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SIMULTANEOUS RECOVERY OF PIECEWISE ANALYTIC

COEFFICIENTS IN A SEMILINEAR ELLIPTIC EQUATION

BASTIAN HARRACH AND YI-HSUAN LIN

Abstract. In this short note, we investigate simultaneous recovery inverse
problems for semilinear elliptic equations with partial data. The main tech-
nique is based on higher order linearization and monotonicity approaches.
With these methods at hand, we can determine the diffusion and absorption
coefficients together with the shape of a cavity simultaneously by knowing the
corresponding localized Dirichlet-Neumann operator.

Keywords. Inverse boundary value problems, inverse obstacle problem, semi-
linear elliptic equations, simultaneous recovery, partial data, higher order lin-
earization, monotonicity method, localized potentials

1. Introduction

In this note, we investigate some inverse problems for semilinear elliptic equa-
tions. Inverse problems for nonlinear partial differential equations (PDEs) have
been paid a lot of attention in the past few decades. The main method to study
inverse problems for nonlinear PDEs relies on suitable linearization techniques,
and the linearization approaches can be traced back to the pioneer work by Isakov
[Isa93]. In [Isa93], he demonstrated that the first linearization of the corresponding
Dirichlet-to-Neumann (DN) map of the semilinear parabolic equation agrees to the
DN map of the associated linearized equation. Hence, related known results on in-
verse boundary value problems for linear equations can be expected to apply, such
that one is able to solve inverse problems for the nonlinear equations.

For the semilinear elliptic equation ∆u + a(x, u) = 0 in a domain, the inverse
problem of determining the coefficient a(x, u) was treated in [IS94, Sun10], for
n ≥ 3, and in [IN95, Sun10, IY13] for n = 2. In addition, for quasilinear ellip-
tic equations, related inverse boundary value problems have also been studied by
[Sun96, SU97, KN02, LW07, MU20, KKU20, CFK+21]. Meanwhile, researchers also
worked on inverse problems for the degenerate p-Laplace equation [SZ12, BHKS18],
and for the fractional semilinear Schrödinger equation [LL19, LL21, Lin22]. The in-
terior unique determination problem for quasilinear equations on Riemannian man-
ifolds was recently studied in [LLS20, Section 6] via the source-to-solution map. We
also refer the readers to [Sun05, Uhl09] for more introduction and discussions on
related inverse problems for nonlinear elliptic equations.

In order to show the results in this work, we utilize a method that has been
introduced by [KLU18] for nonlinear hyperbolic equations and developed in [FO20,
LLLS21, LLLS20, LLST21]. The method is called the higher order linearization,
which introduces particular parameters to reduce a semilinear elliptic equation into
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different linearized elliptic equations. In [FO20, LLLS21], the authors studied in-
verse boundary value problem with full boundary measurements. In addition, si-
multaneous recovery inverse problems for semilinear PDEs were also considered
in [LLLS20, LLST21, LLL21, LLLZ21], and [KU20b, LLLS20, KU20a] studied the
Calderón type problem with partial data independently. A similar approach was
utilized to study some related inverse problems for fractional semilinear elliptic
equations [LL21, Lin22]. It can be noted that uniqueness results for the coeffi-
cients of the nonlinear term are easier to obtain than the uniqueness result for the
coefficients of the linear term.

In this note, we will not use complex geometrical optics solutions as in several of
the previously cited works. Instead, after using the afore-mentioned higher order
linearization approach, we treat the resulting linearized elliptic equations by a com-
bination of the monotonicity method and localized potentials. This line of reasoning
was initiated by [Geb08] and applied to various inverse problems, such as [Har09,
HS10, Har12, AH13, HU13, BHHM17, HU17, BHKS18, GH18, HPS19b, HLL18,
SKJ+19, HL19, HPS19a]. There are also related works on practical reconstruction
methods based on monotonicity properties [TR02, HLU15, HU15, HM16, MVVT16,
TSV+16, Gar17, GS17, SUG+17, VMC+17, HM18, ZHS18, GS19, EH21, EH22].

We next introduce the mathematical model in this work. Let Ω ⊂ R
n be a

bounded connected domain with a C∞-smooth boundary ∂Ω, for n ≥ 2, and D ⋐ Ω
is an open subset with a C∞-smooth boundary ∂D such that Ω \D is connected.
Let us consider the following semilinear elliptic equation with diffusion







−∇ · (σ(x)∇u) + a(x, u) = 0 in Ω \D,

u = 0 on ∂D,

u = f on ∂Ω.

(1.1)

In particular, when D = ∅, the equation (1.1) becomes
{

−∇ · (σ(x)∇u) + a(x, u) = 0 in Ω,

u = f on ∂Ω.
(1.2)

In this work, we first prove a local well-posedness result for (1.1) under the assump-
tion that the diffusivity σ = σ(x), and the power series terms of the lower order
coefficient a = a(x, y), are piecewise real-analytic, see Assumption 2.1 for the precise
definition. Throughout this paper, we also synonymously use the term ”analytic”
instead of ”real-analytic” for the sake of brevity. Note that a local well-posedness
of (1.1) was already shown in [FO20, KU20a, LLLS21] under different regularity
assumptions. Our case differs from previous results as we allow discontinuities of
the coefficients, and we therefore give a detailed proof for the well-posedness result.

To summarize the (local) well-posedness result, let Γ ⊂ ∂Ω be a relatively open
subset, and 0 < α < 1. We prove that there exists ε > 0 and C > 0 such that for
all Dirichlet boundary data

f ∈ Nε :=
{
f ∈ Cα

0 (Γ) : ‖f‖Cα(Γ) ≤ ε
}
,

there is a unique solution u = uf ∈ V of (1.2) that also satisfies

‖u‖V ≤ Cε,

where

V :=
{
v ∈ H1(Ω) : −∇ · (σ∇v) ∈ L∞(Ω), v|∂Ω ∈ Cα

0 (Γ)
}
,(1.3)

and

‖v‖V := ‖v‖H1(Ω) + ‖∇ · (σ∇v)‖L∞(Ω) + ‖v|∂Ω‖Cα(Γ).(1.4)
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Moreover, the local well-posedness also holds for (1.1), when the domain Ω in (1.3)
and (1.4) is replaced by Ω \D.

With these results at hand, one can define the corresponding (partial) DN oper-
ator

ΛΓ
σ,a : Nε → H−1/2(Γ), ΛΓ

σ,a(f) := σ∂νuf |Γ ,

for some sufficiently small number ε > 0, where uf is the unique solution of (1.2)
and ν is the unit outer normal on ∂Ω. Likewise, one can also define the DN operator

ΛΓ
σ,a,D : Nε → H−1/2(Γ), ΛΓ

σ,a,D(f) := σ∂νuf |Γ ,

for some sufficiently small number ε > 0, where uf is the unique solution of (1.1)
and ν is the unit outer normal on ∂Ω. We then study the following simultaneous
recovery inverse problems:

(1) Can one simultaneously identify σ and a by knowing the partial measure-
ments ΛΓ

σ,a?
(2) Can one simultaneously identify σ, a and D by knowing the partial mea-

surements ΛΓ
σ,a,D?

We will give affirmative answers to both questions in this paper.
The paper is structured as follows. In Section 2, we state our main results of this

note, and the proofs are given in Section 3. The main methods depend on suitable
linearization and monotonicity methods combining with localized potentials.

2. The main results

In this section, we will formulate our two main results: The semilinear elliptic
equation (1.2) is uniquely solvable (for sufficiently small Dirichlet data), and the
associated DN operator uniquely determines the coefficients in equation (1.2).

Our results will be valid under the following assumptions on the domain and the
coefficients.

Assumption 2.1. We assume that Ω ⊂ R
n, n ≥ 2 is a bounded domain with

C∞-smooth boundary ∂Ω, and that σ ∈ L∞
+ (Ω) is a piecewise analytic function in

the sense of [KV85, Section 3]. The function a : Ω× R → R is assumed to fulfill

a(x, y) =
∞∑

k=0

ak(x)
yk

k!
,

with ak ∈ L∞(Ω), a0 = a1 = 0, and sup
k≥2

‖ak‖L∞(Ω) < ∞. Moreover each function

ak is assumed to be piecewise analytic in the sense of [KV85, Sect. 3].

Note that [KV85, Sect. 3] implies that two piecewise analytic functions are piece-
wise analytic with respect to the same partition, and this naturally extends to every
finite number of piecewise analytic functions. However, Assumption 2.1 contains
infinitely many such functions σ, ak (k ∈ N), and we do not assume that they are
piecewise analytic with respect to the same partition.

For our solvability result for the forward problem, we use the following solution
space

V :=
{
v ∈ H1(Ω) : −∇ · (σ∇v) ∈ L∞(Ω), v|∂Ω ∈ Cα(∂Ω)

}
.

equipped with the norm

‖v‖V := ‖v‖H1(Ω) + ‖∇ · (σ∇v)‖L∞(Ω) + ‖v|∂Ω‖Cα(∂Ω).

Clearly, V is a Banach space. Moreover, by a result of Li and Vogelius [LV00,
Corollary 7.3],

(2.1) V ⊆ H1(Ω) ∩ L∞(Ω) is continuously embedded.
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Theorem 2.1 (Local well-posedness of the forward problem). Let Ω ⊂ R
n, σ :

Ω → R, and a : Ω× R → R fulfill assumption 2.1. Then there exists ε > 0 so that
for all

f ∈ Nε :=
{
φ ∈ Cα(∂Ω) : ‖φ‖Cα(∂Ω) < ε

}
,(2.2)

there exists a solution u ∈ V ⊆ H1(Ω) ∩ L∞(Ω) to the Dirichlet problem
{

−∇ · (σ∇u) + a(x, u) = 0 in Ω,

u = f on ∂Ω.
(2.3)

Moreover, there exists δ > 0, so that, for all f ∈ Nε, the solution is unique in
the set of all

Hδ := {v ∈ H1(Ω) ∩ L∞(Ω) : ‖v‖H1(Ω) + ‖v‖L∞(Ω) ≤ δ},

and that the solution operator

S : Nε → V ⊆ H1(Ω) ∩ L∞(Ω), f 7→ u, where u ∈ Hδ solves (2.3)

is infinitely differentiable.

Clearly, V ⊆ L∞(Ω) implies that x 7→ a(x, u) is a L∞(Ω)-function for all u ∈ V .
Hence, a solution u ∈ V of (2.3) has well-defined Neumann boundary values.so that
we can define the (non-linear) Dirichlet-Neumann-Operator

Λσ,a : Nε → H−1/2(∂Ω), Λσ,a(f) := σ∂νu|∂Ω ,

where u is the (sufficiently small) solution of (2.3).
Let D ⋐ Ω be an open set with C∞ boundary ∂D such that Ω \D is connected.

Then the above result also implies local well-posedness of the Dirichlet problem






−∇ · (σ∇u) + a(x, u) = 0 in Ω \D,

u = 0 on ∂D,

u = f on ∂Ω,

(2.4)

We denote the corresponding DN operator by

Λσ,a,D : Nǫ → H−1/2(∂Ω), Λσ,a,D(f) := σ∂νuf |∂Ω ,

where u is the (sufficiently small) solution (2.4). For an open boundary part Γ ⊆ ∂Ω,
the restriction of Λσ,a, resp., Λσ,a,D, to Γ is denoted by ΛΓ

σ,a, resp., Λ
Γ
σ,a,D.

Note that the well-posedness of (2.4) can be found in [KU20a, Appendix] and
[LLLS21, Proposition 2.1] in a slightly different settings that required the coeffi-
cients to be sufficiently smooth. However, in this paper, we assume piecewise an-
alytic coefficients so that the coefficients may have jumps. The following theorem
extends the uniqueness results from [LLLS20, Theorem 1.2] and [KU20a, Theorem
1.6] to this setting.

Theorem 2.2 (Simultaneous recovering of coefficients and obstacle). Let Ω ⊂ R
n,

and two set of coefficients (σ, a), and (σ̃, ã) each fulfill Assumption 2.1 in connected

sets Ω \D and Ω \ D̃, respectively, where D, D̃ ⋐ Ω are open (possibly empty) sets.
Let Γ ⊆ ∂Ω be an open boundary part, and let ε > 0 be sufficiently small, so that
both, ΛΓ

σ,a,D and ΛΓ
σ̃,ã,D̃

, are defined on Nε. Suppose that

ΛΓ
σ,a,D(f) = ΛΓ

σ̃,ã,D̃
(f)

for all f ∈ Nε with supp(f) ⊆ Γ, then

σ = σ̃, a = ã and D = D̃.

To our best knowledge, the preceding theorem is a new result. The proof will be
given in the next section.
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Remark 2.2. Let us emphasize that:

(a) Note that even for the full data case, that is, when Γ = ∂Ω, Theorem 2.2 is
also a new result to our best knowledge. Furthermore, for the case Γ = ∂Ω,
we can reduce the regularity of σ, by using the first linearization and results
in [HT+13] when σ is Lipschitz continuous for n ≥ 3, and [AP06] when
σ ∈ L∞(Ω) for n = 2.

(b) Note that Theorem 2.2 also covers the case where one of the sets D or D̃
is empty. Hence, the DN operator also uniquely determines whether there
is a cavity or not.

3. Proofs of main results

To prove our two main results, we start with the following lemma, which will be
used for our results.

Lemma 3.1. The mapping

G : V → L∞(Ω), v(x) 7→ a(x, v(x))

is infinitely differentiable and its l-th Frechét derivative fulfills

G(l)(v)(w1, . . . , wl) =

∞∑

k=0

ak+l(x)
v(x)k

k!
w1 . . . wl for all v, w ∈ V.

Proof. We also define for l ∈ N0

Gl : V → L∞(Ω), v(x) 7→
∞∑

k=0

ak+l(x)
v(x)k

k!

Then G0 = G, and for all v ∈ V , l ∈ N0, Gl(v) ∈ L∞(Ω) follows from V ⊆ L∞(Ω).
We will prove that Gl is one-time Frechét differentiable and that its derivative

G′
l : V → L(V, L∞(Ω)) is given by

(3.1) G′
l(v)w =MwGl+1(v) for all v, w ∈ V,

where, for w ∈ V ⊆ L∞(Ω)

Mw : L∞(Ω) → L∞(Ω), u 7→ wu

denotes the continuous linear multiplication operator. Then the assertion follows
by trivial induction.

Clearly, (3.1) defines a continuous linear operator G′
l(v) ∈ L(V, L∞(Ω)). To

prove that this is indeed the Fréchet derivative of Gl, let v, w ∈ V , x ∈ Ω, and
define

ψx : R → R,

ψx(t) := Gl(v + t(w − v))(x) =

∞∑

k=0

ak+l(x)
(v(x) + t(w(x) − v(x))k

k!
.

Then ψ is infinitely differentiable with

ψ′
x(t) =

∞∑

k=1

ak+l(x)
(v(x) + t(w(x) − v(x))k−1

(k − 1)!
(w(x) − v(x))

ψ′′
x(t) =

∞∑

k=2

ak+l(x)
(v(x) + t(w(x) − v(x))k−2

(k − 2)!
(w(x) − v(x))2.

Using

|v(x) + t(w(x) − v(x))| ≤ |v(x)| + |w(x)| for all t ∈ [0, 1],
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and that ak are uniformly bounded, and that V ⊆ L∞(Ω) is continuously embedded
we have that

|ψ′′
x(t)| ≤ C‖w − v‖2V exp (‖v‖V + ‖w‖V ) for all x ∈ Ω.

Using Taylor’s formula

|ψx(1)− ψx(0)− ψ′
x(0)| ≤

1

2
max
τ∈[0,1]

|ψ′′(τ)|,

we thus obtain

‖Gl(v)−Gl(w) −G′
l(v)(w − v)‖L∞(Ω) ≤

C

2
‖w − v‖2V exp (‖v‖V + ‖w‖V ) ,

so that the assertion is proven. �

3.1. Local well-posedness result for the forward problem.

Proof of Theorem 2.1. We will apply the implicit function theorem to the map

F : Cα(∂Ω)× V →W := L∞(Ω)× Cα(∂Ω),

F : (f, v) 7→ (−∇·(σ∇v) + a(x, v), v|∂Ω − f) .

By Lemma 3.1 this mapping is well-defined and infinitely differentiable, and its
derivative with respect to v ∈ V is the continuous linear operator

DvF (0, 0) : V → W

with

DvF (0, 0)u = (−(σ∇u), u|∂Ω) .

Given w = (w1, w2) ∈W there exists a unique solution u ∈ H1 of

−∇·(σ∇u) = w1, and u|∂Ω = w2.

Then u ∈ V holds by definition of V , which shows that DvF (0, 0) is surjective.
Since u is the unique solution, DvF (0, 0) is also injective. Since also F (0, 0) = 0 is
fulfilled, we can apply the implicit function theorem (cf., e.g., [RR06, Sect. 10.1.1]),
which yields an infinitely differentiable function

S : Nε → V

defined on a neighborhood of the origin Cα(∂Ω),

Nε := {φ ∈ Cα(∂Ω) : ‖φ‖Cα(∂Ω) < ε},

so that

F (f, S(f)) = 0 for all f ∈ Nε,

and S(f) is the only such element in a neighborhood of the origin in V . Since
F (f, S(f)) = 0 implies that S(f) ∈ V solves (2.3), the existence of a solution in
V ⊆ H1(Ω)∩L∞(Ω) is proven. Moreover, since every solution u ∈ H1(Ω)∩L∞(Ω)
of (2.3) fulfills

u ∈ V, and ‖u‖V ≤ ‖u‖H1(Ω) + sup
k≥2

‖ak‖L∞(Ω)e
‖u‖L∞(Ω) + ‖f‖Cα(∂Ω),

the solution is unique in Hδ with sufficiently small δ. �
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3.2. The higher order linearization. To prove Theorem 2.2 we first derive some
auxilliary results on the higher-order derivatives of the solution of (2.3). In the rest
of this note, let us fix ε > 0 to be a sufficiently small number, such that the
well-posedness for (1.2) and (1.1) hold, for any f ∈ Nε.

Lemma 3.2. Let f1, f2 ∈ Nε, and define

F : (−1/2, 1/2)× (−1/2, 1/2)→ V, F (t1, t2) := S(t1f1 + t2f2).

Then

u
(ℓ)
1 := ∂tℓF (0, 0) = ∂tℓS(t1f1 + t2f2)|t1=t2=0 ∈ V

solves
{

∇ · (σ∇u
(ℓ)
1 ) = 0 in Ω

u
(ℓ)
1 = fℓ on ∂Ω,

for ℓ = 1, 2. Moreover, for all m > 1, m ∈ N,

um := ∂2t1∂
m−2
t2 F (0, 0) = ∂2t1∂

m−2
t2 S(t1f1 + t2f2)

∣
∣
t1=t2=0

∈ V

solves
{

∇ · (σ∇um) = ∂2t1∂
m−2
t2 G(F (t))

∣
∣
t1=t2=0

in Ω

um = 0 on ∂Ω.

Moreover, for all f ∈ Nε, the mapping

(t1, t2) 7→ Λ(t1f1 + t2f2), (−1/2, 1/2)× (−1/2, 1/2)→ H−1/2(∂Ω)

is infinitely differentiable, and

∂2t1∂
m−2
t2 Λ(t1f1 + t2f2)|t1=t2=0 = σ∂νum|∂Ω .

Proof. Note that F , G, and S are infinitely differentiable functions by Lemma 3.1,
and Theorem 2.1. Moreover, since the trace operator u 7→ u|∂Ω is a continuous
linear function from V to H1/2(Ω), it follows that

u
(ℓ)
1

∣
∣
∣
∂Ω

= fℓ, for ℓ = 1, 2, and um|∂Ω = 0, for m ≥ 2.

Let v ∈ H1
0 (Ω). Since u := S(t1f1 + t2f2) solves (2.3) we have that

0 =

∫

Ω

σ∇u · ∇v dx+

∫

Ω

a(x, u)v dx

=

∫

Ω

σ∇S(t1f1 + t2f2) · ∇v dx+

∫

Ω

G(S(t1f1 + t2f2))v dx.

Noting that the first summand is a linear continuous functional with respect to
S(t1f1 + t2f2) ∈ V , and the second summand is linear and continuous with respect
to G(S(t1f1 + t2f2)) ∈ L∞(Ω), we obtain by differentiation

0 =

∫

Ω

σ∇∂2t1∂
m−2
t2 S(t1f1 + t2f2)

∣
∣
t1=t2=0

· ∇v dx

+

∫

Ω

∂2t1∂
m−2
t2 G(S(t1f1 + t2f2))

∣
∣
t1=t2=0

v dx

=

∫

Ω

σ∇um · ∇v dx+

∫

Ω

∂2t1∂
m−2
t2 G(S(t1f1 + t2f2)

∣
∣
t1=t2=0

v dx.

This proves that, for all m > 1,

∇ · (σ∇um) = ∂2t1∂
m−2
t2 G(S(t1f1 + t2f2))

∣
∣
t1=t2=0

.

On the other hand, for ℓ = 1, 2, it follows from S(0) = 0, and G′(0) = 0, that

∂tℓG(S(t1f1 + t2f2))|t1=t2=0 = G′(S(0)) (∂tℓS(0)) fℓ = 0.
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Hence, u
(ℓ)
1 ∈ V solves ∇ · (σ∇u

(ℓ)
l ) = 0, for ℓ = 1, 2.

Moreover, for all f1, f2 ∈ Nε, and (t1, t2) ∈ (−1/2, 1/2)× (−1/2, 1/2), the Neu-
mann data Λσ,a(t1f1 + t2f2) ∈ H−1/2(∂Ω) fulfills

〈Λσ,a(t1f1 + t2f2), g〉 =

∫

Ω

σ∇F (t1, t2) · ∇v dx+

∫

Ω

G(F (t1, t2))v(x) dx

for all v ∈ H1(Ω). As above, the first summand is a linear continuous functional
with respect to F (t1, t2) ∈ V , and the second summand is linear and continuous
with respect to G(F (t1, t2)) ∈ L∞(Ω). Hence, (t1, t2) 7→ Λ(t1f1 + t2f2) is infinitely
differentiable with respect to t1 and t2, and, for all g ∈ H1/2(∂Ω),

〈

∂2t1∂
m−2
t2 Λσ,a(t1f1 + t2f2)

∣
∣
t1=t2=0

, g
〉

= ∂2t1∂
m−2
t2 〈Λσ,a(t1f1 + t2f2), g〉

∣
∣
t1=t2=0

=

∫

Ω

σ∇um · ∇v dx +

∫

Ω

∂2t1∂
m−2
t2 G(F (t1, t2))

∣
∣
t1=t2=0

v(x) dx

= 〈σ∂νum|∂Ω, g〉 ,

which proves that ∂2t1∂
m−2
t2 Λσ,a(t1f1 + t2f2)

∣
∣
t1=t2=0

= ∂νum|∂Ω as desired. �

Lemma 3.3. Let m ∈ N. There exist numbers a
p1,p

′
1,...,pj,p

′
j

m,j ∈ N0 (depending on

j = 1, . . . ,m, and p1, p
′
1, . . . pj, p

′
j ∈ N ∪ {0} with p1 + p′1 + . . . + pj + p′j = m) so

that

∂2t1∂
m−2
t2 G(F (t1, t2))

=G(m)(F (t1, t2)) (∂t1F (t1, t2), ∂t1F (t1, t2), ∂t2F (t1, t2), . . . , ∂t2F (t1, t2))
︸ ︷︷ ︸

m-tuples

+

m−1∑

j=2

∑

p1,p′
1
,...,pj ,p

′
j
∈N∪{0},

p1+...,+pj=2, p′1+p′2+...+p′
j
=m−2

a
p1,p

′
1,...,pj ,p

′
j

m,j G(j)(F (t1, t2))

×
(

∂p1

t1 ∂
p′
1

t2 F (t1, t2), . . . , ∂
pj

t1 ∂
p′
j

t2 F (t1, t2)
)

︸ ︷︷ ︸

j-tuples

+G′(F (t1, t2))
(
∂2t1∂

m−2
t2 F (t1, t2)

)
.

Proof. This follows by induction using the chain rule for the Fréchet derivative. �

We also need the following variant of the localized potentials result in [Geb08]:

Lemma 3.4. Let D1, D2 be two disjoint non-empty sets, where D1 ⊆ Ω is open,
D2 ⊆ Ω is closed, Ω \ D2 is connected, and Γ ∩ Ω \ D2 6= ∅.Then there exists a
sequence (φk)k∈N ⊂ Cα(∂Ω) with supp(φk) ⊆ Γ, and

∫

D2

|vk|
2 dx→ 0, and

∫

D1

|vk|
2 dx→ ∞,

where vk ∈ H1(Ω) is the solution of
{

∇ · (σ∇vk) = 0 in Ω,

vk = φk on ∂Ω,

for k ∈ N.
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Proof. Let Cα
0 (Γ) denote the closure of the space of all φ ∈ Cα(∂Ω) with φ ⊆ Γ

with respect to the Cα(Γ)-norm. For j = 1, 2, we define Aj ∈ L(Cα
0 (Γ), L

2(Dj))
by Aj : φ 7→ v|Dj

, where v ∈ V solves
{

∇ · (σ∇v) = 0 in Ω,

v = φ on ∂Ω.

Note that V is continuously embedded in L2(Dj), so that Aj are well-defined.
The assertion is proven if we can show that

6 ∃C > 0 : ‖A1φ‖L2(D1) ≤ C‖A2φ‖L2(D2),

and, by [Geb08, Lemma 2.5], this is equivalent to proving

R(A′
1) 6⊆ R(A′

2).

The operators A′
j are easily checked to map a source term ψ ∈ L2(Dj) to the

Neumann boundary values of the solution of ∇ · (σ∇w) = ψ with zero Dirichlet
data. By a standard unique continuation argument, it then follows that 0 = R(A′

1)∩
R(A′

2), which proves the assertion. �

3.3. Unique identifiability result for the inverse obstacle problem. Now we
can prove our simultaneously unique identifiability result for the inverse coefficient
problem.

Proof of Theorem 2.2. We first show the case as D = D̃ = ∅. Let Ω ⊂ R
n, and

two set of coefficients (σ, a), and (σ̃, ã) each fulfill Assumption 2.1. Let ǫ > 0 be
sufficiently small, so that both, Λσ,a and Λσ̃,ã, are defined on Nε.

Given f ∈ Nε, we define the operators F , G, S, and the functions um ∈ V
(m ∈ N) as in Lemma 3.2, Lemma 3.1, and Theorem 2.1 using the coefficient pair
(σ, a). The corresponding entities with (σ, a) replaced by (σ̃, ã) will be denoted by

F̃ , G̃, S̃, and ũm (m ∈ N).
We will show that

(a) If

(3.2) ∂tℓΛ
Γ
σ,a(t1f1 + t2f2)

∣
∣
Γ

∣
∣
∣
t1=t2=0

= ∂tℓΛ
Γ
σ̃,ã(t1f1 + t2f2)

∣
∣
Γ

∣
∣
∣
t1=t2=0

,

for all f1, f2 ∈ Nε, then σ = σ̃, and u
(ℓ)
1 = ũ

(ℓ)
1 , for ℓ = 1, 2.

(b) If, for some m ≥ 2, σ = σ̃, aj = ãj , uj = ũj for all j = 1, . . . ,m− 1, and

∂2t1∂
m−2
t2 ΛΓ

σ,a(t1f1 + t2f2)
∣
∣
Γ

∣
∣
∣
t1=t2=0

= ∂2t1∂
m−2
t2 ΛΓ

σ̃,ã(t1f1 + t2f2)
∣
∣
Γ

∣
∣
∣
t1=t2=0

,

for all f1, f2 ∈ Nε, then am = ãm, and um = ũm.

Clearly, this proves Theorem 2.2 by induction, since we assumed that a0 = 0 = ã0
and a1 = 0 = ã1.

To show (a), note that (3.2) implies that the local DN operator for the linear
elliptic equation ∇ · (σ∇v) = 0 is the same for the two coefficients σ and σ̃. This
implies σ = σ̃ by the classical Kohn-Vogelius result [KV85], and the uniqueness of

solutions yield that u
(ℓ)
1 = ũ

(ℓ)
1 in Ω, for ℓ = 1, 2.

To prove (b), note that

G′(F (0, 0))(∂2t1∂
m−2
t2 F (0, 0)) = 0 = G̃′(F̃ (0, 0))(∂2t1∂

m−2
t2 F̃ (0, 0))

since F (0, 0) = 0 = F̃ (0, 0) and G′(0) = 0 = G̃′(0). Moreover,

∂p1

t1 ∂
p2

t2 F (0, 0) = up = ũp = ∂p1

t1 ∂
p2

t2 F̃ (0, 0), for all p1 + p2 = 1, . . . ,m− 1,
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and, for all w1, . . . , wj ,

G(j)(F (0, 0))(w1, . . . , wl) =aj(x)w1 . . . wl

=ãj(x)w1 . . . wl = G̃(j)(F̃ (0))(w1, . . . , wl).

Using Lemma 3.3 we thus obtain

∂2t1∂
m−2
t2 G(F (t1, t2))

∣
∣
t1=t2=0

− ∂2t1∂
m−2
t2 G̃(F̃ (t1, t2))

∣
∣
∣
t1=t2=0

=G(m)(0) (∂t1F (t1, t2), ∂t1F (t1, t2), ∂t2F (t1, t2), . . . , ∂t2F (t1, t2))|t1=t2=0

− G̃(m)(0)
(

∂t1 F̃ (t1, t2), ∂t1F̃ (t1, t2), ∂t2 F̃ (t1, t2), . . . , ∂t2 F̃ (t1, t2)
)∣
∣
∣
t1=t2=0

=amu
m
1 − ãmũ

m
1 = (am − ãm)um1 .

Hence, um − ũm ∈ V solves

0 =−∇ · (σ∇um) + ∂2t1∂
m−2
t2 G(F (t))

∣
∣
t1=t2=0

+∇ · (σ∇ũm)− ∂2t1∂
m−2
t2 G(F̃ (t))

∣
∣
∣
t1=t2=0

=−∇ · (σ∇(um − ũm)) + (am − ãm)
(

u
(1)
1

)2 (

u
(2)
1

)m−2

.

(3.3)

For all g ∈ Cα(Γ) with supp(g) ⊂ Γ, we thus obtain

0 =
〈

∂2t1∂
m−2
t2 Λσ,a(t1f1 + t2f2)

∣
∣
Γ

∣
∣
t1=t2=0

, g
〉

−
〈

∂2t1∂
m−2
t2 Λσ̃,ã(t1f1 + t2f2)

∣
∣
Γ

∣
∣
t1=t2=0

, g
〉

=〈σ∂ν(um − ũm)|Γ, g〉 − 〈σ∂ν ũm|Γ, g〉

=

∫

Ω

σ∇(um − ũm) · ∇v1 dx+

∫

Ω

(am − ãm)
(

u
(1)
1

)2 (

u
(2)
1

)m−2

v1 dx

=

∫

Ω

(am − ãm)
(

u
(1)
1

)2 (

u
(2)
1

)m−2

v1 dx,

(3.4)

where v1 ∈ V solves
{

∇ · (σ∇v1) = 0 in Ω,

v1 = g on ∂Ω.

We will now show that this implies am = ãm. Clearly this also implies um = ũm
by using (3.3) and um|∂Ω = f = ũm|∂Ω.

Assume that this is not the case. Since am and ãm are piecewise analytic, we
can choose two disjoint non-empty sets D1, D2, where D1 ⊆ Ω is open, D2 ⊆ Ω is
closed, Ω \D2 is connected, and Γ ∩Ω \D2 6= ∅ such that either

(i) am|Ω\D2
≥ ãm|Ω\D2

and (am − ãm)|D1
∈ L∞

+ (D1), or

(ii) am|Ω\D2
≤ ãm|Ω\D2

and (ãm − am)|D1
∈ L∞

+ (D1),

cf. [HU13, Appendix A] for a proof for Γ = ∂Ω that also holds for arbitrarily small
open boundary pieces Γ ⊂ ∂Ω. Without loss of generality we will asumme that (i)
holds true in the following.

For m ∈ N, let us choose a non-negative, but not identically zero, function
ψ ∈ Nε ⊂ Cα(∂Ω) with supp(ψ) ⊆ Γ. By the strong maximum principle, the
corresponding solution w ∈ V of ∇ · (σ∇w) = 0 in Ω, with w|∂Ω = ψ, will be
positive inside Ω. Then we can use the localized potentials result in Lemma 3.4 to
obtain a sequence (φk)k∈N ⊂ Cα(∂Ω) with supp(φk) ⊆ Γ, and

∫

D2

w2
1,k dx→ 0, and

∫

D1

w2
1,k dx→ ∞,
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where w1,k ∈ V solves ∇ · (σ∇w1,k) = 0 in Ω with w1,k|∂Ω = φk.
Using the Dirichlet data

f1,k :=
ε

2‖φk‖Cα(∂Ω)
φk ∈ Nε, f2 = ψ and gk :=

(
2‖φk‖Cα(∂Ω)

ε

)2

ψ,

such that solutions of the first linearized equation satisfy u1,k|∂Ω = f1,k, u2|∂Ω = f2
and v1,k|∂Ω = gk, then we can obtain from (3.4) that

0 =

∫

Ω

(am − ãm)u21,ku
m−2
2 v1,k dx

≥

∫

D2

(am − ãm)u21,ku
m−2
2 v1,k dx+

∫

D1

(am − ãm)u21,ku
m−2
2 v1,k dx→ ∞,

as k → ∞. Here we have used the nonnegative of ψ such that u2 and v1,k are
positive for any k ∈ N. This contradiction shows that (b) holds.

On the other hand, if one of D or D̃ is a nonempty set, similar to the arguments

of the previous case, one can determine that σ = σ̃ in Ω \ (D ∪ D̃) by applying the
boundary determination to piecewise analytic functions. Let us denote that u1 and
ũ1 to be the solution of ∇ · (σ∇u1) = 0 and ∇ · (σ̃∇ũ1) = 0 in Ω, respectively. By
using the strategy introduced in [LLLS20], let G be the connected component of

Ω \ (D ∪ D̃) whose boundary contains ∂Ω. Let U := u1 − ũ1, then U is a solution
of

{

∇ · (σ∇U) = 0 in G,

U = σ∂νU = 0 on Γ,

where we have utilized ΛΓ
σ,a,D(f) = ΛΓ

σ̃,ã,D̃
(f), for any f ∈ Nε. By the unique

continuation for second order elliptic equations, one has that U ≡ 0 inG. Therefore,

u1 = ũ1 in G.(3.5)

We next proveD = D̃ via a contradiction argument. Suppose not, i.e., D 6= D̃ ⋐

Ω, and assume that D̃ 6= ∅. By using [LLLS20, Lemma A.1] or [KU20a, Section 4],
without loss of generality, we may assume that there exists a point x1 such that

x1 ∈ ∂G ∩ (Ω \D) ∩ ∂D̃.(3.6)

ũ1(x1) = 0 since x1 ∈ ∂D̃. By (3.5), we have u1(x1) = 0. Note that x1 is an interior
point of the open set Ω \ D. Consider the boundary values u1|Γ ≥ 0 such that
u1|Γ 6≡ 0. Now, since u1(x1) = 0, by the maximum principle, we have that u1 ≡ 0
in the connected open set Ω \ D, which contradicts with the nonzero boundary

condition on Γ. Therefore, the conclusion D = D̃ must hold. Furthermore, we have
by (3.5) that

(3.7) u1 = ũ1 in Ω \D,

as desired. Finally, by repeating the same arguments as in the case (1), we can
show that a = ã in

(
Ω \D

)
× R as we wish. This proves the assertion. �

From the proof of Theorem 2.1, one can see that if one of D or D̃ is an empty
set, then D = D̃ = ∅ immediately.
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