expected as BCL::Jufo9D was not 
optimized to predict switch regions. We expect an increase in prediction accuracy for 
conformational switches once a sufficient number of conformational switches are 
represented in the PDB with both states so that the method can be optimized for recognizing 
conformational switches.

CONCLUSIONS

BCL::Jufo9D integrates the prediction of SS with the identification of TM spans. An 
Artificial Neural Network was trained on a database containing soluble proteins and 
membrane proteins. The output is a combination of the three SS states (helix, strand, and 
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coil) with the three environment states (membrane core, transition region, solution) into a 
nine-state probability vector for each residue in the sequence. It was shown that the per-
residue accuracy in nine states is 70.3%. When combined into a three-state prediction, 
BCL::Jufo9D achieves accuracies for SS prediction of 73.2% and TM span prediction of 
94.8%. These results are comparable to or higher than current SS and TM span prediction 
tools and BCL::Jufo9D integrates both at the same time. We demonstrated that our method 
has higher accuracies than other SS prediction methods to predict kinks in helical TM spans 
and that it has the capability to predict re-entrant TM helices. We have shown that a potential 
advancement of our method would be the prediction of conformational switches where 
preliminary results on a few examples seem encouraging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ANN artificial neural network

EPR electron paramagnetic resonance

MC membrane core

MP membrane protein

MTSL methanethiosulfonate spin label

PDB ProteinDataBank

PDBTM ProteinDataBank for transmembrane proteins

RMSD root mean square deviation

SO solution

SS secondary structure

TM transmembrane

TR transition region
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Figure 1. 

A: Definition of membrane thicknesses in our MP database. For training, residues in the gap 
region of 2.5 A between membrane core/transition region and transition region/solution were 
disregarded. To report prediction accuracies the gap region was removed, i.e., all residues 

were taken into account, and the thicknesses of the regions were adjusted as shown. B: Each 
ANN is trained on three subsets for training, one for monitoring the training process, and 
one as an independent test set. To avoid a bias in neither the independent test set, nor the 
monitoring set, both of these sets are permuted through all five subsets. This results in 20 
ANNs that were trained. To report prediction accuracies, the outputs of the four ANNs in 
one set were summed, the prediction accuracies calculated, and then averages over all five 
sets were computed. This procedure boosts prediction accuracies in the three state outputs 
by 1–2% compared with the individual networks. It was tested whether postprocessing the 
output with a second ANN further reduces the noise, but no significant improvements were 
obtained (data not shown). [Color figure can be viewed in the online issue, which is 
available at wileyonlinelibrary.com.]
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Figure 2. 

Setup for a single ANN. The residue at the center of the window is described by 1282 
inputs. For this residue, a normalized nine-state prediction vector is the output. In this 
example, the predicted state for this residue is a helix in the membrane core (MC).
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Figure 3. 

Averages of percent predicted residues over all independent datasets. The rows represent the 
“true” state; the columns represent the predicted state. Desired are large percentages in the 
matrix diagonals and low percentages in the off-diagonal elements. The overall nine-state 
accuracy is 70.3%, for SS prediction 73.2%, and for TM span identification 94.8%. The 
nine-state accuracies are summed to yield three-state SS predictions and three-state TM span 
predictions shown at the bottom. [Color figure can be viewed in the online issue, which is 
available at wileyonlinelibrary.com.]

Leman et al. Page 21

Proteins. Author manuscript; available in PMC 2016 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 

A: Three-state secondary structure prediction comparing to methods trained on soluble 

proteins. B: Performance of other two-state TM span prediction methods compared with 
BCL::Jufo9D that outperforms both of them. Since all other methods are limited to 
predicting either TM helices or TM strands, a separate comparison is required.
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Figure 5. 

The sequences of these examples are used to predict the SS and TM state for each residue. 
These predictions are mapped onto the known structure. On the right panels the membrane 
core and transition regions on either side of the membrane are indicated by gray planes. H = 
prediction for helix, E = strand, C = coil, MC = membrane core, TR = transition region, SO 
= solution.
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Figure 6. 

Percent of predicted residues versus residue position of actual SS elements or TM spans. 
The residue position denotes the position from either side (N-terminal or C-terminal) of the 
SS element/TM span where position −1 is outside the SS element or TM span and position 
one is the first residue within. The dotted line denotes a perfect prediction with the black dot 
at the inversion point. The percent predictions for each position are averages over SS 
elements/TM spans between (2*residue position – 1) residues up to 19 residues 
corresponding to position 10. As an example, the TM state accuracy at position 4 is the 
average percentage at that position over TM spans of length 7 to 19. For the TM span 
percentages the 8–19 denotes the length of TM spans considered: 8 to 19 residues. Similarly, 
14–19 only considers TM spans between 14 and 19 residues. This distinction was necessary 
since OCTOPUS only predicts TM helices with the length of 15, 21, or 31 residues.
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Figure 7. 

Prediction of re-entrant helices into the membrane. The re-entrant helices are highlighted 
with the rest of the protein shown transparent. [Color figure can be viewed in the online 
issue, which is available at wileyonlinelibrary.com.]
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