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Impedance cardiography (ICG) is a noninvasive method for monitoring mechanical function of the heart with the use of electrical
bioimpedance measurements. This paper presents the feasibility of recording an ICG signal simultaneously with electrocardiogram
signal (ECG) using the same electrodes for both measurements, for a total of five electrodes rather than eight electrodes. The device
used is the Z-RPI. The results present good performance and show waveforms presenting high similarity with the different signals
reported using different electrodes for acquisition; the heart rate values were calculated and they present accurate evaluation
between the ECG and ICG heart rates. The hemodynamics and cardiac parameter results present similitude with the
physiological parameters for healthy people reported in the literature. The possibility of reducing number of electrodes used for
ICG measurement is an encouraging step to enabling wearable and personal health monitoring solutions.

1. Introduction

An estimated 17.5 million deaths per year are attributed to
cardiac diseases. According to WHO [1], people with cardio-
vascular diseases (CVDs) require an early and pertinent
diagnosis to receive the best treatment [2].

Electrical bioimpedance (EBI) is a sensing technology
that has been used for several decades for various applica-
tions [3], utilizing different measurement techniques, e.g.,
segmental and/or total body [4], spectroscopy [5, 6], tomog-
raphy [7], and impedance plethysmography [8] with its most
common application which is impedance cardiography
(ICG). Using a single channel with single frequency continu-
ously, the ICG was introduced as a noninvasive method and
its waveform has been used for the assessment of certain
hemodynamic parameters describing the mechanical func-
tion of the heart like the cardiac output (CO), stroke volume
(SV), and systolic time intervals, e.g., left ventricular ejection

time (LVET noted also ET), preejection period (PEP), and
systolic time ratio (STR) [9–11].

An ICG recording is obtained using a specific electrode
configuration, the electrodes are placed on the surface of the
upper torso, and the EBI is measured across the thorax with
the 4-electrode measurement technique from the neck to
the abdomen [12]. The measured variation of the impedance
(Z) is mainly due to the cardiac activity; it is noted ∆Z; the
dZ/dt waveform is obtained from the first derivative of the
∆Z signal, and it is characterized by seven typical characteris-
tic points which are related to cardiodynamics [10, 13].

Electrocardiography (ECG) is a relatively inexpensive
technique that allows simple and noninvasive monitoring
of the electrical activity of the heart. The action potentials
generated during the activity of the heart can be collected
by electrodes placed on the surface of the skin. The location
of these electrodes is chosen to explore the lead II of the heart
electric field.
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Cardiogenic bioelectrical activity is commonly called
ECG lead or derivation. Each ECG derivation is defined by
a specific label and a precise electrode placement according
to [14]; there are different derivations used to measure the
ECG signal; each of them has a number and precise electrode
locations, such as standard bipolar peripheral derivations,
unipolar peripheral derivations, and precipitation unipolar
derivations [15].

ECG-based heart rate calculation involves the step of
detecting the Rwave of the QRS complex. The most common
method for detecting the R wave is the Pan-Tompkins
algorithm [16–18].

Development of personalized health (p-health) solutions
and advances in smart textiles and textile manufacturing has
allowed new developments of wearable measurement
systems targeting fitness and even home-care but often they
have been limited to biopotential recordings [19, 20]. Recent
advances in microelectronics have produced system-on-chip
(SoC) solutions for biopotential and bioimpedance mea-
surements, and most of them have been successfully tested
in several EBI applications [21–25]. Thus, we can confirm
that their availability and accessibility have indeed fostered
research and development activities targeting p-health
monitoring applications based on different embedded

electronic wearable measurement systems and patch tech-
nology [23, 26–28].

Thus, for performing ICG and ECGmeasurements, using
two different electrodes’ placement to make a simultaneous
record is generally the method that is used.

ICG waveforms together with ECG waveforms as pre-
sented in Figure 1 are often used to calculate and assess the
specific hemodynamic parameters mentioned above [9, 10].

In this paper, we present a measurement system for the
acquisition of ICG and one-lead ECG signal simultaneously
using the same electrodes for both measurements. The Pan-
Thompkins algorithm is used for ECG analysis, and the
ensemble average method is applied to assess hemodynamic
parameters of the ICG signal.

2. Methods

2.1. Z-RPI Device. The developed ICG recording device used
in this work showed in Figure 2 named Z-RPI is a custom-
made device that can simultaneously record ECG and ICG.
It combines two system-on-chip (SoC) solutions, which are
ADAS1000 and AD5933 from Analog Devices combined
with additional electronics to have a complete EBI and
ECG measurement modules, with the Raspberry PI3 card.
It also includes an impedance calibration system, Bluetooth
wireless communication, a power management circuit, and
a 2500 mAh LiPo battery as power supply with 5 hours of
autonomy [24], in its original operation mode, for recording
ICG and ECG.

2.2. Experimental Measurement Setup. The regular configu-
ration of the Z-RPI device uses 8 electrodes: 4 electrodes for
measuring ICG, in which the electrodes are placed according
to the Sramek configuration (two electrodes on the right
lateral part of the neck and two on the left side of the thorax)
[12]; 3 electrodes for ECG; and 1 electrode for the RLD
circuitry, placed in the peripheral extremities (hand and
leg) for the ECG [24].

In this work, the configuration of the Z-RPI device has
been modified, especially for the ADAS1000 part, which
has been moved from a 3-lead ECG recording configuration
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Figure 1: Pattern of the ICG and ECG signals simultaneously.

Figure 2: Z-RPI prototype.
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to a single-lead recording. As we do not have a golden stan-
dard for the placement of the ICG electrodes, we chose to
place two electrodes on the right lateral part of the upper
torso and two electrodes on the left side of the thorax, on
the upper abdomen part, and the RLD electrode is placed at
the right side of the waist.

As we use a tetrapolar configuration for performing ICG
measurement, the placement configuration of the electrodes
has been chosen to have the inner ICG electrode (V+ and
V−) in the same position as the RA and LL spot for the
ECG measurement. In this way, the ECG shielded cables
were connected to them (V+ with RA and V− with LL) for
performing simultaneously the ICG measurement and ECG
lead II measurement.

Figure 3 shows the five spots for the placement of the 3M
repositionable Ag/AgCl gel electrodes used for performing
the ICG recording [12] and one-lead ECG; the shared
voltage-sensing electrodes are marked with V in black and
blue, and the current injecting electrodes are the outer ones,
indicated with I in red and yellow.

The experimental evaluation was performed at the Labo-
ratory of Instrumentation at the University of Science and
Technology Houari Boumediene, Algeria, on seven healthy
volunteers (see Table 1). The recordings in the experiment
were obtained according to the procedure previously used
in [24] and approved by the ethical approval nr 11-274
granted by the regional Ethical Vetting Board in Gothenburg
including the use of an informed consent form.

The ICG measurement is obtained using an injecting
sinusoidal current of 70 kHz and 133μA [24], and 280Hz
sampling frequency acquisition was used for both ICG and
ECG recording. The measurement sessions lasted for at least
60 seconds while the subjects remained in sitting position
keeping a shallow breathing paced at 10 breaths per minute.

2.3. Measurement Data Analysis. The recorded thoracic mea-
surements were processed and analyzed on the PC using a

customized program running MATLAB 2015 scripts [24];
high-frequency information is removed applying a low-pass
filter with frequency cut at 13Hz. Since the acquired imped-
ance ΔZ includes both cardiac and respiration components,
knowing that the respiration is present in the band of 0.05–
0.3Hz, approximately, a bandpass filter was designed in a
20th-order FIR filter with fc = 0.7–7Hz, Therefore, the respi-
ration components attenuated a minimum of −6 dB, and the
different characterizing parameters and time interval values
of the ICG and ECG signal were extracted. More details are
present elsewhere in [24].

2.4. Hemodynamic Parameter Calculation. The Pan-
Tompkins algorithm [17] was used for detecting the R peak
in the ECG recording. Once the R peak is detected, the Q

point is extracted from the QRS complex of the ECG signal.
The Q point is the minimum before the R peak; it was calcu-
lated by subtracting a fixed value of 40ms from the time of
the R wave [29]. Using the R and Q waves, the heart rate
(HR) and the PEP are calculated, respectively.

The ΔZ and dZ/dt signals obtained from the ICG
recording were analyzed to obtain the different ICG
parameters, using the ensemble average method [30, 31];
the dZ/dtmax (E point) is the peak of the first derivative
of the transthoracic impedance variation in Ω/s [32]; this
later is triggered by the R peaks of the ECG signals. The
heart rate of the ICG signal was calculated from the E

peaks acquired. The LVET interval is calculated as the
distance between B and X point of the ICG signal. Then,
SV and CO are calculated according to (1) and (2), respec-
tively, as presented in [24].

SV =VC

dZ t /dtmax

Z0

ET, 1

CO = SV ×HR 2

3. Results

More than 2700 seconds of recordings were obtained, con-
taining more than 3000 ICG and ECG complexes, similar
to the ones plotted in Figure 4. Figure 4(a) shows the ΔZ,
Figure 4(b) shows the dZ/dt, and Figure 4(c) shows the ECG.

Figure 5 presents the averaged complexes ICG thin trace
in (Ω/s) and ECG coarse trace in (V) obtained from 60 s of
recordings of the healthy volunteer HV1.

Table 2 presents the descriptive statistics (mean± SD)
for the characterizing parameters and time interval values,
calculated from the ICG/ECG recordings obtained for
each volunteer.

Figure 6 presents two averaged ICG complexes pro-
duced with the recordings obtained with the 2 different
electrode configurations. The recordings obtained with the
5-electrode configuration, continuous trace, show a remark-
able minimum between the A and E waves of the ICG com-
plex, minimum significantly more pronounced than the
minimum obtained with the 8-electrode configuration.

I +
V + RA

V-
I-

LL

RLD

Figure 3: Placement of electrodes for ECG/ICG measurement.

Table 1: Mean and the SD of anthropomorphic data of volunteers.

Gender N Height (cm) Weight (kg) Age (years)

Male 7 180± 7 81± 9 31± 13
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4. Discussion

The purpose of this paper was to evaluate the feasibility of
obtaining simultaneously both the ICG and 1-lead ECG,
lead II, recordings using the same electrodes for voltage
sensing plus one electrode for right leg driven.

The performed measurements sharing the sensing elec-
trodes allowed us to obtain a clean raw ECG, ΔZ, and d

Z/dt recordings. However, as showed in Figure 6, the
ICG complex obtained with 5 electrodes produces a much
denoted minimum than in the recordings obtained with 8

electrodes. Such denoted minimum between the A and E

waves appears in all volunteers and can be observed also
in the recording showed in Figure 4. This change in the
waveform most likely occurs due to the fact that the place-
ment of the electrodes is slightly different between the 5-
electrode and 8-electrode configuration [33], where the
upper electrode from the neck is placed in the upper sec-
tion of the torso as shown in Figure 3.

Previously, researchers have raised concerns about
problems in experiments, to obtain a straightforward
and reliable detection of ICG characteristic points and
hemodynamic parameter calculation, especially in auto-
mated processing [9, 34–36]. Thus, such denoted mini-
mum is very useful because it allows developing an
algorithm for synchronization of ICG complex for the
averaging method [30, 31].

Nevertheless, the waveforms obtained using the 5 elec-
trodes as expected exhibit a denoted similarity to other stan-
dard ECG and ICG measurements reported elsewhere in the
literature [10, 27, 37].

With the exception of the value for HR obtained from
ECG, the rest of the hemodynamic and cardiac parame-
ters, SV, CO, and time intervals as the ET and the PEP
are obtained from the ICG measurement. The obtained
values show certain variability, but such variability can
be found between different commercial ICG recorders as
reported in [10, 38].

Moreover, given that different electrode configura-
tions as presented in the literature [12, 39–42] yield
different results showing also certain dependency to the
method use in the analysis [10, 38], we cannot reject
the hypothesis that part of the observed variability actu-
ally comes from the placement of electrodes. However,
the values obtained for the HR and ICG parameters
are equivalent and present similar values to hemody-
namic parameters obtained from healthy people and
reported in the literature [10, 24, 43].
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Thus, this work reinforces the pavement towards
wearable applications for engineering, educational, and/or
research purposes, in a way that was originally paved by the
work done within the HeartCycle project with the wearable
impedance cardiographer named IMPACT T-shirt [23]
where 8 electrodes where used.

In this paper, one expected confers with such measure-
ment configuration (where the voltage electrodes acquired
both the cardiogenic biopotential and the voltage caused
by the current injection) would be a certain kind of cross
talking of some kind that would create interferences
between the different sensing modalities. The close inspec-
tion of the recording shows recordings completely free
from artifacts caused by interferences between the ICG
and the ECG. Consequently, we can assert that the ICG/
ECG recordings have been obtained satisfactorily sharing
the biopotential electrodes.

Overall, after the evaluation of the obtained recordings,
the descriptive statistics of the hemodynamic parameters
show a remarkable performance, where the standard devia-
tion is considerably low. In addition, the concordance of
the heart rate values between ICG and ECG measurements
is obtained.

5. Conclusion

The evaluation results show that the affordable Z-RPI device
functions effectively and accurately when performing ECG
and ICG simultaneously using only 5 electrodes.

Such successful implementation of the Z-RPI with a
reduced number of electrodes facilitates the use of sensorized
garments with integrated textile electrodes [27, 43] for wear-
able and p-health monitoring applications of transthoracic
bioimpedance.

Thus, this will also enhance the accuracy of the detection
of characteristic points and the calculation of hemodynamic
parameters.

With the configuration of electrodes that we presented
with the Z-RPI device, we had shown the feasibility of devel-
oping an affordable full impedance cardiographer and one-
lead electrocardiography device with minimum electrode
number. The configuration of electrodes that we are offering
in this paper will allow us to go for a comfortable T-shirt that
does not have any electrodes or turtleneck around the neck,
since the electrodes are placed slightly down to the neck.
Thus, we aim to optimize the flexibility and maneuverability
and to have greater freedom of action when using a textile
garment with a complete affordable device, for the perspec-
tive of developing in the future wearable device for p-health
or sport effort application.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Table 2: Cardiac and hemodynamic parameters calculated from the acquired ECG and ICG (mean± SD).

Parameters HV1 HV2 HV3 HV4 HV5 HV6 HV7

Z0 (Ω) 37.61± 6.2 36.84± 6.5 37.12± 4.7 48.39± 6.9 45.94± 4.7 27.17± 8.7 69.38± 1.7

dZ/dtmax (Ω/s) 1.03± 0.07 1.10± 0.14 1.37± 0.16 1.36± 0.1 1.55± 0.11 1.22± 0.06 1.42± 0.2

ET (ms) 211± 13 286± 5 319± 13 183± 1 165± 11 210± 4 184± 7

SV (ml) 54± 3 52± 3 83± 7 43± 2 42± 1 68± 14 46± 4

CO (l/min) 4.45± 0.26 5.04± 0.16 4.29± 0.4 3.08± 0.15 3.02± 0.1 4.67± 0.65 2.52± 0.06

PEP (ms) 87± 19 55± 8 90± 6 92± 33 81± 22 81± 17 90± 4

HRECG (bpm) 82± 1 97± 2 51± 1 71± 2 71± 1 68± 7 54± 4

HRZ (bpm) 82± 1 97± 2 50± 1 70± 2 69± 1 67± 5 54± 5
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