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SUMMARY. Variable selection can be challenging, particularly in situations with a large number of predic-
tors with possibly high correlations, such as gene expression data. In this article, a new method called the
OSCAR (octagonal shrinkage and clustering algorithm for regression) is proposed to simultaneously select
variables while grouping them into predictive clusters. In addition to improving prediction accuracy and
interpretation, these resulting groups can then be investigated further to discover what contributes to the
group having a similar behavior. The technique is based on penalized least squares with a geometrically in-
tuitive penalty function that shrinks some coefficients to exactly zero. Additionally, this penalty yields exact
equality of some coefficients, encouraging correlated predictors that have a similar effect on the response to
form predictive clusters represented by a single coefficient. The proposed procedure is shown to compare
favorably to the existing shrinkage and variable selection techniques in terms of both prediction error and

DOI: 10.1111/j.1541-0420.2007.00843.x

model complexity, while yielding the additional grouping information.
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1. Introduction

Variable selection for regression models with many covariates
is a challenging problem that permeates many disciplines. Se-
lecting a subset of covariates for a model is particularly dif-
ficult if there are groups of highly correlated covariates. As
a motivating example, consider a recent study of the asso-
ciation between soil composition and forest diversity in the
Appalachian Mountains of North Carolina. For this study,
there are 15 soil characteristics potentially to be used as pre-
dictors, of which there are 7 that are highly correlated. Based
on a sample of 20 forest plots, the goal is to identify the im-
portant soil characteristics.

Penalized regression has emerged as a highly successful
technique for variable selection. For example, the least ab-
solute shrinkage and selection operator (LASSO; Tibshirani,
1996) imposes a bound on the L; norm of the coefficients.
This results in both shrinkage and variable selection due to
the nature of the constraint region, which often results in sev-
eral coefficients becoming identically zero. However, a major
stumbling block for the LASSO is that if there are groups of
highly correlated variables, it tends to arbitrarily select only
one from each group. These models are difficult to interpret
because covariates that are strongly associated with the out-
come are not included in the predictive model.

Supervised clustering, or determining meaningful groups of
predictors that form predictive clusters, can be beneficial in
both prediction and interpretation. In the soil data, several of
the highly correlated predictors are related to the same un-
derlying factor, the abundance of positively charged ions, and
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hence can be combined into a group. However, just combining
them beforehand can dilute the group’s overall signal, as not
all of them may be related to the response in the same man-
ner. As another example, consider a gene expression study
in which several genes sharing a common pathway may be
combined to form a grouped predictor. For the classification
problem in which the goal is to discriminate between cate-
gories, Jornsten and Yu (2003) and Dettling and Bithlmann
(2004) perform supervised gene clustering along with subject
classification. These techniques are based on creating a new
predictor, which is just the average of the grouped predic-
tors, called a “super gene” for gene expression data by Park,
Hastie, and Tibshirani (2007). This form of clustering aids in
prediction as the process of averaging reduces the variance. It
also suggests a possible structure among the predictor vari-
ables that can be further investigated.

For a continuous response, Hastie et al. (2001) and Park
et al. (2007) first perform hierarchical clustering on the pre-
dictors, and, for each level of the hierarchy, take the cluster
averages as the new set of potential predictors for the regres-
sion. After clustering, the response is then used to select a
subset of these candidate grouped predictors via either step-
wise selection or using the LASSO.

An alternative and equivalent view of creating new pre-
dictors from the group averages is to consider each predictor
in a group as being assigned identical regression coefficients.
This article takes this alternative point of view, which allows
supervised clustering to be directly incorporated into the es-
timation procedure via a novel penalization method. The new
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method called the OSCAR (octagonal shrinkage and clus-
tering algorithm for regression) performs variable selection
for regressions with many highly correlated predictors. The
OSCAR simultaneously eliminates extraneous variables and
performs supervised clustering on the important variables.

Other penalized regression methods have been proposed
for grouped predictors (Tibshirani et al., 2005; Yuan and Lin,
2006; Zou and Yuan 2006); however, all of these methods pre-
suppose the grouping structure, e.g., the number of groups
or the corresponding sizes. The OSCAR uses a new type of
penalty region that is octagonal in shape and requires no ini-
tial information regarding the grouping structure. The nature
of the penalty region encourages both sparsity and equality
of coefficients for correlated predictors having similar rela-
tionships with the response. The exact equality of coefficients
obtained via this penalty creates grouped predictors as in
the supervised clustering techniques. These predictive clus-
ters can then be investigated further to discover what con-
tributes to the group having a similar behavior. Hence, the
procedure can also be used as an exploratory tool in a data
analysis. Often this structure can be explained by an under-
lying characteristic, as in the soil example where a group of
variables are all related to the abundance of positively charged
ions.

The remainder of the article is organized as follows. Sec-
tion 2 formulates the OSCAR as a constrained least-squares
problem and the geometric interpretation of this constraint
region is discussed. Computational issues, including choosing
the tuning parameters, are discussed in Section 3. Section 4
shows that the OSCAR compares favorably to the existing
shrinkage and variable selection techniques in terms of both
prediction error and reduced model complexity. Finally, the
OSCAR is applied to the soil data in Section 5.

2. The OSCAR

2.1 Formulation

Consider the usual linear regression model with observed data
on n observations and p predictor variables. Let y = (y1,...,
ya)T be the vector of responses and x; = (215, ...,2,)T de-
note the j” predictor, j = 1,...,p. Assume that the response
has been centered and each predictor has been standardized
so that

n

Zyi =0, zn:xij =0 and zn:xfj =1
i=1 i=1

i=1

forallj=1,...,p.

Because the response is centered, the intercept is omitted from
the model.

As with previous approaches, the OSCAR is constructed
via a constrained least-squares problem. The choice of con-
straint used here is on a weighted combination of the I,
norm and a pairwise L, norm for the coefficients. Specifi-
cally, the constrained least-squares optimization problem for
the OSCAR is given by
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P
8= arglénin y — Zﬁjxj

j=1
subject to
P
SOIBi1+ed max{|gl 1B:l} <t, (1)
j=1 Jj<k

where ¢ > 0 and ¢ > 0 are tuning constants with ¢ controlling
the relative weighting of the norms and ¢ controlling the mag-
nitude. The L; norm encourages sparseness, while the pair-
wise L., norm encourages equality of coefficients. Overall, the
OSCAR optimization formulation encourages a parsimonious
solution in terms of the number of unique nonzero coefficients.
Although the correlations between predictors do not directly
appear in the penalty term, it is shown both graphically and
later in Theorem 1 that the OSCAR implicitly encourages
grouping of highly correlated predictors.

While given mathematically by (1), the form of the con-
strained optimization problem is directly motivated more
from the geometric interpretation of the constraint region,
rather than from the penalty itself. This geometric interpreta-
tion of the constrained least-squares solutions illustrates how
this penalty simultaneously encourages sparsity and grouping.
Aside from a constant, the contours of the sum-of-squares loss
function,

~0 ~0
B=B)'XTX(B-8), (2)
are ellipses centered at the ordinary least squares (OLS) so-

lution, ,@0. Because the predictors are standardized, when
p = 2 the principal axis of the contours are at +45° to the
horizontal. As the contours are in terms of X”X, as opposed
to (XTX)™!, positive correlation would yield contours that
are at —45° whereas negative correlation gives the reverse.

In the (B3, 3:) plane, intuitively, the solution is the first
time that the contours of the sum-of-squares loss function hit
the constraint region. The left-hand side panel of Figure 1
depicts the shape of the constraint region for the LASSO and
the Elastic Net (Zou and Hastie, 2005), which uses a mixture
of L, and L, penalties. Note that the ridge regression contours
(not shown) are circles centered at the origin. As the contours
are more likely to hit at a vertex, the nondifferentiability of
the LASSO and Elastic Net at the axes encourage sparsity,
with the LASSO doing so to a larger degree due to the linear
boundary. Meanwhile, if two variables were highly correlated,
the Elastic Net would more often include both into the model,
as opposed to including only one of the two.

The right-hand side panel of Figure 1 illustrates the con-
straint region for the OSCAR  for various values of the param-
eter ¢. From this figure, the reason for the octagonal term in
the name is now clear. The shape of the constraint region in
two dimensions is exactly an octagon. With vertices on the
diagonals along with the axes, the OSCAR encourages both
sparsity and equality of coefficients to varying degrees, de-
pending on the strength of correlation, the value of ¢, and the
location of the OLS solution.

Figure 2 shows that with the same OLS solution, grouping
is more likely to occur if the predictors are highly correlated.
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Figure 1. Graphical representation of the constraint region
in the (51, B2) plane for the LASSO, Elastic Net, and OSCAR.
Note that all are nondifferentiable at the axes. (a) Constraint
region for the Lasso (solid line), along with three choices of
tuning parameter for the Elastic Net. (b) Constraint region
for the OSCAR for four values of c¢. The solid line represents
¢ = 0, the LASSO.

(a) (b)

Figure 2. Graphical representation in the (8;,3:) plane.
The OSCAR solution is the first time the contours of the
sum-of-squares function hits the octagonal constraint region.
(a) Contours centered at OLS estimate, low correlation (p =
0.15). Solution occurs at 3, = 0. (b) Contours centered at OLS
estimate, high correlation (p = 0.85). Solution occurs at B =

Pa.

This implicit relationship to correlation is also quantified later
in Theorem 1. Figure 2a shows that if the correlation between
predictors is small (p = 0.15), the sum-of-squares contours
first intersect the constraint region on the vertical axis, giving
a sparse solution with Bl = 0. In comparison, the right-hand
side panel shows that with the same OLS solution, if the pre-
dictors are highly correlated (p = 0.85), the two coefficients
reach equality, and thus the predictors form a group.

Remark. By construction, considering the mirror image,
i.e., negative correlation, the coefficients would be set equal in
magnitude, differing in sign. This would correspond to using
the difference between the two predictors as opposed to the
sum, possibly denoting a pair of competing predictors, or that
a sign change is appropriate, if applicable.

Note that choosing ¢ = 0 in the OSCAR yields the LASSO,
which gives only sparsity and no clustering, while letting ¢ —
oo gives a square penalty region and only clustering with no
variable selection. Varying c changes the angle formed in the
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octagon from the extremes of a diamond (¢ = 0), through
various degrees of an octagon to its limit as a square, as in
two dimensions, —1/(c¢+1) represents the slope of the line in
the first quadrant that intersects the g-axis. In all cases, it
remains a convex region.

Remark. Note that the pairwise L., is used instead of the
overall L,,. Although in two dimensions they accomplish the
identical task, their behaviors in p > 2 dimensions are quite
different. Using an overall L., only allows for the possibility
of a single clustered group, which must contain the largest
coefficient, as it shrinks from top down. Defining the OSCAR
through the pairwise L, allows for multiple groups of varying
sizes, as its higher dimensional constraint region has vertices
and edges corresponding to each of these more complex pos-
sible groupings.

2.2 Ezact Grouping Property

The OSCAR formulation as a constrained optimization prob-
lem (1) can be written in the penalized form

2

P
8= argénin y — Zﬂjxj
i1

P
0D 1B+ ey max{|B], 8]}
j=1 i<k
2

P p
= argmin |y — D OB | +AY el - 1)+ 13Bly),
=1

J= (3)

with [B]q) < Bl < -+ < |B](p), and there exists a direct cor-
respondence between A and the bound ¢.

An explicit relation between the choice of the constraint
bound t and the penalization parameter A is now given. This
allows for computation using an algorithm as discussed in
Section 3 derived via the constraint representation, while also
considering properties that can be derived via the equivalent
penalized representation. Furthermore, a quantification of the
exact grouping property of the OSCAR solution in terms of
correlation is then given by Theorem 1.

Consider the representation of the OSCAR in terms of the
penalized least-squares criterion (3) with penalty parameter
A. Suppose that the set of covariates (xi,...,x,) are ordered
such that their corresponding coeflicient estimates satisfy 0 <
|61 < - <|Bgland fgi1=--=0,=0.Let 0< 0, <--- <
O denote the G unique nonzero values of the set of |Bj|, SO
that G < Q.

For each g =1,..., G, let

Gg = {7 : 18] = b4}
denote the set of indices of the covariates that correspond

to that value for the absolute coefficient. Now construct the
grouped n x G covariate matrix X* = [x} - - - x| with

Xy = Z sign (Bj)xj. (4)
J€Gg

This transformation amounts to combining the variables with
identical magnitudes of the coefficients by a simple (signed)
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summation of their values, as in forming a new predictor from
the group mean. Form the corresponding summed weights

wy =Y {e(j—1)+1}.

j€Gg

The criterion in (3) can be written explicitly in terms of this
“active set” of covariates, as

G 2 G
6 = argmin ||y — O, +A wgby, (5)
i ;gg ; o0

with 0 < 6; < --- < 0. In a neighborhood of the solution, the
ordering, and thus the weights, remain constant and as the
criteria are differentiable on the active set, one obtains for
eachg=1,...,G

—2xi"(y — X*0) 4+ Aw, = 0. (6)

This vector of score equations corresponds to those in Zou,
Hastie, and Tibshirani (2004) and Zou and Hastie (2005) after
grouping and absorbing the sign of the coefficient into the
covariate.

Equation (6) allows one to obtain the corresponding value
of A for a solution obtained from a given choice of t, i.e., for
all values of g, (6) yields

A= 2x2T(y—X*é)/wg. (7

The octagonal shape of the constraint region in Figure 1
graphically depicts the exact grouping property of the OS-
CAR optimization criterion. The following theorem quantifies
this exact grouping property in terms of the correlation be-
tween covariates, showing that the equality of two coefficients
is easier to obtain as the correlation between the two predic-
tors increases, in that less penalty is needed on the L, norm
to do so.

THEOREM 1: Set \y = A and XAy = c\ in the Lagrangian
formulation given by (3). Given data (y, X) with centered re-
sponse y and standardized predictors X, let ,é()\h)\Q) be the
OSCAR estimate using the tuning parameters (A1, A2). Assume
that the predictors are signed so that Bi(/\l, A2) > 0 for all i. Let
pij =XIx; be the sample correlation between covariates i and
7.

For a given pair of predictors x; and x;, suppose that both
ﬁAi()\l, A2) > 0 and Bj(Al, X2) > 0 are distinct from the other By
Then there exists Ay > 0 such that if Ao > ¢ then

Bi()\],)\z) = Bj()‘h)\?)? fOI' all Al > 0.

Furthermore, it must be that

Ao < 2[lyllv/2(1 = pij)-

The proof of Theorem 1 is based on the score equations in
(6), and is given in Web Appendix A.

In the above notation, Ay controls the degree of grouping.
As )\, increases, any given pair of predictors will eventually
group. However, the 1/2(1 — p;;) term shows that highly cor-
related predictors are more likely to be grouped. In particular,
if two predictors were identical (p = 1), they will be grouped
for any A, > 0, i.e., any form of the OSCAR penalty other
than the special case of the LASSO.
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Remark. In Theorem 1, the requirement of the distinct-
ness of 3; and Bj is not as restrictive as may first appear. The
x; and x; may themselves already represent grouped covari-
ates as in (4), then p;; represents the correlation between the
groups.

3. Computation and Crossvalidation

3.1 Computation

A computational algorithm is now discussed to compute the
OSCAR estimate for a given set of tuning parameters (¢, c).
Write 3; = 8] — 8; with both 3 and §; being nonnegative,
and only one is nonzero. Then |3;| = ﬁ;r + ;. Introduce the
additional p(p—1)/2 variables n for 1 <j < k <p, for the
pairwise maxima. Then the optimization problem in (1) is
equivalent to

P

Minimize: % y— Z (5; - 5;)Xj

j=1
subject to
P
ST +8;) +ed <t (®)
j=1 j<k
Nk > B + By i > By + 6, foreach 1<j<k<p,
ﬁ;ZO,ﬁj’ZO forall j=1,...,p,

where the minimization is with respect to the expanded pa-
rameter vector (87,87 ,n).

This is now a quadratic programming problem with (p? +
3p)/2 total parameters and p* + p + 1 total linear con-
straints. The constraint matrix is very large, but it is ex-
tremely sparse. The optimization has been performed using
the quadratic programming algorithm SQOPT (Gill, Murray,
and Saunders, 2005), designed specifically for large-scale prob-
lems with sparse matrices. Problems with a few hundred pre-
dictors are directly computable using this algorithm.

3.2 Choosing the Tuning Parameters

Choosing the tuning parameters (¢, t) can be done via mini-
mizing an estimate of the out-of-sample prediction error. If a
validation set is available, this can be estimated directly. Lack-
ing a validation set one can use 5- or 10-fold crossvalidation, or
a technique such as generalized crossvalidation (GCV), AIC,
BIC, or C, to estimate the prediction error. In using this form
of model selection criteria one would need to use the estimated
degrees of freedom as in Efron et al. (2004).

For the LASSO, it is known that the number of nonzero
coefficients is an unbiased estimate of the degrees of freedom
(Efron et al., 2004; Zou et al., 2004). For the fused LASSO,
Tibshirani et al. (2005) estimate the degrees of freedom by the
number of nonzero distinct blocks of coefficients. Thus, the
natural estimate of the degrees of freedom for the OSCAR is
the number of distinct nonzero values of {|3],...,|8,|}. This
gives a measure of model complexity for the OSCAR in terms
of the number of coefficients in the model.

4. Simulation Study

A simulation study was run to examine the performance of the
OSCAR under various conditions. Five setups are considered
in this simulation. The setups are similar to those used in
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both Tibshirani (1996) and Zou and Hastie (2005). In each
example, data are simulated from the regression model

y=XB+e¢ €e~N(0,0%).

For each example, 100 data sets were generated. Each data
set consisted of a training set of size n, along with an indepen-
dent validation set of size n used solely to select the tuning
parameters. For each of the 100 data sets, the models were
fit on the training data only. For each procedure, the model
fit with tuning parameter(s) yielding the lowest prediction
error on the validation set was selected as the final model.
For these tuning parameters, the estimated coefficients based
on the training set are then compared in terms of the mean-
squared error (MSE) and the resulting model complexity. For
the simulations, the MSE is calculated as in Tibshirani (1996)
via

MSE = (8 - 8)"V (3 - 8), (9)

where V'is the population covariance matrix for X, with pre-
diction error given by MSE + o2.
The five scenarios are given by:

1. In example 1, n = 20 and there are p = 8 predictors. The
true parameters are 8 = (3,2,1.5,0,0,0,0,0)T and o =
3, with covariance given by Cov(x;,x;) = 0.7, The
first three variables are moderately correlated and similar
in effect sizes, while the remaining five are unimportant
and also somewhat correlated.

2. Example 2 is the same as example one, except that 3; =
(3,0,0,1.5,0,0,0,2)T. Now the important variables have
little correlation with one another, but they are more
correlated with the unimportant predictors.

3. Example 3 is the same as example one, except that
B; =0.85 for all j, creating a nonsparse underlying
model.

4. In example 4, n = 100 and there are p = 40 predictors.
The true parameters are

8=(,...,0,2,...,2,0,...,0,2,...,2)T
N N N —

10 10 10 10

and o = 15, with covariance given by Cov(x;,x;) = 0.5
for 7 # j and Var(x;) = 1 for all 4.

5. In example 5, n = 50 and there are again 40 predictors.
The true parameters are

B=(3...
——

and o = 15. The predictors were generated as:

x;=Zi+€¢, Zi~N(01), i=1,...,5
X; = Zy+ €8, Zy~N(0,1), i=6,...,10
X; = Zs+ €, Zy~N(0,1), i=11,...,15
x; ~ N(0,1), i=16,...,40,

where €7 are independent identically distributed N(O,
0.16), ¢ = 1,...,15. In this model the three equally im-
portant groups have pairwise correlations p ~ 0.85, and
there are 25 pure noise features.
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Table 1 summarizes both the MSE and complexity of the
model in terms of the number of unique nonzero coefficients
required in the chosen model. In all examples, the OSCAR
produces the least complex model by collapsing some of the
predictors into groups. Meanwhile, the simulations show that
the OSCAR is highly competitive in prediction. Its MSE is
either best or second best in all five examples.

Although the values of the coefficients are the same for ex-
amples 1 and 2, the OSCAR generally chooses a smaller model
for example 1, as can be seen from the number of degrees of
freedom in Table 1. This is due to the interplay between the
correlation and the values of the coefficients. This is to be ex-
pected, as in example 1, variables with similar coefficients are
also highly correlated so the grouping mechanism of the OS-
CAR is more likely to group both the first three coefficients
together, as well as group the remaining five unimportant
variables together at zero.

The Elastic Net also performs well in terms of prediction er-
ror, particularly in cases such as examples 1, 2, and 5 in which
there is higher correlation and the true vector is sparse. Par-
ticularly in example 5, the Elastic Net’s median MSE is lower
than the rest, although upon looking at the quantiles, the
distribution of MSE in the 100 samples is somewhat similar
to the OSCAR. However, the exact grouping effect of the OS-
CAR allows for the identification of a group structure among
the predictors that is not accomplished by the Elastic Net,
as seen in the resulting number of coefficients in the model.
The loss in prediction error using the OSCAR for this model
could come from the large number of unimportant variables
combined with the smaller sample size resulting in some of the
unimportant variables being smoothed towards the important
ones a bit more. In example 3, when all of the predictors are
important and equal in effect, the OSCAR and ridge regres-
sion perform extremely well in MSE, while the OSCAR also
performs grouping. The coefficients for this example were also
varied to allow for unequal, but similar effects and the results
were similar, thus omitted. Overall, the OSCAR appears to
compete well with the existing approaches in terms of MSE
in all cases studied, while yielding the additional grouping in-
formation to accomplish the supervised clustering task that
is not built into the other procedures.

5. Appalachian Mountains Soil Data

The data for this example come from a study of the associ-
ations between soil characteristics and rich-cove forest diver-
sity in the Appalachian Mountains of North Carolina. Twenty
500-m? plots were surveyed. The outcome is the number of
different plant species found within the plot and the 15 soil
characteristics used as predictors of forest diversity are listed
in Figure 3. The soil measurements for each plot are the aver-
age of five equally spaced measurements taken within the plot.
The predictors were first standardized before performing the
analysis. Because this data set has only p = 15 predictors,
it allows for an in-depth illustration of the behavior of the
OSCAR solution.

Figure 3 shows that there are several highly correlated pre-
dictors. The first seven covariates are all related to the abun-
dance of positively charged ions, i.e., cations. Percent base
saturation, cation exchange capacity (CEC), and the sum
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Table 1
Simulation study. Median MSEs for the simulated examples based on 100 replications with standard errors estimated via the
bootstrap in parentheses. The 10th and 90th percentiles of the 100 MSE values are also reported. The median number of unique
nonzero coefficients in the model is denoted by Median Df, while the 10th and 90th percentiles of this distribution
are also reported.

Med. MSE MSE MSE Df Df
Example (Std. Err.) 10th perc. 90th perc. Med. Df 10th perc. 90th perc.
1 Ridge 2.31 (0.18) 0.98 4.25 8 8 8
Lasso 1.92 (0.16) 0.68 4.02 5 3 8
Elastic Net 1.64 (0.13) 0.49 3.26 5 3 7.5
Oscar 1.68 (0.13) 0.52 3.34 4 2 7
2 Ridge 2.94 (0.18) 1.36 4.63 8 8 8
Lasso 2.72 (0.24) 0.98 5.50 5 3.5 8
Elastic Net 2.59 (0.21) 0.95 5.45 6 4 8
Oscar 2.51 (0.22) 0.96 5.06 5 3 8
3 Ridge 1.48 (0.17) 0.56 3.39 8 8 8
Lasso 2.94 (0.21) 1.39 5.34 6 4 8
Elastic Net 2.24 (0.17) 1.02 4.05 7 5 8
Oscar 1.44 (0.19) 0.51 3.61 5 2 7
4 Ridge 27.4 (1. 17) 21.2 36.3 40 40 40
Lasso 45.4 (1.52) 32.0 56.4 21 16 25
Elastic Net 34.4 (1. 72) 24.0 45.3 25 21 28
Oscar 25.9 (1.26) 19.1 38.1 15 5 19
5 Ridge 70.2 (3.05) 41.8 103.6 40 40 40
Lasso 64.7 (3. 03) 27.6 116.5 12 9 18
Elastic Net 40.7 (3.40) 17.3 94.2 17 13 25
Oscar 51.8 (2.92) 14.8 96.3 12 9 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 % Base Saturation
2 Sum Cations
3 CEC
4 Calcium
5 Magnesium
6 Potassium
7 Sodium
8 Phosphorus
9 Copper
10  Zinc
11 Manganese
12 Humic Matter
13  Density
14 pH
15  Exchangeable Acidity .
Figure 3. Graphical representation of the correlation matrix of the 15 predictors for the soil data. The magnitude of each

pairwise correlation is represented by a block in the grayscale image.

of cations are all summaries of the abundance of cations;
calcium, magnesium, potassium, and sodium are all examples
of cations. Some of the pairwise absolute correlations between
these covariates are as high as 0.95. The correlations involv-
ing potassium and sodium are not quite as high as the others.
There is also strong correlation between sodium and phos-
phorus, and between soil pH and exchangeable acidity, two

measures of acidity. Additionally, the design matrix for these
predictors is not full rank, as the sum of cations is derived as
the sum of the four listed elements.

Using fivefold crossvalidation, the best LASSO model in-
cludes seven predictors, including two moderately correlated
cation covariates: CEC and potassium (Table 2). The LASSO
solution paths as a function of s, the proportion of the OLS
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Table 2
Estimated coefficients for the soil data example

OSCAR OSCAR LASSO LASSO
Variable (5-fold CV) (GCV) (5-fold CV) (GCV)
% Base saturation 0 —0.073 0 0
Sum cations —0.178 —0.174 0 0
CEC —0.178 —0.174 —0.486 0
Calcium —0.178 —0.174 0 —0.670
Magnesium 0 0 0 0
Potassium —-0.178 —-0.174 —0.189 —0.250
Sodium 0 0 0 0
Phosphorus 0.091 0.119 0.067 0.223
Copper 0.237 0.274 0.240 0.400
Zinc 0 0 0 —0.129
Manganese 0.267 0.274 0.293 0.321
Humic matter —0.541 —0.558 —0.563 —0.660
Density 0 0 0 0
pH 0.145 0.174 0.013 0.225
Exchangeable acidity 0 0 0 0

L; norm, for the seven cation-related covariates are plotted in
Figure 4a, while the remaining eight are plotted in Figure 4b.
As the penalty decreases, the first two cation-related variables
to enter the model are CEC and potassium. As the penalty
reaches 15% of the OLS norm, CEC abruptly drops out of
the model and is replaced by calcium, which is highly corre-
lated with CEC (p = 0.94). Potassium remains in the model
after the addition of calcium, as the correlation between the
two is not as extreme (p = 0.62). Due to the high collinearity,
the method for choosing the tuning parameter in the LASSO
greatly affects the choice of the model; fivefold crossvalida-
tion includes CEC, whereas GCV instead includes calcium.
Clearly, at least one of the highly correlated cation covariates
should be included in the model, but the LASSO is unsure
about which one.

The fivefold crossvalidation OSCAR solution (Table 2) in-
cludes all seven predictors selected by the LASSO along with
two additional cation covariates: the sum of cations and cal-
cium. The OSCAR solution groups the four selected cation
covariates together, giving a model with six distinct nonzero
parameters. The cation covariates are highly correlated and
are all associated with the same underlying factor. Therefore,
taking their sum as a derived predictor, rather than treating
them as separate covariates and arbitrarily choosing a repre-
sentative, may provide a better measure of the underlying fac-
tor and thus a more informative and better predictive model.
Note that because the LASSO is a special case of the OSCAR
with ¢ = 0, the grouped OSCAR solution has a smaller cross-
validation error than the LASSO solution.

The pairs of tuning parameters selected by both fivefold
crossvalidation and GCV each have ¢ = 4; therefore, Figure
4c and 4d plot the OSCAR solution paths for fixed ¢ =4 as a
function of the proportion of the penalty’s value at the OLS
solution, denoted by s. Tenfold and leave-one-out crossvalida-
tion along with the AIC and BIC criteria were also used and
the results were similar. As with the LASSO, CEC is the first
cation-related covariate to enter the model as the penalty de-
creases. However, rather than replacing CEC with calcium as

the penalty reaches 15% of the OLS norm, these parameters
are fused, along with the sum of cations and potassium.

Soil pH is also included in the group for the GCV solution.
Although pH is not as strongly associated with the cation co-
variates (Figure 3), it is included in the group chosen by GCV
(but not from fivefold crossvalidation) because the magnitude
of its parameter estimate at that stage is similar to the mag-
nitude of the cation group’s estimate. The OSCAR penalty
occasionally results in grouping of weakly correlated covari-
ates that have similar magnitudes, producing a smaller di-
mensional model. However, by further examining the solution
paths in Figure 4c and 4d, it is clear that the more corre-
lated variables tend to remain grouped, whereas others only
briefly join the group and are then pulled elsewhere. For ex-
ample, the GCV solution groups Copper and Manganese, but
the solution paths of these two variables’ coefficients are only
temporarily set equal as they cross. This example shows that
more insight regarding the predictor relationships can be un-
covered from the solution paths. It is also worth noting that
for the eight covariates that are not highly correlated, the
OSCAR and LASSO solution paths are similar, as may be
expected.

6. Discussion

This article has introduced a new procedure for variable selec-
tion in regression while simultaneously performing supervised
clustering. The resulting clusters can then be further inves-
tigated to determine what relationship among the predictors
and response may be responsible for the grouping structure.

The OSCAR penalty can be applied to other optimiza-
tion criteria in addition to least-squares regression. Gener-
alized linear models with this penalty term on the likelihood
are possible via quadratic approximation of the likelihood.
Extensions to lifetime data, in which difficulties due to cen-
soring often arise, is another natural next step. In some sit-
uations there may be some natural potential groups among
the predictors, so one would only include the penalty terms
corresponding to predictors among the same group. Examples
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Solution paths for the soil data. Plot of the 15 coefficients as a function of s, the proportion of the penalty

evaluated at the OLS solution. The first row uses the fixed value of ¢ = 0, the LASSO. The second row uses the value
¢ = 4 as chosen by both GCV and fivefold crossvalidation. The vertical lines represent the best models in terms of the
GCV and the fivefold crossvalidation criteria for each. (a) LASSO solution paths for the seven cation-related coefficients. (b)
LASSO solution paths for the remaining eight coefficients. (¢) OSCAR solution paths for the seven cation-related coefficients.

(d) OSCAR solution paths for the remaining eight coefficients.

would include ANOVA or nonparametric regression via a set
of basis functions.

In the spirit of other penalized regression techniques, the
OSCAR solution also has an interpretation as the posterior
mode for a particular choice of prior distribution. The OSCAR
prior corresponds to a member of the class of multivariate
exponential distributions proposed by Marshall and Olkin
(1967).

The quadratic programming problem can be large and
many standard solvers may have difficulty solving it directly.
In the absence of a more efficient solver such as the SQOPT
algorithm used by the authors, Web Appendix B discusses a
sequential method that will often alleviate this problem.

Based on recent results of Rosset and Zhu (2007), for each
given ¢, the solution path for the OSCAR as a function of the
bound t, should be piecewise linear. A modification of the least

angle regression (LARS) algorithm that gives the entire solu-
tion path for a fixed ¢, as it does for ¢ = 0 would be desirable
to dramatically improve computation. However, in addition to
adding or removing variables at each step, more possibilities
must be considered as variables can group together or split
apart as well. Further research into a more efficient computa-
tional algorithm is warranted, particularly upon extension to
more complicated models.

7. Supplementary Materials

The Web Appendix referenced in Sections 2.2 and 6 is avail-
able under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org. The soil data an-
alyzed in Section 5 and MATLAB code to implement the
OSCAR procedure for linear regression are also available at
the Biometrics website.
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