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Abstract

Background: Single-cell transcriptome and single-cell methylome technologies have become powerful tools to study

RNA and DNA methylation profiles of single cells at a genome-wide scale. A major challenge has been to understand

the direct correlation of DNA methylation and gene expression within single-cells. Due to large cell-to-cell variability

and the lack of direct measurements of transcriptome and methylome of the same cell, the association is still unclear.

Results: Here, we describe a novel method (scMT-seq) that simultaneously profiles both DNA methylome and

transcriptome from the same cell. In sensory neurons, we consistently identify transcriptome and methylome

heterogeneity among single cells but the majority of the expression variance is not explained by proximal

promoter methylation, with the exception of genes that do not contain CpG islands. By contrast, gene body

methylation is positively associated with gene expression for only those genes that contain a CpG island promoter.

Furthermore, using single nucleotide polymorphism patterns from our hybrid mouse model, we also find positive

correlation of allelic gene body methylation with allelic expression.

Conclusions: Our method can be used to detect transcriptome, methylome, and single nucleotide polymorphism

information within single cells to dissect the mechanisms of epigenetic gene regulation.
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Background

DNA methylation involves the covalent attachment of a

methyl group to the fifth carbon of cytosine. It is thought

that such a modification plays a critical role in regulating

gene expression for tissue- and cell-specific transcriptional

programs [1–3]. The current model suggests that promoter

methylation stably silences gene expression, particularly in

the regulation of developmental and tissue-specific gene ex-

pression [4]. However, most of the previous studies analyze

the correlation of DNA methylation with gene transcription

in bulk cell populations. It is still unclear whether variations

of gene expression at the single-cell level can be explained

by differential methylation at individual gene promoters. In

fact, it would be necessary to integrate methylome and

transcriptome analysis in a single cell to provide a direct

connection between DNA methylation and gene transcrip-

tion at a given gene locus [5–8].

In recent years, we have seen the rapid development

of single-cell genomics methods such as single-cell RNA

sequencing (RNA-seq) [9–11], single-cell bisulfite se-

quencing (BS-seq) [12], and single-cell reduced repre-

sentation bisulfite sequencing (RRBS) [13] to profile

transcriptome and DNA methylome at the genome scale.

These studies have revealed important biology with

regards to cellular heterogeneity and developmental

mechanisms [11, 14–17]. To further understand the cor-

relation of DNA methylation and transcriptome within

the same cell, we developed a simultaneous single-cell

methylome and transcriptome sequencing (scMT-seq)

method, in which cytosolic RNA is isolated for RNA-seq

whereas genomic DNA from the same nucleus is subject

to DNA methylome profiling. Our study uncovered

complex relationships between gene expression and

DNA methylation in proximal promoter and gene body

regions within a single cell.
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Results
Cytosol transcriptome resembles the whole-cell

transcriptome

To study the transcriptome of cytosolic RNA from a single

cell, we performed single-cell RNA-seq from individual sen-

sory neurons isolated from adult mouse dorsal root gan-

glion (DRG). These cells tend to be large (20–50 microns

in diameter) and enable facile micro-manipulation. Briefly,

adult mouse DRG was freshly dissected and dissociated

into single cells, then individually transferred to a droplet

of cell membrane lysis buffer. Since the lysis buffer does

not lyse the nuclear membrane, the cytosolic fraction can

be manually separated from nucleus by micropipette ma-

nipulation. The cytosolic fraction was then subjected to

transcriptome profiling via the Smart2-seq protocol [18],

while the isolated nucleus was subjected to methylome

analysis by using a modified single-cell RRBS protocol

[19] (Fig. 1a).

To control for technical variations in the micro-

pipetting technique, we performed a “merge-and-split”

experiment for nine pairs of single-cell cytosolic RNA.

Principal component analysis (PCA) indicated that each

of the “merged-and-split” pair share greater similarity

within the pair than with other pairs (Additional file 1:

Figure S1A). Furthermore, technical variation was assessed

by analyzing the consistency of amplified ERCC RNAs that

were spiked into scRNA-seq libraries. The Pearson correl-

ation of ERCC RNAs among different cells were highly

similar (r >0.88) (Additional file 1: Figure S1B).

With the technical assurance aside, we generated RNA-

seq libraries from 44 cytosol and 35 single soma samples

that were sequenced with an average of 2 million reads per

sample. We found that cytosol RNA-seq and soma RNA-

seq detected 9947 ± 283 and 10,640 ± 237 (mean ± SEM)

genes respectively (Fig. 1b). Moreover, by computing the

coefficient of variance as a function of read depth for each

Fig. 1 Single-cell cytosol transcriptome resembles single-soma transcriptome. a Schematic of the single-cell transcriptome and methylome sequencing

(scMT-seq) method. b Comparison of single-cell cytosol RNA-seq and soma RNA-seq in terms of the coverage of gene number. Only genes with reads

per kilobase per million (RPKM) >0.1 were counted. c Scatter plot of transcript expression levels in cytosol (x-axis) or soma (y-axis) samples. Red dots

indicate the significantly differentially expressed genes (p <0.01) and gray dots indicate genes that are not differentially expressed. d Principal component

analysis for DRG single soma and cytosol RNA-seq libraries. The relative expression levels of known marker genes for specific subgroups are shown in

color. Red represents high expression while blue represents low expression. Solid circles represent cytosol; empty squares represent soma
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gene, we found that cytosol and soma exhibit nearly identi-

cal levels of technical variation across all levels of gene ex-

pression (Additional file 1: Figure S2).

Consistently, Pearson correlation analysis showed that

the transcriptome of cytosolic RNA is highly correlated

with RNA from the soma (r = 0.97, Fig. 1c). Differential

expression analysis showed only 3 out of 10,640 genes

(0.03 %) were significantly different between cytosol and

soma (false discovery rate [FDR] <0.01), including Comp,

Serpina3i, and A330023F24Rik. PCA clustering revealed

that all samples clustered into four major subgroups,

consistent with previous subclassification of sensory

neurons [11]. For example, DRG cells were positive for

different marker genes of various neuronal subtypes

such as: (1) peptidergic (Kit positive); (2) non-peptidergic

(Mrgprd positive); (3) low threshold mechanoreceptors

(Ntrk2 positive); and (4) proprioceptive (Pvalb positive)

neurons (Fig. 1d). Cytosol and soma samples were found

evenly distributed across the four major clusters without

any apparent biases, further indicating that the transcrip-

tome of cytosol and soma are highly similar. Together,

these results demonstrate that the cytosolic transcriptome

can robustly represent the soma transcriptome.

Simultaneous DNA methylome analysis in conjunction

with single-cell cytosol RNA-seq

In parallel to cytosol RNA-seq, we extracted DNA from

the nucleus of the same cell and performed methylome

profiling using a modified single-cell RRBS (scRRBS)

method [13]. On average, we sequenced each sample to

a depth of 6.7 million reads, which is sufficient to calcu-

late the vast majority of CpGs as indicated by saturation

analysis (Additional file 1: Figure S3). Bisulfite conver-

sion efficiency was consistently greater than 99.4 % as

estimated by analyzing conversion of unmethylated

spike-in lambda DNAs (Table 1). The average number of

CpG sites assayed per single nucleus was 482,081, in the

range of 240,247–850,977 (Table 1). In addition, we

examined the CpG islands (CGI) coverage as RRBS is

biased for covering regions rich in CpG sites. In silico

digestion revealed that 14,642 out of all possible 16,023

CGI (91 %) in the mouse genome can be covered by at

least one RRBS fragment. In our experiments, we found

that each cell can cover an average of 65 % CGIs, in the

range of 50–80 %. Between any two single cells, the me-

dian number of shared CGI covered is 7200. Moreover,

about 3200 CGIs are commonly covered between 15

libraries (Fig. 2a). Together, these data indicate a high

concordance of coverage for CGI.

Coverage comparisons between the single DRG

nucleus methylome and the single DRG soma methy-

lome did not reveal any substantial differences (Fig. 2b,

c, and Additional file 1: Table S1). Both nucleus and

soma methylomes could cover on average approximately

277,000 CpG sites (> = 5 reads), which is similar to data

generated from a previous report describing scRRBS [13]

(Additional file 1: Table S1). As expected, nuclear and

soma methylomes are by and large equivalent.

To study methylation heterogeneity among single cells,

we first examined CpG sites that were differentially

methylated among individual cells. As RRBS predomin-

antly covers regions of high CG density which are

frequently hypomethylated, it is expected that no differ-

ence would be found in the majority of CGs in CGIs.

Table 1 Simultaneous sequencing of single-cell methylome and transcriptome

Samples Mouse strain CpG (1×) CpG (5×) Conversion rate Promoter no.
methylomea

Gene no. intersected
with transcriptomea

sc-1# 129/B6 495,313 342,121 99.59 % 4930 3627

sc-2# 129/B6 362,211 238,120 99.57 % 3905 2901

sc-3# 129/B6 909,730 498,910 99.64 % 6305 4658

sc-4# 129/B6 850,977 547,785 99.48 % 6059 4457

sc-5# 129/B6 565,739 350,744 99.77 % 5234 3911

sc-6# 129/B6 442,073 293,706 99.63 % 4370 3235

sc-7# 129/B6 413,412 231,743 99.94 % 3714 2759

sc-8# 129/B6 240,247 173,079 99.85 % 3106 2315

sc-9# B6/D2 379,925 233,773 99.55 % 4272 3164

sc-10# B6/D2 549,887 257,318 99.62 % 4263 3141

sc-11# B6/D2 437,273 221,168 99.38 % 3675 2708

sc-12# B6/D2 434,886 183,527 99.57 % 3388 2501

sc-13# B6/D2 368,404 132,999 99.36 % 2792 2113

sc-14# B6/D2 456,637 242,423 99.67 % 4032 3015

sc-15# B6/D2 474,163 220,723 99.49 % 3902 2885

aThe gene numbers are calculated by CpG coverage of 5× at promoter region
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However, by examining the variance of individual CpG

sites that were shared in at least 50 % of the samples

(n >8), we identified ~6800 CpG sites that were sig-

nificantly variable (FDR <1 %, F-test, Additional file 1:

Figure S4). Genomic annotation of these differentially

methylated CG sites revealed a 3.6-fold enrichment at

non-CGI promoters and a 3.8-fold depletion at CGI pro-

moters compared to the background of total CpG sites

tested (p <10−8, binomial test, Fig. 2d, Additional file 1:

Figure S5). While this result suggests that CpG methyla-

tion in non-CGI regions significantly contributes to the

methylome variation between cells, we also found differ-

ential DNA methylation in individual CGIs in adult DRG

neurons. Fig. 2e shows a representative locus with

differential methylated CpG sites at CGI promoter region

of Ddx4. Among ten CpG sites with this region, three

CpGs were found to be fully methylated while two were

fully unmethylated among all seven neurons. The

remaining five CpG sites were methylated in five neurons

but unmethylated in two other neurons. Taken all

together, our single-cell methylome analysis uncovered

regions of methylation heterogeneity among individual

DRG neurons.

Correlation of proximal promoter DNA methylation with

gene expression in a single neuron

Integrated analysis of the nuclear DNA methylation and

the cytosolic RNA datasets provides us the unique

Fig. 2 DNA methylome analysis of single DRG neuronal nucleus. a Boxplots showing the distribution of overlapping CGIs between randomly

sampled number of cells as indicated on the x-axis. b Pie chart with the genomic distribution of all CpG sites detected in nucleus and soma RRBS

libraries. c Genome browser tracks showing the coverage of CpG sites for chromosome 1 that are covered by soma methylome (top) or nucleus

methylome (bottom). d Bar graph showing the genomic features that are enriched for differentially methylated CpG sites across scRRBS libraries.

* and ** indicate differential distribution of differentially methylated CpG sites at CpG island promoter and non-CpG island promoter region, respectively

(p <10−8, binomial test). e The heterogeneous methylation status of a representative locus at promoter region of Ddx4. Red bars indicate the methylated

CpG sites, blue bars indicate the unmethylated CpG sites
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opportunity to investigate the genome-wide correlation

of methylation and transcription in the same cell.

Among the 4263 ± 258 (mean ± SEM; n = 15) promoters

analyzed for both DNA methylation and RNA transcrip-

tion, we found messenger RNA (mRNA) transcripts in

3159 ± 189 (74.2 %) genes (reads per kilobase per million

[RPKM] >0.1) (Table 1). The remaining fraction of genes

(~26 %) are either silenced or expressed at very low

levels (RPKM <0.1). Overall, consistent with previous

findings, our data indicated that promoter methylation is

negatively correlated with gene expression (Additional

file 1: Figure S6). However, by subclassifying promoters

into CGI versus non-CGI promoters, we found that most

of the negative correlation is driven by non-CGI pro-

moters. CGI promoters are predominantly hypomethy-

lated and have no predictive power on gene activity

(Pearson = −0.05) (Fig. 3a, Additional file 1: Figure S7).

By contrast, methylation of non-CGI promoters showed

a stronger anti-correlation with transcriptional activity

(Pearson = −0.22) (Fig. 3b, c, Additional file 1: Figure S8).

We next examined the correlation of promoter methyla-

tion with gene transcription for individual genes across

cells. For those hypomethylated gene promoters, we found

that 49 % of genes are expressed at similar levels across all

cells, consistently either low or highly expressed as repre-

sented by Zfp609 and Rps18 (Additional file 1: Figure S9).

On the other hand, the other 51 % of hypomethylated

genes exhibit dynamic expression across cells (i.e. genes

that exhibit differential gene expression irrespective of

gene promoter methylation). For example, Hey1 gene

promoter is constitutively hypomethylated but is highly

expressed in 7/14 (50 %) cells and low expressed in the

other seven cells (50 %) (Fig. 3d). Together, these data sug-

gest that other factors are involved in regulating genes

with hypomethylated promoters.

We next took a reverse approach and examined genes

with promoters that were variably methylated between

single cells. In total, we identified 23 gene promoters

that were variably methylated, six (26.1 %) of which were

significantly correlated with gene transcription (p <0.05,

Fisher’s Transformation). These genes include Utp11l,

Ubl4, and Atg13 (Fig. 3e). Interestingly, we identified a

rare subset of CpG rich gene promoters that are hyper-

methylated but still highly expressed. For instance, the X

chromosomal linked gene Slc25a5, a member of the

mitochondrial carrier subfamily of solute carrier protein

genes, shows high and robust expression despite a fully

methylated promoter. There is no clear evidence for any

alternative promoters or neighboring genes that could

explain the high expression (Fig. 3f ). However, we still

observed the CpG hypermethylation around the TSS

and the high expression of this gene (Fig. 3g). Collect-

ively, these data paint a complex picture for the role of

promoter methylation in gene regulation.

Correlation of gene body methylation with gene

expression

Unlike promoter methylation, gene bodies show a wide

spectrum of methylation in individual cells (Fig. 4a,

Additional file 1: Figure S10). However, the role of gene

body methylation is not well studied. As a whole, gene

body methylation tends to positively correlate with gene

expression (Pearson = 0.06, Fig. 4a). By further subclassi-

fying gene bodies by their promoter (either CGI or non-

CGI promoters), we found that gene body methylation is

positively correlated with CGI promoter genes (r = 0.13),

but not with non-CGI promoter genes (Fig. 4b). Further-

more, we examined the correlation of methylation with

transcription for 606 genes with differential gene body

methylation level between single cells. Transcription of

29 genes (4.8 %) were found to be positively correlated

with changes in gene body methylation, 65.5 % of which

were CGI promoter genes such as B4galnt4, C1qtnf4,

Ccdc9, Clasrp, Jag2, Mxra7, Tcf3, and Trib2 (Fig. 4c, d).

Together, these results indicate that gene body methyla-

tion would be a better indicator of gene transcription

levels compared to promoter methylation for CGI pro-

moter genes. By contrast, proximal promoter would be a

better indicator of gene transcription for non-CGI pro-

moter genes.

Profile of allelic-specific transcription and methylation

Theoretically, there are only three possible levels for the

methylation of a CpG site in a diploid single cell, which

are 1 (both alleles methylated), 0 (both alleles unmethy-

lated), and 0.5 (only one of the two alleles methylated).

Our sequencing results showed that 95–98 % of the

CpG sites detected are within these three possibilities

(Fig. 5a), indicating the vast majority of assayed CG sites

are accurately digitized. This distribution is similar to

previous single-cell methylation analysis results [12, 13].

However, it is unclear whether the bimodal CpG methy-

lation distribution accurately represents one or two al-

leles. In a subset of data presented in this paper, we have

used a hybrid F2 generation mouse for a number of ex-

periments (F2 generation by backcrossing a F1 female

C57BL/6 J × DBA/2 J with male C57BL/6 J). Although

the DBA/2 J SNP number in F2 is underrepresented

compared to the F1, we still were able to leverage SNP

information for downstream study. Leveraging our

single-base resolution of bisulfite sequencing, we de-

tected differential SNPs between the two strains to

estimate the level of allelic representation. In total, we

found approximately 2000 RRBS fragments contained

informative SNPs (fragments that are expected to con-

tain SNPs from both C57BL/6 J and DBA/2 J strains).

However, our analysis indicated that only a small frac-

tion exhibited representation from both mouse strains.

Thus the vast majority of assayed CpGs represent only
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one of two possible alleles (Fig. 5b). Interestingly, bi-

allelic RRBS fragments tend to have greater non-bimodal

states, indicating true differences in allelic methylation

(Fig. 5c). Nonetheless, bi-allelic fragments still showed a

majority in a hypomethylated state, consistent with the

overall target regions captured by RRBS.

We next examined the correlation of allelic methylation

with allelic expression patterns. Because our F2 hybrid

mouse contains regions where C57BL/6 J can be bi-allelic,

we only examined the influence of maternally derived

DBA/2 J SNPs on DBA/2 J transcripts. Only highly

expressed genes were considered for analysis to ensure

Fig. 3 Simultaneous profiling of promoter methylation and gene expression from a single neuron. a Representative scatter plot for CGI promoter

methylation level and transcription level of genes at whole genome wide within a representative single cell. Promoter methylation level was

calculated by the ratio of methylated CpG sites over all CpG sites within the promoter region. Expression level was transformed to expression

percentile. b Representative scatter plot for non-CGI promoter methylation level and transcription level of individual genes within a representative

single cell. c Dot plot of Pearson correlation coefficients between transcription level (as expression percentile) and promoter methylation.

d Representative example of genes with hypomethylation promoter and dynamic expression. Each point represents a single cell. e Representative

example of genes that differential promoter methylation is negatively correlated with gene expression. Each point represents a single cell. f Representative

example of genes with hypermethylation promoter and high expression. Each point represents a single cell. g Genome browser tracks for Slc25a5

showing promoter hypermethylation and high gene expression in three representative male single cells. Red bars indicate the methylation CpG sites

and blue bars indicate the unmethylated CpG sites. RNA transcription level is shown in green. The CpG island reference and MspI cut sites are in

dark green and purple, respectively. *p <0.0001
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sufficient SNP coverage. In this proof-of-principle analysis,

we detected between 5 and 30 genes per cell that are cov-

ered by DBA/2 J SNPs in both scRRBS and scRNA-seq

fractions, depending on coverage of the respective librar-

ies. Nonetheless, using this method we were able to find

correlations between DBA/2 J specific gene body methyla-

tion and its effect on gene expression (Fig. 5d). This

method provides a potential way to discover the correl-

ation of allelic-specific methylation and gene transcription

by using the SNP information at single-cell level.

Discussion

In this study, we established a method to simultaneously

profile both the transcriptome and DNA methylome

from the same DRG neuron. We investigated the correl-

ation of mRNA transcription with DNA methylation in

either promoter or gene body at a single-allele level

within single cells. We conclude that gene activity can

be more reliably predicted using either gene promoter

or gene body methylation based on the CpG content of

the promoter. Specifically, promoter methylation is in-

versely correlated with non-CGI promoter genes and

gene body methylation is positively correlated with genes

containing CGI promoters.

Previously, based on transcriptome and methylome

analysis of bulk rat DRG cells, Hartung et al. [20] found

that high CpG density promoter are consistently hypo-

methylated while the corresponding gene body are dif-

ferentially methylated between high and low expressed

genes. In a separate study using the DRG injury model

in rats, thousands of CpG sites were reported to be

differentially methylated, but a minimal number were

associated with changes in gene expression [21]. The

discrepancy between these two published studies may be

due to the differences in sample preparation of bulk tis-

sues. The DRG represents heterogeneous population of

neuronal and glial cells, in which sensory neurons are

further divided in many subtypes based on marker gene

expression (e.g. TrkA, TrkB, and TrkC expression).

More recently, the DRG neuronal cells are further subdi-

vided into 11 subtypes based on single-cell RNA tran-

scriptome analysis [11]. Thus, the previous bulk studies

are susceptible to variance due to differences in subtype

representation during sample collection. In addition, any

meaningful differences between subtypes may be masked

in bulk preparations.

We observed positive correlation of gene body methy-

lation with gene expression for those genes with CGI

Fig. 4 Correlation of gene body methylation with gene expression in a single neuron. a Scatter plot of gene body methylation and transcription

level for genes within single neuron cells. b Dot plot of Pearson correlation coefficients between transcription level (as expression percentile) and

gene body methylation. The genes with CpG sites detected in the region more than 0.5 Kb were clustered into two groups, CGI promoter genes

and non-CGI promoter genes. c, d Representative scatter plot examples of the CGI promoter genes which are expressed and positively correlated

with gene body methylation. *p <0.0001 (Student’s t-test)
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promoters but not non-CGI promoter at the single-cell

resolution. Recently, based on meta-analysis of genome-

wide methylation, mRNA expression, and chromatin

modifications, Jjingo et al. suggest that gene-body

methylation levels are predominantly shaped via the

accessibility of the DNA to methylating enzyme com-

plexes [22]. Our current study shows that gene expres-

sion level of CGI promoter genes is higher than non-

CGI promoter genes in single DRG neurons (Additional

file 1: Figure S11, t test, p <10−4), consistent with this hy-

pothesis. In addition, Karlic reported that different histone

modifications can be used to predict the gene expression

driven by high CpG content promoters (HCP) or low

CpG promoters (LCP). They found that H4K20me1 are

enriched in HCP gene body but not in LCP gene body

[23]. These findings implicate that histone modification

may influence the accessibility of the DNA to DNA meth-

yltransferase complexes, leading to different correlation of

gene body methylation with gene expression for CGI

versus non-CGI promoter genes.

The number of genes detected by scMT-seq (around

10,000) is comparable with the coverage achieved by

traditional Smart2-seq using single-cell soma. Although

we found that a small set of genes that are more

enriched in soma, these genes only account for 0.03 % of

all the genes detected. These results are consistent with

another study comparing cytosolic, nuclear, and soma

RNA fractions [24]. Although they identified 192 genes

that are unique to the neuronal nucleus, none of these

genes overlapped with genes specifically expressed in

soma compared to cytosol in our dataset. This could be

explained by nuclear RNA representing only a tiny frac-

tion of entire cell body RNA [25].

While this study is in revision, Angermueller published

a method named “scM&T” to analyze transcriptome

DNA methylome for single cells [26]. Compared to their

method of methylome analysis via whole genome bisul-

fite sequencing [26], our method via scRRBS is a well-

established protocol for being cost-effective and reliable

in covering CGIs and other CpG regions blanked by the

MspI (CCGG) restriction site. Indeed, even with low

sequencing depth, our results showed similar level of

overlap of CGI with scM&T [12, 26]. More recently,

Hou et al. reported a similar method named scTrio-seq

based on scRRBS to detect transcriptome and methy-

lome for single cells through physical separation of RNA

and nucleus [27]. While the conclusions between their

study and ours are largely similar, we find that scTrio-seq

has a much lower transcriptome coverage (6200 vs. 9900),

likely due to major different experimental approaches

to isolate cytosol RNA. Nonetheless, both methods

provide a simple and cost-effective way to isolate

DNA and RNA for integrated methylome and tran-

scription analysis.

Fig. 5 Profile of allelic-specific transcription and methylation. a Histogram of methylation levels for all CpG sites within a representative single cell.

b Bar graph showing the proportion of mono-allellic or bi-allelic SNPs as measured by scRRBS. Each site with known strain-specific SNPs that overlapped

with RRBS fragments were interrogated for their presence of C57BL/6 J and DBA/2 J SNPs. Sites that covered both SNPs were considered bi-allelic

otherwise are considered mono-allelic. Each bar represents the distribution for a single cell. c Bar graph showing the distribution of methylation level

within bi-allelic fragments. Each bar represents the distribution for a single cell. d Scatter plot of DBA/2 J-strain-specific Copa methylation

and expression across single cells. Each point represents a single cell and the position on the graph shows the DBA/2 J specific methylation and

expression levels for Copa
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Our current scMT-seq method has several limitations

that should be overcome with future technology. For ex-

ample, scRRBS only covers approximately 1 % of CpG

sites across the whole genome, while single-cell whole

genome bisulfite sequencing could cover up to 48.4 % of

CpG sites of the whole genome [12], enabling more

comprehensive analysis of DNA methylation and RNA

transcription. Another limitation of our method is a high

rate of allele drop-out, making it less suitable for analysis

of those genes that are differentially expressed between

alleles due to differential methylation. Improvements in

the following aspects could improve the coverage of

methylation detect of both alleles: optimize the bisulfite

treatment condition to reduce the degradation of DNA

as well as the purification methods to reduce the sto-

chastic loss of DNA, and improve the adapter ligation

efficiency to capture more DNA fragments.

Conclusion
Integrating DNA methylome and transcriptome analysis

would provide a direct correlation between DNA methy-

lation and gene transcription. By developing the current

scMT-seq method, we achieved simultaneous profiling

of transcriptome and DNA methylome from a single

neuron. Our integrated analysis shows that methylation

of non-CGI promoters is better anti-correlated with

gene transcription while gene body methylation of CGI

promoter genes is better correlated with gene transcrip-

tion. Our results lay a solid foundation to study epigen-

etic mechanism underlying neuronal gene expression at

a single-cell level.

Methods

Animals and isolation of DRG neurons

Animals were kept in cages under 12-h light–dark con-

ditions. In this study, we used several strains of adult

mice for technology development including 129/B6 out-

breed or F1 hybrid (C57BL/6 J × DBA/2 J [B6/D2]) or F2

hybrid mice (F1 female B6/D2 mice backcrossed with

C57BL/6 J [B6] males). Adult lumbar DRGs (L4, L5)

were dissected and dissociated with trypsin according to

a published protocol [28]. After being dissociated into

single cells, samples were incubated in DMEM medium

containing 10 % FBS.

Isolation of nucleus and cytoplasma from a single DRG

neuron

Single cells were picked by using micro-capillary pipette

under microscope. Single cells were incubated in a drop

of cell membrane-selective lysis buffer (2 % Triton,

20 mM NaCl, and 20 mM Tris, 2 U/uL RNase inhibitor,

1:40,000 ERCC) [29], which was on the wall of a PCR

tube. After incubation for 5 min, the cell membrane was

lysed thoroughly and the cell nucleus was exposed. The

nucleus was picked by a micro capillary pipette in 0.2 μL

buffer and transferred into another PCR tube containing

4 uL RRBS lysis buffer. A total of 1 μl oligo-dT primer

(10 μM) and 1 μ dNTP (10 mM) were added into the

tube including cytosol RNA. After briefly centrifuging,

the tubes containing nucleus and cytosol, respect-

ively, were put on dry ice immediately, and trans-

ferred to −80 °C until the next step.

We used 50 DRG single cells to isolate DNA and

RNA. Forty-four of the 50 (88 %) RNA-seq libraries

passed quality check after sequencing. However, for the

DNA fraction, only 15 of 22 (or 68 %) libraries con-

structed passed quality filter after sequencing. Major

sources of failure among scRRBS appear to be no ampli-

fication (did not show bands after PCR) or lower library

complexity.

Merge-and-split experiments

To test the technical variance of micropipette, cytosols

of two individual cells were merged together and split

into two equal parts by micropippette. Briefly, two single

cells were transferred to 4 μL lysis buffer and incubated

for 5 min. After picking out the two nuclei, the rest of

the solution was mixed and split into two tubes by

micropipette. Libraries were made by the following

protocol and sequenced on the Illumina Mi-seq machine

following manufacturer’s specifications.

Single-cell RNA-seq library construction

Single-cell complementary DNA was amplified from the

tubes containing cytosol according to the Smart2-seq

protocol. Instead of using Superscript II, we used Super-

script III for reverse transcription. After amplification

and purification, 0.1 ng cDNA was used for Nextera

Tagmentation and library construction. Library quality

was assessed using Agilent Bioanalyzer 2100.

Single-nucleus (cell) RRBS library construction

Single-nucleus (cell) RRBS libraries were constructed ac-

cording to a previously published method with some

modification [19]. Briefly, a single nucleus isolated from

a single DRG cell was put into lysis buffer, and double-

strand DNA was released and digested by MspI along

with spike-in lambda DNA. After end-repairing and dA

tailing, DNA fragments were ligated with adaptors, then

subjected to bisulfite conversion. Following that, con-

verted DNA was purified and enriched by two rounds of

PCR amplification. To reduce the PCR products from

adapters, we optimized the PCR cycle number to 20 cy-

cles and 12 cycles for the first and second rounds, re-

spectively. Libraries between 180 bp and 500 bp were

selected by page gel and purified for deep sequencing in

Illumina Hiseq 2500 machines.
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RNA-seq analysis

Raw reads from library sequencing were mapped to the

mouse (mm10) genome using default parameters in STAR

aligner [30]. Reads that failed to map to the genome were

re-mapped to their respective mRNA sequences to cap-

ture reads that span exons. Only reads that were uniquely

aligned were retained. Data normalization was performed

by transforming uniquely mapped transcript reads to

RPKM using a previous established pipeline [15]. Genes

with low expression (average RPKM <0.1) were filtered

out, followed by quantile normalization. Samples were ex-

cluded based on a variety of quality assessments. Libraries

with poor alignment (<20 %) and poor gene coverage

(<3000 genes with RPKM >1) were excluded. Clustering

analysis and PCA analysis were performed by using built-

in functions in Matlab.

Differential expressed analysis between cytosol and

soma was implemented in DESeq [31]. Genes that are

not expressed in any samples were not taken into con-

sideration. For each gene, DESeq reports its mean read

count in cytosol, soma, and the adjusted p value testing

for differential expression. These mean counts were plot-

ted and those genes under threshold of p <0.01 were

significantly differentially expressed between cytosol and

soma and marked as three red dots in Fig. 1c.

Methylation analysis

Raw reads for the scRRBS libraries were mapped to the

mouse (mm10) genome using the default parameters in

BS-seeker2 for RRBS mapping. Methylation calling was

performed as previously described [32]. CpG sites that

were covered by more than 1 or 5 reads were counted,

respectively. To evaluate whether the variance we ob-

served at individual CpG sites is greater than what

would be expected from the entire population of CpGs

across all samples (null distribution), we used a test of

variance, also known as the F-test, and performed

multiple-testing using the Benjamini–Hochberg method.

For promoter methylation calculation, CpG sites that are

located 500 bp upstream of the transcription start site

(TSS) were counted; methylation level for promoter

(with more than 5 CpG sites detected) and gene body

region (with CpG sites more than 0.5 kb detected) were

calculated by using bedtools package.

Gene transcription and methylation level correlation

analysis

Transcription level (RPKM) was transformed into per-

centile rank. Correlation of transcription and methyla-

tion was calculated by Pearson correlation in R. The

average methylation level for promoter and gene body

detected was calculated and its correlation with corre-

sponding transcription was examined for those genes de-

tected in more than five cells.

SNP analysis

RNA-seq data of single cells derived from F2 hybrid

mice (offspring of F1 female [DBA/2 J × C57BL/6 J]

backcrossed with male B6) was subjected to SNP ana-

lysis. DBA/2 J annotated SNPs were downloaded from

the Wellcome Trust Sanger Institute (dbSNP142). SNP

calling followed the GATK Best Practices guideline

(version 3.5). Briefly, raw reads were mapped to the

mm10 genome using STAR aligner using default param-

eters followed by base quality scores recalibration. SNP

calling was performed jointly for all 15 cytosol samples

using the HaplotypeCaller function with default parame-

ters. Only annotated SNP hits with QD score greater

than 20 and FS score less than 60 were accepted for

downstream analysis. DBA/2 J allelic expression was

estimated by taking the average allelic balance across all

SNPs within a gene then multiplied by the genes overall

RPKM.

SNP calling in RRBS libraries were done by traversing

pileups of RRBS fragments with the DBA/2 J SNP refer-

ence. C-T SNPs were ignored and only SNPs with cover-

age of 5 reads were accepted.

Availability of data and material

All the related data can be downloaded from GEO with

the accession number GSE76483.

Ethics

All the procedures are performed according to institu-

tional guidelines and approved by animal research com-

mittee of UCLA (protocol 2001-045-41).

Additional file

Additional file 1: Contains Supplementary Figures 1–11 and

Supplementary Table 1. (PDF 1536 kb)
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