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Abstract — This paper presents a new Jacobi-type method to calculate a

simultaneous Schur decomposition (SSD) of several real-valued, nonsym-

metric matrices by minimizing an appropriate cost function. Thereby, the

SSD reveals the “average eigenstructure” of these nonsymmetric matri-

ces. This enables an R-dimensional extension of Unitary ESPRIT to esti-

mate several undamped R-dimensional modes or frequencies along with

their correct pairing in multidimensional harmonic retrieval problems.

Unitary ESPRIT is an ESPRIT-type high-resolution frequency estima-

tion technique that is formulated in terms of real-valued computations

throughout. For each of the R dimensions, the corresponding frequency

estimates are obtained from the real eigenvalues of a real-valued matrix.

The SSD jointly estimates the eigenvahres of all R matrices and, thereby,

achieves automatic pairing of the estimated R-dimensional rnodcs via a

closed-form procedure, that neither requires any search nor any other

heuristic pairing strategy. Fkally, we show how R-dimensional harmo-

nic retrieval probIems (with R > 3) occur in array signal processing and

model-based object recognition applications.

1. Introduction

Due to its simplicity and high-resolution capability, ESPRIT has be-
come one of the most popular subspacc-based direction of al-1-ivalor
frequency estimation schemes. For certain array geometries, namely
centro-symmetric arrays, or undamped modes the computational com-
plexity can be reduced significantly by formulating an ESPRIT-type
algorithm in terms of real-valued computations throughout The re-
sulting algorithm is called Uni~ary ESPRIT, since the estimated phase
factors are automatically constrained to the unit circle [5]. Further-
more, Unitary ESPRIT has recently been extended to the 2-D case
to provide automatically paired azimuth and elevation angle cstinl~i-
tes [8, 9, 14], If, however, the carrier frequencies of the impinging
wavefronts are no longer known (e.g., due to Doppler shifts) and
may differ, the 2-D arrival angles, azimuth and elevation, and the
corresponding carrier frequencies have to be estimated simultane-
ously. This model applies, for instance, to the surveillance radar
system discussed in [13] and requires a 3-D extension of Unitary
ESPRIT. Moreover, 3-D Unitary ESPRIT for joint 2-D angle and

carrier estimation can be used to estimate the 2-D arrival angles, fre-
quency offsets, and damping factors of the dominant multipatbs in an
SDMA (space division multiple access) mobile radio system.

Furthermore, the model-based object recognition scheme pre-
sented in [1] provides another application of the multidimensional
harmonic retrieval problem. Here, the generated measurements cor-
respond to samples from an R-dimensional lattice of sensors, Then,
the estimated R-dimensional undamped modes are the parmne~crs
that reveal the object identity and pose.
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2. Multidimensional Harmonic Retrieval

Suppose we conduct N trials or experiments to observe R-dimensional
data of the fOrm ~fcl,k,,..., k~(~) for 1 < n < N. The index of the rth
dimension k. is allowed to vary from O to (AI, – 1) for 1< r < R.

Thus, for fixed n, we have M = ~~=1 lfr different measurements
of the data, This R-dimensional data consists of d undamped expo-
nential modes in additive noise.

~k,,k,,...,kn(~) = (1)

&(Si(n)fidp$r)k”)+~kl,k,,...,kn(~),

i=l ,=1

where the additive noise process is assumed to be zero-mean, i.i.d.,

and uncorrelated with the signals. Here, we consider the task of
estimating the d frequency vectors

Wi= [/L\]) py . . . py) ]T, l<i <d, (2)

that correspond to the d R-dimensional modes, and their correct pai-
ring from the noise-corrupted measurements in (1).

3. Multidimensional Extension of Unitary ESPRIT

A very simple and efficient way to achieve this goal would be an R-

dimensional extension of Unitary ESPRIT. As in the I-D case [5], the
algorithm is formulated in terms of real-valued computations throug-
hout due to a bijective mapping between centro-Hermitian and real
matrices [11], which automatically achieves forward-backward ave-
raging of the data. After forming measurement vectors

1:
~o,o,..., o(n)
Zl,o,...,o(n) 1
ZMI–l ,0,...,x(n) =

o(n)
*M1-l,l,...,O(n)

eCM (3)

1*MI–l, Mz—1,..., MR–2(n)

ZM, –l,Mz–l,...,Ml( Tt)t) 1

from the scalar measurements in (l), the data matrix X c CMx~ is
constructed by taking N measurement vectors, n = 1,2,. ... N,
as its columns. If only a single vector x(n) is available (N = 1),
an R-dimensional extension of the 2-D smoothing concept presented
in [6] can be used to “create” more snapshots artificially.

Let us deti~e left II-real matrices[11, 5] as matrices Q E CM ‘M
satisfying IIMQ = Q, where IIM is the M x M exchange matrix with
ones on its antidiagonal and zeros elsewhere. Likewise, ZM denotes



the identity matrix of size ikf x M. Moreover, an ovcrbar denotes
complex conjugation without transposition. The unitary matrix

-[

1, 0 j Iq

‘2’+’ = k ;:
$ 0’ 1 (4)

–j 11~

for example, is left II-real of odd order. A unitary left II-real matrix
of size 2q x 2q is obtained from (4) by dropping its center row and
center column. More left II-real matrices can be constructed by post-
mrrltiplying a left II-real matrix Q by an arbitrary real matrix R, i.e.,

every matrix Q R is left H-real.

In the first step of Unitary ESPRIT [8, 9, 14], forward-backwwd
averaging is achieved by transforming the complex-valued data ma-
trix X into the real-valued matrixl

T(X) = Q: [ X IIM~IINI ] Q2~ CIRMX2N.

Its d dominant left singular vectors E, c IRMx d are determined
through a real-valued SVD of ‘T(X) (square-root approach). Alter-
natively, they can be computed through a real-valued eigcndccompo-
sition of T(X) ’.?_(X)H E IRMXM (covariance approach). Theo, R
real-valued invariance equations are formed,

K(r) IEs T. z K(r)2Es e lR’’’rxd, 1< r < R, (5)

where the R corresponding pairs of selection matrices are defined as

K(,)] = 2. Re{Qfir.l(,Jz Q,w}

K(r)2 = 2. lm{Q~rY(~Jz Q~}.

Here, the matrices J(r)z of size m, x i“vlare given by

J(.)2 =zrvrR C3ZA4R., 8.. .@lzAI.+l @~””) @IMF_, @... @IAtl,

where @ denotes the Kronecker matrix product,

~, = ivf(itfr – 1)
1 (M, – 1)

and J~””) = (M, – 1) [0
M. ‘

IM. -] ].

The R invariance equations (5) are solved independently via least
squares or total least squares or jointly via an R-dimensional extension
of structured least squares [7], yielding R real-valued matrices Y. E
IRdxd, 1 < r < R. Note that these matrices are not necessarily
symmetric: –

In the noiseless case or with an infinite number of experiments N,
the R solutions Y. of (5) have real-valtrcd eigenvaloes and share the
same set of real-valued eigenvectors. More specifically, they admit
the following eigendecompositions

T, = T’nrT-l ‘ith‘r=dia’{’an($x=l“)
1 ~ ~ < R. Notice first that all the matrices in (6) are real-valued.
Secondly, the eigenvalues of Y., i.e., the diagonal elements of Q,,
contain the desired frequency information. Thirdly, if the matrix of
eigenvectors T E iRdxd In the spectral decompositions of Y, is the
same for all r, 1 ~ r < R, the diagonal elements of the matrices Q,
and, therefore, also the desired frequencies in (2) arc automatically
paired.

In practice, though, only a finite number N of noise-corrupted ex-
periments (or measurements) is available. Therefore, the R matrices

1If the the left I_-real matrices QM and Q2N are chosen according

to (4) and M is even, an efficient computation of the transformation
‘T(X) c IRM x 2N from the complex-valued data matrix X only requires
M . 2N real additions and no multiplication [5],

T, do not exactly share the same set of eigenvectors. To determine
the set of eigenvectors only from one of the T. is, obviously, not
the best solution, since this strategy would rely on an arbitrary choice
and would also discard information contained in the other R – 1
matrices. Moreover, each of the Y? might have some degenerate
(multiple) eigenvahres, while the whole set T,, 1 < r < R, has
well determined common eigenvectors T (for N + co or;: + O).
Thus, from a statistical point of view, it is desirable, for the sake
of accuracy and robustness, to compute the “average eigenstructure”
of these matrices [3]. In the 2-D case, automatic pairing can be
achicvcd by calculating the eigenvalues of the “complexified” ma-
trix Y] +jYj E Cd’d, cf. the derivation of 2-D Unitary ESPRIT
in [8, 9, 14]. If, however, R > 2, this “trick” has to be extended to
the R-dimensional case. To this end, we will present a Jacobi-type
method to calculate a simultaneous Schur decomposition (SSD) of
several matrices.

4. Simultaneous Schur Decomposition (SSD)

4.1. Minimization Task

Recall that the eigenvaltres of real-valued nonsymmetric matrices can
efficiently be computed through an eigenvalue-revealing real Schur
decomposition [4]. In the noiseless case or with an infinite number
of experiments N, the new SSD of the R matrices Y,, 1 < r ~ R,

yields R (real-valued) upper triangular matrices, that exhi~t the au-
tomaticallyy paired eigenvalues on their main diagonals. Under the
assumption of additive noise and a finite number of experiments N,
an orthogonal similarity transformation might not be able to pro-
duce R upper triangular matrices simultaneously, since the R “noisy”
matrices do not share a common set of eigenvectors. In this case,
the resulting matrices should be “almost” upper triangular in a least
squares sense as explained in the sequel.

To derive an appropriate algorithm, let L(Y, ) denote an operator
that extracts the strictly lower triangular part of its matrix-valued
argument by setting the upper triangular part and the elements on the
main diagonal to zero. Then, we want to minimize the cost function

R

(7)
,=1

over the set of all orthogonal matrices 63 of size d x d. As usual, II.IIF
denotes the Frobenius-norm.2

4.2. Jacobi-Type Algorithm

In Jacobi-type algorithms, the orthogonal matrix @ is decomposed
into a product of elementary Jacobi rotations

1 0 0

:“‘1
.........0

,,.
,:

0 ... c . . . s ... 0
@ .,,~p= ; . .

0 . . . —8 . . . c ... 0
,...,.

0 ... 0 ... 0 ... 1

(8)

2If all the Y. were symmetric, the minimization of (7) would achieve
an approximate simultaneous diagrmalization of these matrices. An efficient
Jacobi-type technique to achieve such an approximate simultaneous diagonali-
zatimrhas been presented in [2, 3]. This algorithm, however, is not applicable
in our case, since the T, are not symmetric. Therefore, the minimization of
(be sum of the off-diagonal norms of these R matrices via a sequence of simul-
taneous orthogonal transformations as discussed in [2, 3], would not reveaf
the desired “average eigenstmcture” of these non-symmetric matrices.



such that and cti~(a, b)= [ a.b a2–b2 O a2–b2 –a. b]T.

(9)

#of sweeps 9=1 P=l

Jacobi rotations @qP are defined such that all diagonal elements of
@lqp are 1 except for the two elements c in rows (and columns) p
and q. Likewise, all off-diagonal elements of t3gp are O except for
the two elements s and –s, cf. (8). The real numbers c = cos O and
s = sin O are the cosine and sine of a rotation angle 0, In the sequel,
we describe a procedure to choose the rotation angle O at a particular
iteration such that the cost function ~ (0) is decreased as much as
possible. To this end, observe that, at each iteration, the R real-valued
matrices Y, are transformed according to

It is easily seen that the orthogonal transformation (10) changes only
elements of Y, that appear in rows and columns p and q. More
specifically, the entries of Y: changed on its strictly lower triangular
part L(Y: ) are given by

Jp = (r)Cupk (?)
P

— Svqk , l<k<p

J;)f — (.) (.)
q Supk + Cuqk , l<k <q, ~#P

v:)’ – s (cv~p) _ Sv$)) + C(cv$) – s~$))—

(r)f
Vkp =

(r)Cvkp (r)— Svkq , p<k~d, ~#q

(r)! –
‘kq —

(p) (r)Svkp + Cvkq , q<k <d.

“)’ denote the (k, /)-entries of the matriCeS r.Here, v~) and Vkl
and Y;, respectively. Recall that on]y L(T; ) contributes to the
cost function (7). Therefore, the change of this cost function can be
expressed as

A+ (@qP) = 5 (IW)IK - Wr)ll;) (11)
,=1

R q–1

——
x(

v:)” + ~ (v:)” + ?J$”
)

r=l k=(p+l)

q–1

_v$)’ _ x( v(;)’ ))+Vy ,q
k=(p+l)

where we have used the fact that

V(;)IZ
P + Vyrz = vy’ + v:;)’, 1< k < p,

and V$)’2 + Vkg(r)fz = ~:p)z + Vfq)’, q<k~d.

Differentiating (11 ) with respect to 0, using the abbreviation t =
tan Owhichimpliesc = COSI!J= l/~, s = sinfJ = t/~,
and multiplying the result by (1 + t’)2/2, yields the fourth order po-
lynomial

p(t) =

with c(”) = C$p)+

~(r) –
qP —

1 t t’ tx t41
*–1

~ (cadd(t$b$)

k=(p+l)

R

D(’) (12)
.=1

—44)4))) ,

The cri[ical points of A@ (@qp ) in ( 11) are the roots of the polynomial
p(t) in ( 12). If the coefficient of t4in (12), i.e., the last component of

the coefficient vector ~~=1 c(’), equals zero, p(t) reduces to a third

order polynomial. Then, t= m is also a critical point3 of A@ (@qP).
Notice that only the real-valued roots of the polynomial p(t) in (12)
yield valid options for the desired orthogonal rotation @q=. From
these possibilities, we choose the the value of t(or the corresponding
rotation angle 0) that minimizes (11). However, we only use the
corresponding elementary Jacobi rotation @qp if

A@(@,p) <0,

ie,, the chosen rotation reduces the cost function. Otherwise, no
rotation is applied as this particular iteration step. Such a strategy is
closely related to the one-dimensional Jacobi-type methods discussed
in [IO],

5. 3-D Unitary ESPRIT for Joint 2-D Angle and
Carrier Estimation

As a 3-D application of the new simultaneous Schur decomposi-
tion (SSD), consider a uniform rectangular array consisting of Ml x
A42 identical antennas lying on a rectangular grid in the z-y plane.
The inter-element spacing in x- and y-direction will be called A=
and AU, respective] y. Incident on the array are d narrowband planar

Figure 1: Definitions of azimuth (– 180° < 41 ~ 180°) and elevation
(0° ~ Oi ~ 90°)

wavefronts with speed of propagation c, azimuth #i, elevation 9i,
and carrier frequency ~i, 1 < i < d. Let ~i = cos & sin Oi and

. .
vi = sln ~i Sirs ~i denote the direction cosines of the ith source re-
lative to the x- and y-axes, respectively (Fig. 1). For each source,

r (1,1 d,men,bn)

L

t (3rd d,m.nswn]

!I (2nd dlmensk.m)

Figure 2: 3-D Unitary ESPRIT for joint 2-D angle and carrier estima-
tion wing a URA of 2 x 2 elements and M3 = 10 (temporal) snaps-
hots. Temporal smoothing with L = L3 = 8 subarrays, each containing
kf,,,~, = A43– Lx + 1 = 3 snapshots, is performed along the third (the tem-
poral) dimension.

the two-dimensional angular position and the corresponding carrier
frequency have to be estimated simultaneously. If lvf3 snapshots are
observed at each sensor, 3-D Unitary ESPRIT with SSD can handle

3Obviously, t = co corresponds to the rotation angle 0 = 7r/2. Altern-
atively,one could consider t = –co. Notice that t = co and t = –m lead to
the same change of the cost function (11).



F@-e 3: Comparison of 3-D Unitary ESPRIT with and without the simokuwous Schur decomposition (SSD). Temporal smoothing with 8 subarrays was
performed along the third (the temporal) dimension (d = 4, R = 3, A41 = 2, AIz = 2, lkfs = 10, N = 1, ‘T = 500 trials).

this task. In this case, N = 1, and the R = 3 dimensional frequency

vectors (2) have the components

where Ts denotes the sampling interval. Since only one experiment
(N = 1) is available, smoothing should be used as a preprocessing
step. In most applications, it fairly easy to collect a large number
of temporal snapshots Lft, whereas it would be significantly more
expensive to increase the number of sensors in either the z- or the
y-direction, i.e., Lfl or l.fz. We, therefore, suggest to use smoothing
only along the third, the temporal dimension as illustrated in Fig. 2.

Simulations were conducted with c1= 4 uncorrelatcd wavefronts
and the following parameters: MI = 2, JM2 = 2, IVf3= 10,

p, = 7,[ 0.05 –0.5 0.8 ]~, W2 = m[ 0.5 0.5 0.8 ]~,

/.43= 7f[ 0.5 0.5 0.2 ]T, p4 = 7r[ 0.0 0.2 0.2 ]*.

Temporal smoothing with 8 subarrays, each containing 3 snapshots,
was performed along the third (the temporal) dimension. As an ad

hoc alternative to the SSD, we have also computed the eigendecompo-
sition of Y1 and applied the resulting eigenvectors to Yz and YJ as
suggested for the 2-D case in [12]. Let fiik E R3 denote the estima-
ted frequency vector of the ith source obtained at the kth run. Sample
performance statistics were computed from T = 500 independent

triafs as

z = 1, 2,3,4. The resulting RMS errors for sources 1, 2, 3, and 4 are

depicted in Fig. 3, which clearly illustrates that the SSD outperforms
the ad hoc approach (3-D Unitary ESPRIT without SSD). Using the
same parameters as before, we have also plotted the evolution of the
cost function @(@), defined in (7), for different SNRS (Fig. 4). As
expected, the value of the cost function at convergence indicates the
strength of the additive noise. Only without additive noise, the three
matrices Y,, r = 1,2, 3, share precisely the same eigenvcctors, and
the cost function ~(~) can, therefore, be driven to zero.
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