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Two solutions of the homogeneous matrix equation AX=ZB, that allows a simultaneous computation of 
the transformations from robot world to robot base and from robot tool to robot wrist coordinate frames, 
are proposed. The presented methods introduce the Kronecker product and dual quaternions to solve 
the rotations and translations problem, simultaneously, with no propagation error. The experimental 
results in a simulated and a real environment are reported and analyzed. 
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INTRODUCTION    
 
A hand-eye configuration refers to the setup in which a 
camera is rigidly mounted on the hand of a robot 
manipulator. This configuration has been found many 
applications in industrial field such as electronic assembly 
line (Zhuang, 1998), welding guidance (Chen et al., 2006) 
and robot-based measurement (Li et al., 2009). In order 
to use a hand-mounted camera for guiding a robot to 
execute a task, the hand-eye calibration must be done in 
advance. Hand-eye calibration is the process of 
computing the position and orientation of the sensor 
coordinate system with respect to the robot hand 
coordinate system. The hand-eye calibration problem 
was usually formulated as solving homogeneous 
transformation equations of the forms AX = XB (Shiu and 
Ahmad, 1989), where X is the 4 × 4 homogeneous 
transformation from the robot hand coordinate frame to 
the sensor coordinate frame, A is the measurable 4 × 4 
homogeneous transformation of the robot hand from its 
first to second position, and B is the measurable 4 × 4 
homogeneous transformation of the sensor and also, 
from its first to second position. A number of approaches 
have been devised for robot hand-eye calibration. These 
approaches can be divided into two categories. In the first 
category, the problem is solved by   a   two   stage   linear 
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method (Shiu and Ahmad, 1989; Tsai and Lenz, 1989; 
Wang, 1992; Park and Martin, 1994). More specifically, 
the unknown rotation of the camera frame with respect to 
the hand frame is solved in the first stage, using a 
number of relative robot hand motions and the induced 
relative camera motions. The obtained rotation together 
with the measured quantities is used to solve for the 
unknown position of the camera frame with respect to the 
robot hand frame. The main drawback in these methods 
is that rotation estimation errors propagate to position 
estimation errors. In the second category, a nonlinear 
least squares procedure (Horaud and Dornaika, 1995) 
and dual quaternions (Daniilidis, 1999) are applied to 
solve simultaneously, for both the rotation and position of 
the camera frame with respect to the robot hand frame. 

There has been another homogeneous transformation 
equation AX=ZB derived by Zhuang et al. (1994), 
allowing the simultaneous estimation of both the 
transformations from the world frame to the robot-base 
frame and from the robot hand frame to sensor frame. 
Where A is the known homogeneous transformation from 
hand pose measurements, B is computed using the 
calibrated manipulator internal-link forward kinematics, X 
is the unknown transformation from the robot hand frame 
to sensor frame, and Z is the unknown transformation 
from the world frame to the robot-base frame. There are 
two categories for solving equation AX=ZB. One is to 
solve  the  problem  using a two stage quaternion method  



  
 
 
 
 
(Zhuang et al., 1994). The unknown rotations associated 
with X and Z are firstly determined and then the 
translations associated with X and Z are found using the 
obtained rotations. Consequently, there has been 
propagation error in quaternion method. Additionally, the 
quaternion method requires the rotational angle 
associated with matrix A not to equal 180 degrees. The 
other method is to apply nonlinear minimization to 
compute both the rotations and positions associated X 
and Z, simultaneously (Dornaika, 1998).  

This paper concentrates on solving AX=ZB and to 
describes two solutions to X and Z. Our robot is used for 
noncontact freedom surface measurement, which is a 
reaching movement. Although our methods do not belong 
to nonlinear minimization technology, they solve for two 
rotations and two translations, simultaneously and the 
propagation errors are eliminated maturely. The 
remainder of the paper is organized as follows: the two 
methods using dual-quaternion and Kronecker product to 
solve the equation AX=ZB are firstly stated. Next, 
simulation results of a MOTOMAN robot are presented to 
demonstrate the capabilities of the calibration technique. 
Finally, some conclusions are given. 
 
 
SOLUTION TO AX=ZB USING DUAL QUATERNIONS 
 
Dual quaternions and line transformations 
 
This section outlines briefly the dual quaternions. First quaternions 
are explained, followed by a short description of dual numbers. 
Finally, the dual quaternions and their relevant properties are 
introduced. 
 
 
Quaternions 
 
It was Introduced by Hamilton, quaternions are an extension of the 
complex numbers to R4. One definition of quaternions is as 

pairs ),( 0 qq
�

, where 0q � R is called scalar part and q
�

� R3 is 

called vector part. The following operations exist: 
 

)()( 00 baba
�� +++=+ ba                                                  (1)                                                                              

 

aa
�λλλ += 0a                                                                         (2)                                          

 

)()( 0000 baabbababa
������ ×+++−=⋅ Τba                     (3)                                                   

 

The norm of a quaternion is defined as aaa = , where a  is the 

conjugate quaternion ),( 0 aa
�− . A unit quaternion is a quaternion 

of norm one. For every rotation in R3 about an axis n
�

 ( 1=n ) 

with an angle �, a corresponding unit quaternion 

)
2

sin,
2

(cos n
�θθ=q exists that maps a vector 

3Rx ∈�   to  the  
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vector qq ),0( x

�
.  

 
 
Dual numbers 
 
A dual number is defined as: 
 

aaa ′+= εˆ  With 0≠ε  and 02 =ε  
 
where a is called real part and a′ is called dual part. The following 
operations exist: 
 

)()(ˆˆ bababa ′+′++=+ ε                                                  (4) 
 

)(ˆˆ babaabba ′+′+=⋅ ε                                                       (5) 
 
 
Dual quaternions 
 

Dual-quaternions are defined as )ˆ,ˆ(ˆ qsq
�= , where ŝ is a dual 

number and q̂
�

 is a dual vector. 
The operations have the definitions: 
 

)ˆˆ()ˆˆ(ˆˆ 00 bababa
�� +++=+                                                   (6)                             

 

aaa ˆˆˆ 0

�λλλ +=                                                                          (7)                                  

 

0 0 0 0
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )ab a b a b a b b a a bΤ= − + + + ×
� � �� � �

                            (8)                                                       
 

The norm of a dual quaternion is defined as qqq ˆˆ=�
, and is a 

dual number with a positive real part. If the norm is equal to one; 
the dual-quaternion is named as a unit dual-quaternion. 
 
 
Line transformations with unit dual-quaternions 
 

A line in space with direction l
�

 through a point p
�

can be 

represented with the six-tuple ),( ml
��

, where m
�

is called the line 

moment and is equal to lp
��

× . The line moment is normal to the 
plane through the line and the origin, with magnitude equal to the 

distance from the line to the origin. The constraints 1=l
�

and 

0=Τml
��

guarantee that the degrees of freedom of an arbitrary line 
in space are four.  
 

Problem: A line given by its dual quaternion aaa mll ε+=
�ˆ  is 

transformed with ),( tR
�

 into a line
abb mll ε+=

�ˆ . Show that a 

unit dual quaternion exists such that qlql ab ˆˆˆˆ = , where 

qqq ′+= εˆ , q   is   a  unit   quaternion    associated   to   R and  
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tqq
2
1=′ , [ ]Τ= tt

�
0 . Applying a rotation R  and a 

translation t
�

 to a line ),( bb ml
��

, we obtain the transformed 

line ),( aa ml
��

: 

 

ba ll
��

R=  

bb

bbb

bbaaa

lRtmR

lRtlpR

lRtpRlpm

���

����

������

×+=

×+×=

×+=×=
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The cross-product is tackled with the identity: 
 

)(
2
1

),0( qttq +=× qt
��

 

 

where t is the translation quaternion ),0( t
�

, and q is the rotation 
quaternion. Using the identity, we obtain: 
 

qlql ba

��
=  

)(
2
1

qtqltqqlqmqm bbba ++= ��
 

We define a new quaternion qtq
2
1=′ and a dual quaternion. 

 
 
Derivation of X and Z 
 

Let ,ˆ ˆ ˆ ˆ, ,A X Z Bq q q q  be the unit dual-quaternions associated with A, 

X, Z, and B, respectively. Equation AX=ZB can be rewritten as: 
 

ˆ ˆ ˆ ˆA X Z Bq q q q=                                                                              (9)                                         

 

Using ˆAq a aε ′= + � ˆBq b bε ′= + � ˆXq x xε ′= +  in (9): 

 

ax zb
a x ax zb z b

=
′ ′ ′ ′+ = +

                                                              (10)                                        

 
Describing Equation (10) in matrix equation form, we have: 
   

0

0

ax bz

a x ax b z bz

− =
′ ′ ′ ′+ − − =
�

�
� �

� �

                                                       (11)                               

 
Where  

�
�

�
�
�

�
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−

=
Τ

)(
~

0

0

aaa

aa
a

�
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and for vector v=[v1,v2,v3]T, its anti-symmetric matrix: 

 
 
 
 

3 2

3 1

2 1

0

(v) 0
0

v v

v v

v v

−� �
� �Ω = −� �
� �−� �  

 
Furthermore: 
 

4 4 4 40 0
0

x
a b x
a a b b z

z

× ×

� �
� �′� � � � =� �′ ′ � �� �
� �′� �

�
�

� �
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                                          (12)       

                                                     
Supposed there have been n(n 3)≥  pose 

measurements
4 4 4 40 0i i

i
i i i i

a b
s

a a b b
× ×� �

= � �′ ′� �

�
�

� �
� �

, an 8n × 16 matrix 

[ ]T
nsssT ,, 21 ⋅⋅⋅= is constructed. Let 

Τ�= VUT  to be 

singular value decomposition. The diagonal entries of � are 
necessarily equal to the singular values of T. The columns of U and 
V are, respectively, left- and right-singular vectors for the 
corresponding singular values.  
Suppose two column vectors responding to zero singular value are 
v1 and v2 in right-singular vectors matrix: 
  

Let [ ]ΤΤΤΤΤΤ = 11111 ,,, µωβαv and

[ ]ΤΤΤΤΤΤ = 22222 ,,, µωβαv , the solutions of equation 

[ ] [ ] 0,, ,21 =′′⋅⋅⋅ ΤΤ zzxxsss n  are: 

 

2211 αλαλ +=x                                                                   (13a)                            
 

2211 βλβλ +=′x                                                                 (13b)                                  
 

2211 ωλωλ +=z                                                                   (13c)                                        
 

2211 µλµλ +=′z                                                                 (13d)                             
 

Since ˆXq  and 
ˆZq are unit dual-quaternions, vectors x , x′ z  and 

z′  also satisfies the following constraints:  
 

2 2
1 1 1 2 2 2 1 2 1 22 1λ α α λ α α λ λ α αΤ Τ Τ+ + + =                            (14a)   

                                        

1)( 12212122
2

211
2

1 =+++ ΤΤΤΤ βαβαλλβαλβαλ       (14b)  
                                          

2 2
1 1 1 2 2 2 1 2 1 22 1λ ω ω λ ω ω λ λ ω ωΤ Τ Τ+ + =                               (14c)  

                                                           
2 2

1 1 1 2 2 2 1 2 1 2 2 1( ) 0λ ω µ λ ω µ λ λ ω µ ω µΤ Τ Τ Τ+ + + =              (14d)                                                   



  
 
 
 
 
The procedure for solving X and Z is thus summarized. 
 
 
Step 1 
 

Construct matrix T using ),( ii aa ′ and ),( ii bb ′ , which are found 

from Ai and Bi, i =1…n. 
 
 
Step 2 
 
Employ singular value decomposition on matrix T and determine 

two column vectors responding to zero singular value to be 1v  and 

2v in right-singular vectors matrix. 

 
 
Step 3 
 

Compute 1λ and 2λ  using Equation (14a) - (14d) and 

calculate x , x′ , z and z′   using Equation (13a) - (13d). 
 
 
Step 4 
 

Recover rotational matrixes xR and zR and translational vectors 

xt and zt . 

 
 
SOLUTION TO AX=ZB USING KRONECKER PRODUCT 
 
Definition 1 
 
The stack operator maps an n by m matrix into an nm by 1 vector. 
The stack of the n by m matrix A, denoted as vec(A), is the vector 
formed by stacking the columns of A into an nm by 1 vector: 
 

Τ= ],,,,[)( 11211 mnn aaaaAvec ��  

 
 
Definition 2 
 
The Kronecker product is a binary matrix operator that maps two 
arbitrarily dimensioned matrices into a larger matrix with special 
block structure. Given the n by m matrix A and the p by q matrix B, 
their Kronecker product, denoted as BA ⊗ , is the np by mq 
matrix with the block structure: 
 

[ ]
�
�
�

	




�
�
�

�



==⊗
BaBa

BaBa

BaBA

mnm

n

ij

�

���

�

1

111
 

 
Extend the equation AX=ZB, we have: 
 

ZBXA RRRR =                                                                         (15)  
                                                               

ZBZAXA ttRttR +=+                                                          (16)                                                        
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Using stack operator in Equation (15) and (16), it gives: 
 
 

[ ] 0
)(
)(

33 =�
�

�
�
�

�
⊗−⊗ Τ

Z

X
BA Rvec

Rvec
RIIR                             (17)                                                   

 

[ ] A

Z

X

X

AB t

t

t

Rvec

IRtI =
�
�
�

�

�

�
�
�

�

�

−⊗ Τ

)(

33                               (18) 

 
where I3 is a 3 by 3 identity matrix, let 

xRvec X =)( and zRvec Z =)( , Equation (15) and (16) are 
simplified as:  
 

�
�

�
�
�

�
=

�
�
�
�

�

�

�
�
�
�

�

�

�
�

�
�
�

�

−⊗
⊗−⊗

Τ

Τ

A

Z

XAB

BA

t

t

t

z

x

IRtI

RIIR 0

0
00

33

33
               (19)       

                                                       
The solutions to x, z, tx and tz can be determined by least square 
technique. The rotation part Rx and Rz constructed by x and z may 
not be an orthogonal matrix due to noise, and a Rodrigues’ rotation 
formula can be utilized to make Rx and Rz orthogonal. 
 
 
SIMULATION AND EXPERIMENTAL RESULTS 
 
Simulation results  
 
We study the estimation errors of the hand-eye 
transformation and the robot-to-world transformation 
against number of pose measurements for “X” number of 
poses. 

The proposed algorithms are tested by numerical 
simulation. Various samples of X, Z and Ai are generated 
from, in which Bi can be computed. The following 
procedures demonstrate the numerical simulation: 
 
1) Nominal values for the parameters of both the hand-
eye transformation X and the robot-to-world 
transformation Z are provided. 
2) Also, n matrices A1; …, An are provided, from which n 
hand positions that can be computed with Bi = Z-1AiX are 
also provided. 
3) Uniform distribution noise is added to both camera and 
robot positions, the homogeneous transformations, X and 
Z, are estimated in the presence of this noise using the 
two methods described in this paper and the quaternion 
method proposed by Zhuang. 
4) We study the estimation errors of the hand-eye 
transformation and the robot-to-world transformation 
against number of pose measurements. 
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       (a)                                                                      (b) 

 
   (c) 

 
 
Figure 1. Errors against number of pose measurements. (a) Only matrix A has noise; (b) Only 
matrix B has noise; (c) Both A and B have noise. 

 
 
 
The following conditions are simulated: 
 
1) Only matrix A has noise. 
2) Only matrix B has noise. 
3) Both A and B have noise. 
 
Since both rotations and translations may be represented 
as vectors, adding noise to a transformation consists of 
adding random numbers to each one of the vectors’ 
components. Uniformly, distributed random noise 
processes for translation, U(-1, 1) mm, and for rotation, 
U(-0.5, 0.5) degrees, were added to the Z-Y-Z Euler 
angles and positions of A and B. Let �1 denote the norm 
of the difference between the computed X and theoretical 
X, �2 denote the norm of the difference between the 
computed Z and theoretical Z. The total error is defined 
as the sum of �1and �2. 

Figure 1 shows the rotation and translation errors as a 
function of number of pose measurements with uniform 
noise added to the rotational part of the robot and camera 
positions. For each pose, the simulations are repeated 10 
times and the average errors are obtained with the three 
aforementioned methods. Data were analyzed applying a  

Monte Carlo simulation. 
The results show that the use of the Kronecker product 

approach delivers more accurate solutions than dual-
quaternion method (as shown in Figure 1). Therefore, we 
can conclude that the methods proposed in this paper are 
more accurate than the linear quaternion method. 
 
 
Experimental results 
 
In this Section, we report some experimental results 
obtained with MOTOMAN HP3 robot (Figure 2). The data 
set was obtained with 7 different positions of the hand-
eye device with respect to a planar circular-marked 
calibrating object with 15 mm radius. The camera 
calibration was implemented by using Tsai method (Tsai, 
1987) and the extrinsic parameter matrix B is obtained by 
Using some conclusion described in Zhang’s research 
(Zhang, 2000). 

Our tests compare the linear quaternion method with 
the two methods developed in this paper. Table 1 
summarizes the results, where the second column shows 
the  sum  of  squares  of the absolute error in rotation and  
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Figure 2. Hardware setup. 

 
 

Table 1. The formulation AX = ZB USED with 7 different 
positions. These data were obtained using a HP3 robot. 
 

 E 
Quaternion method 3.131 
Dual-quaternion method 3.147 
Kronecker product method 2.933 

 
 
 
translation: 
 

2

i iE A X ZB= −�  

 
The total error in the quaternion method is only slightly 
smaller than the error in the dual quaternion method. 
Importantly, the total error in the Kronecker product 
method is significantly smaller than the error in the 
quaternion and the dual quaternion method. These errors 
do not completely obey the simulation results, because 
the robot’s kinematic chain is not perfectly calibrated and 
therefore, there are errors associated with the robot’s 
translation parameters.  
 
 
Conclusions  
 
In this paper, we addressed the problem of robot-to-world 
and hand-eye calibration by solving homogeneous 
transformation equations of the form AX = ZB. We 
developed two methods. One uses dual-quaternions to 
solve AX = ZB. This method can determine the rotational 
and translational parts of matrix X and Z, since dual-
quaternions can describe the rotation and translation in 
unified form. The other uses stack operator on sizes of 
AX=ZB, firstly and then Kronecker product is utilized for 
solving the  linear  equations. These  two  methods  solve 

simultaneously for two rotations and two translations and 
the propagation errors are eliminated significantly 
compared with to the linear quaternion methods. 

In order to verify the performance of the proposed 
methods, we performed both simulations and real 
experiments with the MOTOMAN HP3 robot. 

The simulation shows that the results obtained with the 
Kronecker product method are significantly more 
accurate than the dual quaternion method. This is due to 
the fact that the residual error is inevitable when solving 
the four nonlinear equations in the dual-quaternions. 
Remarkably, the results obtained with both the Kronecker 
product method and the dual quaternion methods are 
more accurate than those obtained with the quaternion 
method. The data from the real experiment on 
MOTOMAN HP3 robot mostly agree with the simulation. 
However, the differences between the simulation and the 
real experiment results do not obey the simulation results 
completely because there are errors associated with the 
robot’s translation parameters.  

The two methods proposed in this paper may be useful 
in solving other problems that can be formulated into 
homogeneous transformation equations of the form AX = 
ZB. The future work should focus on using the 
transformation chain AX=ZB in order to calibrate robot 
kinematic parameters, which could cause errors 
associated with the robot hand translation parameters 
described by matrix A. 



  
1536          Int. J. Phys. Sci. 
 
 
 
REFERENCES 
 
Chen Xi Zhang, Chen Shan-ben, Lin Tao (2006). A simple method to 

locate initial welding position of planar weld using visual technology 
[J]. Transactions of the China Welding Institution, 27(3): 73-76 

Daniilidis K (1999). Hand Eye Calibration Using Dual Quaternions. Int. 
J. Robotics Res., 18(3): 286-298  

Dornaika F (1998). Simultaneous Robot-World and Hand-Eye 
Calibration. IEEE Transaction on Robotics and Automation, 4(14): 
617-622. 

Horaud R, Dornaika F (1995). Hand-eye calibration. J. Robotics Res., 
3(14): 195-210. 

Li Aiguo, Ma Zi (2009). Simultaneous sensor and hand-sensor 
calibration of a robot-based measurement system. Int. J. Phys. Sci., 
4(12): 846 - 852. 

Park F, Martin B (1994). Robot sensor calibration: Solving AX = XB on 
the Euclidean group. IEEE Transactions on Robotics and 
Automation, 10(5): 717-721. 

Shiu YC, Ahmad S (1989). Calibration of wrist mounted robotic sensors 
by solving homogeneous transform equations of the form AX = XB. 
IEEE Transactions on Robotics and Automation, 5(1): 16-27. 

Tsai RY (1987). A versatile camera calibration technique for high 
accuracy 3D machine vision metrology using off-shelf TV camera and 
lenses. IEEE J. Automation, 3(4): 323-334.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Tsai RY, Lenz RK (1989). A new technique for fully autonomous and 

efficient 3-D robotics hand/eye calibration. IEEE Transactions on 
Robotics and Automation, 5(3): 345-358 

Wang CC (1992). Extrinsic calibration of a robot sensor mounted on a 
robot. IEEE Transactions on Robotics and Automation, 8(4): 161-175.  

Zhang Z (2000). A flexible new technique for camera calibration. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 22(11): 
1330-1334. 

Zhuang HQ (1998). Hand/eye calibration for electronic assembly robots. 
IEEE Transactions on Robotics and Automation, 14(4): 612- 616. 

Zhuang HQ, Roth Z, Sudhakar R (1994). Simultaneous robot/world and 
tool/flange calibration by solving homogeneous transformation of the 
form AX = YB. IEEE Transactions on Robotics and Automation, 4(10): 
549-554 


