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Abstract—The ability to predict wrist and hand motions
simultaneously is essential for natural controls of hand prothe-
ses. In this paper, we propose a novel method that includes
subclass discriminant analysis (SDA) and principal component
analysis for the simultaneous prediction of wrist rotation (prona-
tion/supination) and finger gestures using wearable ultrasound.
We tested the method on eight finger gestures with concurrent
wrist rotations. Results showed that SDA was able to achieve
accurate classification of both finger gestures and wrist rota-
tions under dynamic wrist rotations. When grouping the wrist
rotations into three subclasses, about 99.2 ±1.2% of finger
gestures and 92.8 ± 1.4% of wrist rotations can be accurately
classified. Moreover, we found that the first principal component
(PC1) of the selected ultrasound features was linear to the wrist
rotation angle regardless of finger gestures. We further used
PC1 in an online tracking task for continuous wrist control and
demonstrated that a wrist tracking precision (R2) of 0.954 ±

0.012 and a finger gesture classification accuracy of 96.5 ± 1.7%
can be simultaneously achieved, with only two minutes of user
training. Our proposed simultaneous wrist/hand control scheme
is training-efficient and robust, paving the way for musculature-
driven artificial hand control and rehabilitation treatment.

Index Terms—Subclass discriminant analysis, principal com-
ponent analysis, simultaneous wrist/hand control, wearable ul-
trasound sensing.

I. INTRODUCTION

Artificial hand prostheses have evolved from one degree

of freedom (DoF) gripper to multi-finger hands with multiple

DoFs. To enable intuitive control of dexterous prostheses,

wearable hand gesture recognition has been widely studied to

identify the relationship between muscle activities and intend-

ed hand gestures. Currently, the prevailing way for wearable

hand gesture recognition is myoelectric pattern recognition, by

which multi-DoF hand motions can be decoded from surface

electromyography (sEMG) signals sequentially. However, this

strategy can only predict one gesture at a time, rather than

simultaneous prediction of multiple DoFs such as combined

wrist/hand motions. This results in the gesture control being

counterintuitive, since natural limb movement usually consists

of simultaneous activations of multiple DoFs.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 51575338, 61733011).

Yang, Yan, Liu are with the State Key Laboratory of Mechanical System and
Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University,
Shanghai, China. (e-mail: xingchen.yang@sjtu.edu.cn).

Fang is with School of Communication Engineering, Hanzhou Dianzi
University, Hangzhou, China.

Zhou, Liu are with School of Computing, University of Portsmouth, PO1
3HE, Portsmouth, UK. (e-mail: honghai.liu@port.ac.uk).

Several approaches have been explored to associate muscle

activation patterns to multi-DoF hand motions. Regression

techniques are preferred in this field, through which simul-

taneous and proportional multi-DoF control (SPC) can be

achieved [1], [2]. In addition, muscle synergy inspired non-

negative matrix factorization provides another way for the

SPC [3]. However, most of these studies focused on the

simultaneous prediction of multi-DoF wrist motions or finger

motions, instead of combined wrist/hand motions frequently

used in daily life.

In the context of simultaneous wrist/hand control, some

sEMG-based classification methods have been explored.

Davidge et al. used a single linear discrimination analy-

sis (LDA) model to classify combined wrist/hand motions,

where both individual (1-DoF) motions and combined mo-

tions (multi-DoF) were labeled as different classes [4]. While

remarkable classification accuracy can be achieved in this

way, extensive training was required since both individual

and combined motions were needed for the model calibration

[5]. By contrast, Baker and Boschmann et al. proposed a

parallel classification scheme, where multiple classifiers were

used in parallel to classify different DoFs simultaneously

[6], [7]. The parallel classifiers can be trained with 1-DoF

exemplars, but the classification performance was undesirable

unless multi-DoF exemplars were included [8]. The parallel

classification scheme was later modified by Young et al. to

improve its reliability, but the cumbersome training problem

remains unsolved [9]. Recently, Nowak et al. proposed a linear

enhanced training (LET) strategy to reduce training burden,

with the hypothesis that features of combined motions can

stem from individual motions [10]. However, initial training

of both individual and combined motions with a few subjects

was still required to build their relationships. Inspired by this

idea, Antuvan et al. attempted an LDA-based algorithm to

build the relationship between combined wrist/hand motions

and individual motions in two-dimensional space, achieving

accurate recognition of both individual and combined motions

by training only with individual motions [11]. However, the

number of activated DoFs was limited to two in this study.

In addition to classification-based methods, some regression

techniques have been attempted for the simultaneous predic-

tion of wrist/hand motions. However, these methods usually

require a large amount of training data, and their clinical

robustness remains unverified [12], [13]. To date, achieving

simultaneous wrist/hand control using physiologically related

muscle information remains a formidable problem.

While sEMG is still dominant in the field of self-powered
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prosthesis control, its inherent noisy and non-stationary prop-

erties hinder its practical applications [14]. Recently, ultra-

sound has been regarded as an alternative to sEMG for the

prosthesis control, due to its ability to precisely monitor mus-

cle deformations. Since functional muscles related to finger

motions and wrist motions are seated in different depths and

discernable by ultrasound signals, it is possible to discrim-

inate activations of wrist and hand motions simultaneously

using ultrasound. Early studies have demonstrated that both

discrete finger [15]/wrist motions [16] and continuous finger

flexion [14]/wrist extension [17] can be decoded from B-

mode ultrasound images, with better performance than sEMG

[14]. Moreover, it is feasible to predict fine finger motions

via one-dimensional A-mode ultrasound [18], [19], which is

more lightweight and wearable compared to the bulky B-mode

ultrasound. However, so far no study has concentrated on the

prediction of simultaneous wrist/hand motion via ultrasound.

In this paper, we report a wearable A-mode ultrasound

based method, to realize simultaneous wrist/hand motion pre-

diction. Specifically, we propose a novel method that includes

subclass discriminant analysis (SDA) and principal compo-

nent analysis (PCA) for the simultaneous prediction of wrist

rotation (pronation/supination) and finger gestures. With the

established models, eight dexterous finger gestures can be

accurately predicted during wrist rotations, and corresponding

wrist rotation positions can be precisely estimated at the same

time in either discrete or continuous manners (see Fig. 1).

Both offline analysis and online validation were conducted

in this study, to assess the feasibility of ultrasound-based

simultaneous wrist/hand motion prediction.

Fig. 1. Illustration of the simultaneous wrist/hand motion prediction
scheme. SDA denotes subclass discriminant analysis, PCA denotes principal
component analysis, and PC1 denotes the first principal component.

II. METHODS

A. Subjects

Eight healthy subjects (all male; 24.6 ± 1.6 years; 64.3 ±

5.6 kg; 174.1 ± 4.3 cm) volunteered for this study. None of

them had a history of neuromuscular or joint diseases. All

subjects provided informed consent prior to participating in

the experiment. The testing procedure was in accordance with

the Declaration of Helsinki.

B. Offline Experiment

The subjects sat naturally, relaxed their elbows on the table

and kept their palms upwards. The angle between the upper

arm and the forearm was about 120◦. Eight A-mode ultrasound

transducers (Ø 9 × 11 mm) were placed around the forearm

with a customized armband [20], approximately 10 cm distal

to the elbow. The positions of transducers are shown in Fig. 2,

where the distance between channel 1 and channel 8 was a

little larger and the others were equidistant.

Fig. 2. Transducer placement. R = radius; U = ulna; BR = brachioradialis;
FCU = flexor carpi ulnaris; FCR = flexor carpi radialis; FDP = flexor digitorum
profundus; FDS = flexor digitorum superficialis; FPL = flexor pollicis longus;
APL = abductor pollicis longus; EP = extensor pollicis longus and brevis;
ECU = extensor carpi ulnaris; ECR = extensor carpi radialis; EDC = extensor
digitorum communis.

The transducers were sequentially driven by a customized

wearable ultrasound system [20], with a frame rate of 10 Hz,

a sampling rate of 20 MHz, and sampling dots of 1000 for

each channel. In addition, a commercial inertial measurement

unit (IMU) sensor (Xsens-MTi-100, Xsens Technologies B.V.,

Netherlands) was attached on the ventral side of the wrist

to record the wrist rotation angle, sampling at 100 Hz. The

collection of ultrasound and IMU signals was simultaneously

triggered by a software (Quick Macro, Chuangyi Jiahe Soft

Co., Ltd., China).

Wrist rotations and eight types of finger gestures were

studied in this work, including rest (RS), fist (FS), index point

(IP), fine pinch (FP), tripod grip (TG), key grip (KG), peace

sign (PS), and hang loose (HL), as shown in Fig. 3. During

the offline experiment, subjects were instructed to perform

a dynamic training; each finger gesture was performed for

30 seconds with continuous wrist rotations at a rhythm of

approximately 0.5 Hz. To avoid fatigue, there was a 10-second

rest between two continuous finger gestures. Low level of

muscle activation was used throughout, given that ultrasound-

based gesture recognition was shown to be insensitive to

muscle activation levels [21].

C. Online Test

A custom-built graphical user interface (GUI) to perform a

tracking task was designed to qualify the performance of the

simultaneous wrist/hand control. In the tracking task, subjects

were instructed to perform a target finger gesture and to control

a black cursor to trace a target waveform with wrist rotations.

Two kinds of tracking missions were studied. The first was

tracking discrete platforms through discrete wrist rotations by

SDA (see Fig. 10A). The second was tracking continuous

sine waves through continuous wrist rotations by PCA (see

Fig. 10B and Fig. 3, 0.1 Hz sine wave, where the negative

values were set to 0). Four subjects participated in the first



3

tracking mission, and all the subjects participated in the

second.

Before the online test, two minutes of dynamic training were

required. There were three trials in total. In each trial, each

gesture was performed for 5 seconds with continuous wrist

rotations at a rhythm of approximately 0.5 Hz. During the

online test, each gesture was tested for 30 seconds sequentially,

during which subjects were instructed to hold the testing

gesture steadily and to complete the tracking task through wrist

rotations. There was a 2-second preview before the tracking

started; hence, the real tracking time of each gesture was

28 seconds. For the continuous tracking task, only the last

23 seconds of data were analyzed for each gesture, because

subjects required some time to achieve steady-state tracking

performance.

Fig. 3. Custom-built graphic user interface (GUI) for the online wrist/hand
motion control. Subjects were instructed to perform a target finger gesture
and to control a black curse to trace a target waveform with wrist rotations.
The target finger gesture was prompted with a red frame, and the real-time
gesture recognition result was displayed on the upper-right corner. From left
to right, the finger gestures are rest (RS), fist (FS), index point (IP), fine pinch
(FP), tripod grip (TG), key grip (KG), peace sign (PS), and hang loose (HL),
respectively. Each finger gesture was tested for 30 seconds sequentially in the
online test. There was a 2-second preview before the tracking started, hence
the real tracking time of each gesture was 28 seconds.

D. Data Processing and Analysis

1) Feature Extraction: To remove noises and enhance

meaningful information, we first preprocessed the raw ultra-

sound signals with time gain compensation, bandpass filtering,

envelope detection, and log compression [21]. Since the first

and the last 20 data points of the ultrasound signals carried

little meaningful information, we removed them during the

preprocessing. The remaining 960 data points of each channel

were evenly segmented into 48 windows, with a segmentation

length of 20 points. For each window, the following statistical

features were analyzed

f1 = mean(X)
f2 = std(X)
f3 = max(X)
f4 = min(X)
f5 = sum(abs(diff(X)))
f6 = skewness(X)
f7 = kurtosis(X)

(1)

where X is the data of one analysis widow, f1 − f7 are

calculated with Matlab 2016Rb with corresponding functions.

For each feature, the values of all the analysis windows and

all the channels were connected.

The importance of these features was determined by the

Random Forest algorithm, which was created using the

TreeBagger function in Matlab 2016Rb. Then, two types

of significant features were concatenated together for the

subsequent analysis. To avoid the curse of dimensionality,

PCA was applied to reduce the feature dimension, with 95%

of variance preserved.

2) Classification based on Subclass Discriminant Analysis:

LDA is a commonly-used classification method due to its

simplicity and effectiveness. However, since LDA assumes that

each class distribution follows a Gaussian distribution, it is

not suitable for non-Gaussian problems. Subclass discriminant

analysis (SDA) is a variant of LDA that aims to separate

classes at a subclass level rather than at a class level, based

on the observation that the data distribution in one class may

be a mixture of Gaussians. This is achieved by dividing each

class into several subclasses to describe the variance of data

of each class in a fine way and then classifying them with

optimal boundaries [22]. Since SDA can model non-Gaussian

classes as mixtures of Gaussian subclasses, it can overcome the

performance degradation of LDA for non-Gaussian problems

[23]. Also, SDA has the potential to provide fine subclass

information to give insight into original classes (see Fig. 4).

Previous research on SDA always emphasized class separabil-

ity over subclass separability, ignoring the potential meaning

and importance of subclasses [22]–[27]. In this study, we

proposed an extension of SDA, which divided subclasses in

terms of their physical meanings and emphasized subclass

separability as much as class separability. Concretely, we sub-

divided the data of each finger gesture into a few sub-gestures

representing different wrist rotation positions and classified

these sub-gestures to achieve simultaneous prediction of finger

gestures and wrist rotations.

2.1) Subclass Divisions: How to divide each class into

different subclasses is a crucial problem in SDA. Different

unsupervised algorithms have been attempted in this field,

including K-means clustering [25], [28], dynamic cluster

formation [26], Gaussian mixture model [29], hierarchical

clustering [24], nearest neighbor (NN) clustering [22], and

valley seeking algorithm [27]. However, these unsupervised

methods usually clustered data in terms of their inherent

similarity, overlooking the physical meanings of the clustered

data. In this study, we proposed an IMU-supervised sub-

class separation method (IMU-SDA), to subdivide the data

of each finger gesture Ci(i = 1, 2, ..., 8) into n subclasses

Cij(j = 1, 2, ..., n) according to the wrist rotation angles.

Furthermore, to get rid of the dependence on IMU sensors,

a linear relationship between the first principal component

of the ultrasound features (PC1) and the wrist rotation angle

was built, accomplishing unsupervised PC1-driven subclass

divisions (PC1-SDA). Additionally, the unsupervised NN clus-

tering (NN-SDA) was utilized as a comparison [22].

Considering the importance of wrist pronation, wrist supina-

tion, and natural wrist position in practical application, the
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Fig. 4. Illustration of SDA algorithm, where class number and subclass number are 2 and 3, respectively. The classification of subclasses can give extra
information about original classes, and the classification boundaries between original classes (i.e. A and B) can be non-linear in this way.

number of subclasses was set to 3 in this study. And the

subdivision of each class Cij(j = 1, 2, 3) was defined as

follows

Ci1 : 0 ≤ α < l

Ci2 : l ≤ α < u

Ci3 : u ≤ α ≤ 1
(2)

where α represents the normalized wrist rotation angle (de-

rived by IMU or PC1), l and u are parameters for wrist

position segmentation, Ci1, Ci2, Ci3 represent data from

wrist pronation, natural wrist position, and wrist supination,

respectively. Empirically, the values of l and u were selected

as 0.25 and 0.75, respectively.

2.2) Subclass Classification: In contrast to previous studies

that utilized Fisher’s LDA for dimensionality reduction and K-

nearest neighbors (KNN) classifier for classification [24], [25],

we employed a Bayesian linear classifier to classify all the

subclasses Cij(i = 1, 2, ..., 8; j = 1, 2, 3) and then mapped the

subclasses into original classes Cij → Ci(i = 1, 2, ..., 8; j =
1, 2, 3).

Two types of accuracy metrics were defined for assessing

the classification performance: finger gesture classification

accuracy (Accf ) and simultaneous wrist rotation classification

accuracy (Accw).

The finger gesture classification accuracy (Accf ) was de-

fined as

Acch = Nf/N (3)

where N is the number of test samples and and Nf is the

correctly recognized finger gestures. The predicted label Cij

is correctly recognized into actual label Cīj̄ as long as i = ī

no matter j = j̄ or not.

The wrist rotation classification accuracy (Accw) was de-

fined as

Acch = Nw/N (4)

where N is the number of test samples, and Nw is the number

of correctly recognized wrist rotations. The predicted label Cij

is correctly recognized into actual label Cīj̄ only if i = ī and

j = j̄.

To simulate the real-time application, the first two thirds

of data of each gesture were used for model calibration (20

seconds) and the remaining was used for testing (10 seconds)

during the offline analysis.

3) Continuous Wrist Rotation Estimation: By SDA, only

discrete wrist rotation positions can be predicted instead of

continuous wrist rotations. Considering that forearm muscle

morphology varies accordingly with wrist rotations, it is

likely to extract continuous wrist rotation information from

ultrasound signals. According to the offline analysis, the PC1

of selected ultrasound features was approximately linear to

the wrist rotation angle, hence the PC1 was used for online

proportional wrist rotation control.

The PCA was conducted for the data of all the

finger gestures together; therefore, we created a

unified PCA projection matrix (W ) for the data

of all the finger gestures. Then, we calculated the

maximum and minimum PC1 values of each gesture i

(PC1max,i, PC1min,i, i = 1, 2, ..., 8) and recorded the average

maximum and minimum PC1 values of all the finger gestures

(PC1max=
1

8

∑
8

i=1
PC1max,i, PC1min=

1

8

∑
8

i=1
PC1min,i).

During the online test, the ultrasound feature was first

projected into a low-dimensional space by PCA. Then,

the derived PC1 was normalized by the PC1min and

PC1max. In this way, the PC1-based wrist rotation control

was independent of the finger gesture control, since both

the projection matrix of PCA (W ) and the normalization

boundaries (PC1min, PC1max) of the PC1 were independent

of finger gestures.

For the continuous wrist rotation estimation, the coefficient

of determination (R2) was used to assess the performance.

R2= 1−
SSres

SStot

= 1−

∑
i
(ŷi − yi)

2

∑
i (ȳ − yi)

2
(5)

where SSres is the sum of squares of residual errors, SStot is

the total sum of squares, yi is the actual label of sample i, ŷi
is the predicted label,and ȳ = 1

n

∑n

i=1
yi. The maximal R2 at

perfect estimation is one.

E. Statistical Analysis

One-way repeated-measure analysis of variance (ANOVA)

and Mann-Whitney U test were used to compare the per-

formance of different classification models (i.e. LDA and

SDA) and subclass division methods (i.e. NN-SDA, IMU-

SDA, and PC1-SDA). If analyzed data followed a normal

distribution, one-way ANOVA would be applied otherwise

Mann-Whitney U test would be applied. In addition, two-way

repeated-measure ANOVA was used to evaluate the perfor-

mance of different classification models (i.e. LDA, SDA, and
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quadratic discriminant analysis (QDA)) and sensor positions

(i.e. Channel 1 to Channel 8). When ANOVA revealed a

significant difference, Tukey method was used for the post-

hoc comparison. Statistical significance was set to p = 0.05.

III. RESULTS

Fig. 5. Importance of selected features, which is derived by the Random
Forest algorithm. The data are averaged across different subjects.

A. Feature Selection

The importance of selected features derived by the Random

Forest algorithm is shown in Fig. 5. It was found that the mean

(f1) and max (f3) were the most important features, followed

by the std (f2), min (f4), sum(abs(diff(·)))(f5), skewness (f6),

and kurtosis (f7). Considering the superior performance of

the mean (f1) and std (f2) features and their complementary

properties, the combined mean and std (MSD) features were

selected for the following analysis.

B. Effectiveness of SDA

The performance of IMU-SDA for the simultaneous

wrist/hand motion prediction is depicted in Fig. 6, where LDA

was used as a benchmark. For the finger gesture recognition,

the performance of SDA and LDA was comparable (p =

0.17). However, SDA can achieve accurate wrist rotation

classification at the same time. Overall, the average finger

gesture classification accuracy and wrist rotation classification

accuracy of SDA were 99.89% ± 0.28% and 95.2% ± 4.9%,

respectively.

C. Principal Component Representation of Wrist Rotation

Fig. 7 shows the relationship between the wrist rotation an-

gle and the PC1 of MSD features, where PCA was conducted

for the data of all the finger gestures together. It was found that

the PC1 was approximately linear to the wrist rotation angle

regardless of finger gestures. The linear relationship between

the PC1 and wrist rotation angle is summarized in Table I, with

an average R2 of 0.908 and a normalized root mean squared

error (nRMSE) of 0.09 across different subjects.

Fig. 7. Relationship between the normalized wrist rotation angle and
the normalized PC1 of mean and standard deviation (MSD) features for a
representative subject.

TABLE I
LINEAR REGRESSION BETWEEN THE WRIST ROTATION ANGLE AND THE

PC1 OF THE MSD FEATURES.

D. Comparison of Subclass Division Methods

Now that the PC1 was linear to the wrist rotation angle, the

segmentation of wrist rotations using PC1 was incorporated

into SDA (PC1-SDA). The comparison of IMU-SDA, PC1-

SDA, and NN-SDA is shown in Fig. 8. In terms of the finger

gesture classification, the performance of IMU-SDA, PC1-

SDA, and NN-SDA was comparable. For the wrist rotation

classification, the IMU-SDA outperformed the NN-SDA sig-

nificantly (p <0.001), and the PC1-SDA outperformed the

IMU-SDA significantly (p <0.001).

E. Online Wrist/Hand Motion Prediction

The online wrist/hand motion prediction performance is

depicted in Fig. 9. When using SDA (IMU-SDA), the average

finger gesture classification accuracy was 99.2 ± 1.2% under

dynamic wrist rotations, and the simultaneous wrist rotation

Fig. 8. Comparison of different subclass division methods. NN-SDA, IMU-
SDA, and PC1-SDA represent nearest neighbor clustering based subclass
division, IMU-based subclass division,and PC1-based subclass division, re-
spectively. The NN-SDA and PC1-SDA are unsupervised, but the IMU-SDA
requires an external IMU sensor for the supervised subclass division. The
data are averaged across different subjects and finger gestures. *p <0.05, **p

<0.001.
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Fig. 6. Simultaneous wrist/hand motion prediction performance of inertial measurement unit (IMU) based SDA, where the linear discrimination analysis
(LDA) is used as a benchmark. LDA-Finger and SDA-Finger denote the finger gesture classification accuracy of LDA and SDA, respectively. SDA-Wrist
denotes the simultaneous wrist rotation classification accuracy of SDA. The data are averaged across different finger gestures.

Fig. 9. Online simultaneous wrist/hand motion prediction performance of SDA and PC1-LDA. (A) Online finger gesture and wrist rotation classification
accuracy of IMU-SDA. (B) Online finger gesture classification accuracy of LDA, and the simultaneous wrist rotation tracking accuracy (R2) of the PC1 of
MSD features. The data are averaged across different subjects and finger gestures.

classification accuracy was 92.8 ± 1.4% (see Fig. 9a). When

using PC1 for proportional wrist position estimation and

LDA for finger gesture classification (PC1-LDA), the average

finger gesture classification accuracy was 96.5 ± 1.7% under

dynamic wrist rotations, and the simultaneous wrist rotation

tracking precision (R2) was 0.954 ± 0.012 (see Fig. 9b).

The online wrist rotation tracking performance of a repre-

sentative subject is shown in Fig. 10. It was clear that the

tracking curves were in good agreement with the target wave-

form, regardless of if we used SDA for discrete wrist rotation

estimation or PC1 for continuous wrist rotation tracking.

IV. DISCUSSION

Simultaneous prediction of wrist/hand motion provides a

natural approach to artificial hand manipulation. Due to the

crosstalk in sEMG recordings, it is hard to discriminate

activations of wrist/hand motions using sEMG. By contrast,

ultrasound sensing has the potential to distinguish finger and

wrist motions simultaneously, since finger- and wrist- related

muscles are seated in different depths and discernable by

ultrasound. This paper provides a scheme to predict wrist/hand

motions simultaneously via ultrasound. As wrist rotation and

Fig. 10. Online wrist position tracking performance of the RS gesture for
a representative subject. (A) Discrete wrist position tracking using SDA. (B)
Continuous wrist position tracking using the PC1 of MSD features.

finger grasps are crucial for practical applications, these

motions were targeted in this study [30], [31]. In addition,

A-mode ultrasound was utilized due to its wearability. We
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proposed a novel SDA algorithm and a PCA strategy for the

prediction of simultaneous wrist rotation and finger gestures.

Offline evaluation demonstrated that SDA can achieve accurate

finger gesture classification under dynamic wrist rotations,

accompanied by remarkable wrist rotation classification (see

Figs. 6 and 8). Online testing validated that the proposed

approach is capable of attaining desirable wrist/hand control

in real-time, either in a discrete manner by SDA or in a

continuous manner by PC1-LDA (see Fig. 9). This is the

first study to develop an algorithm to decode simultaneous

wrist/hand motions from ultrasound signals, paving the way

for musculature-driven prosthesis manipulation.

A. Parameter Optimization of SDA

There are two parameters in the proposed SDA algorithm,

l and u, which are responsible for the subclass division of

wrist rotations. The influence of these parameters on the

classification performance is depicted in Fig. 11, where l

ranged from 0.1 to 0.3 and u ranged from 0.7 to 0.9. It was

found that the best performance can be achieved as l = 0.23
and u = 0.74, which approximated our empirical parameters

(l = 0.25, u = 0.75). Note that the optimal normalized angle

ranges of wrist pronation (0 ≤ α < 0.23) and wrist supination

(0.74 ≤ α ≤ 1) were smaller than natural wrist position

(0.23 ≤ α < 0.74). The potential reason for this was that

subjects were accustomed to holding the wrist in pronation

and supination for a while, but varied the wrist positions

rapidly between them during the dynamic training, resulting

in the number of sampling data from wrist pronation and wrist

supination being larger than that from natural wrist position.

Therefore, assigning more samples (larger angle range) to

the natural wrist position would improve the classification

performance of wrist rotations.

Fig. 11. Relationship between wrist rotation segmentation parameters (i.e.
l and u) in SDA and the wrist rotation classification performance of SDA,
where IMU-SDA is utilized as a representative. The data are averaged across
different subjects and finger gestures.

B. Comparison of LDA, SDA, and QDA

In order to account for the classification mechanism of

SDA, we further compared the finger gesture classification

performance of LDA, SDA (IMU-SDA herein), and QDA

when using single channel ultrasound (see Fig. 12). Two-

way ANOVA shows that there was no significant interaction

between the classification methods and sensor positions, and

post-hoc analysis showed that the performance of SDA was

significantly better than LDA but significantly worse than

QDA. The potential reason for this was that SDA can extend

the linear classification boundaries to be non-linear hyper-

polygons (see Fig. 13) and thus can improve the generalization

ability of LDA. Nevertheless, the classification boundaries of

QDA are hyper-quadric, with better non-linear characteristics

than the hyper-polygonal boundaries in SDA.

While QDA was superior to SDA in finger gesture classifica-

tion accuracy, it cannot provide the wrist rotation information

that SDA does. Moreover, the computation cost of QDA

is higher than SDA. The computation costs of LDA, SDA,

and QDA for a frame of ultrasound signals were 0.008 ms,

0.017ms, and 0.020 ms, respectively (3.2-GHz Intel Core

i5-3470 CPU, 8-GB memory, Matlab 2016Rb). That is be-

cause QDA determines quadratic classification boundary using

class-wise covariance matrices, while LDA/SDA eliminates

quadratic terms using a unified covariance matrix for all

classes [32]. If training samples are inefficient, the covariances

of individual classes might be singular. In this case, QDA

will be invalid but LDA/SDA will remain effective. Overall,

SDA incorporated nonlinearity into LDA and provided extra

subclass information.

Fig. 12. Comparative analysis of LDA, SDA and quadratic discriminant
analysis (QDA) on the finger gesture classification when using single channel
ultrasound sensing. The sensor positions are illustrated in Fig. 2. *p <0.05,
**p <0.001.

C. Principal Component Representation of Wrist Rotation

While IMU-SDA can achieve accurate recognition of simul-

taneous wrist/hand motions, it relies on an IMU sensor for the

Fig. 13. Comparison of LDA (Left) and SDA (Right)-based classification
boundaries.
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subclass divisions, which hinders its clinical applicability. It

is vital to create unsupervised subclass division in SDA, by

which simultaneous wrist/hand control can be accomplished

solely by ultrasound. To maintain the physical meanings of

subclasses for representing wrist rotation positions, a feature

that represents wrist rotation angle was necessary for the sub-

class divisions. As shown in Fig. 7, the PC1 of MSD features

can represent wrist rotation position, and it was independent

of finger gestures. That is because muscle movement is more

intense during wrist rotations compared to finger pinches;

hence, ultrasound signals varied more significantly during

wrist rotations. According to the principle of PCA, the largest

signal variance would be reflected in the first dimension;

therefore, the PC1 of ultrasound features was related to the

wrist rotation. Since the PC1 could be an indicator of wrist

rotation angle, we incorporated it into SDA for the subclass

divisions. Results showed that the PC1-SDA was comparable

to the IMU-SDA on finger gesture classification and superior

to IMU-SDA on wrist rotation classification. The potential

reason for this is that there is no delay between the PC1 and

ultrasound signals, but a delay might exist between the IMU

and ultrasound signals.

As mentioned above, the PC1 was proportional to the wrist

rotation angle regardless of finger gestures. Therefore, the

PC1 can be used for proportional wrist rotation control during

multi-DoF finger gesture control. This has been demonstrated

in the online wrist/hand control task, with an average wrist

rotation tracking precision (R2) of 0.954 ± 0.012 and a

simultaneous finger gesture recognition accuracy of 96.5 ±

1.7% (see Fig. 9b). The PC1-based wrist rotation estimation

was an unsupervised algorithm. Compared to regression-based

methods, it was more training-efficient and easier to be applied

in clinical applications. Furthermore, while it was not validated

in this study, SDA can be combined with the PC1-based con-

tinuous wrist rotation estimation. In this way, accurate finger

gesture recognition can be achieved by SDA, and the wrist

rotation angles can be accurately estimated simultaneously,

either in a discrete manner by SDA or in a continuous manner

by the PC1 selectively.

A limitation of this study is the absence of amputee subjects.

However, there is potential to extend this method to amputee

prosthesis control, since the effectiveness of ultrasound-based

gesture recognition on amputees has been demonstrated [33],

and the continuous wrist rotation training strategy in this study

is more suitable for amputees compared to previously reported

mirrored bilateral training [12].

V. CONCLUSION

In this paper, we presented a novel SDA algorithm and a

PCA strategy for the prediction of simultaneous wrist rotation

and finger gestures via wearable ultrasound. Results showed

that the proposed SDA algorithm can achieve accurate finger

gesture classification during wrist rotations, accompanied by

precise wrist rotation classification. Moreover, the first princi-

pal component of selected ultrasound features was linear to the

wrist rotation angle regardless of finger gestures. This provides

a desirable method for the unsupervised subclass division in

SDA and a promising approach to proportional wrist rotation

control during multifreedom finger gesture control, paving the

way for future prosthesis control.
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