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Abstract. Although segmentation and registration are usually consid-
ered separately in medical image analysis, they can obviously benefit a
great deal from each other. In this paper, we propose a novel scheme of si-
multaneously solving for segmentation and registration. This is achieved
by a maximum a posteriori (MAP) model. The key idea is to introduce
an additional hidden Markov random vector field into the model. Both
rigid and non-rigid registration have been incorporated. We have used a
B-spline based free-form deformation for non-rigid registration case. The
method has been applied to the segmentation and registration of brain
MR images.

1 Introduction

The large number of segmentation and registration methods found in the lit-
erature shows that these are two of the most studied topics in medical image
analysis. However, most existing work considers them separately, even though
they are closely related: the solution of one can greatly assist in the computation
of the other. Using segmentation results can reduce the influence of noise on the
original images and lead to improved registration. In the case that one image
scan presents rather subtle information about the subject to be segmented, sig-
nificant improvement may be obtained by combining information from images
of the same subject acquired at different times or under different conditions. In
order to use this information, images need to be perfectly aligned.

Until recently, little research has been done to simultaneously estimate the
segmentation and registration problems in a single framework. Yezzi [2] proposed
an active contour approach, but it is only suited to single object well-defined
images with relatively large structures. Wyatt [4] used a method that applies
Markov random fields in the solution of a MAP model of segmentation and reg-
istration. However, it is restricted to rigid registration, and its hard-assignment
segmentation makes it vulnerable to noise.

In this paper, we present a novel MAP model for simultaneous segmentation
and registration (SSR). We include a hidden Markov random vector field into
the model to improve the performance of the segmentation method. We also
incorporate B-spline based free-form deformation (FFD) to cope with the non-
rigid registration.
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2 Method

We have two images I and J , and we assume J corresponds to some unknown
geometric transformation of reference image I. “Segmentation”, or the labelling
of each pixel to one tissue type can be regarded as a model of the underlying
anatomy. I and J can be interpreted as a realization of a random process that
corrupts the “Segmentation”, e.g. by Gaussian noise. The problem can be for-
mulated as follows: given image I and J , we wish to simultaneously estimate
the label fields f of the images and recover the geometric transformation T that
registers the two images. The MAP estimation is to find f and T to maximize
P (f, T |I, J).

2.1 Hidden Vector Field

We assume that there are M regions; discrete label f(r) indicates to which region
pixel r = (xr, yr) belongs. As noted above, the relationship between an image
and its segmentation can be defined in terms of a Gaussian noise distribution:

P (I|f) =
∏

r∈ΩI

vf(r)(r) . (1)

where ΩI is the lattice of sites of I and each M -vector v(r) is defined by:

vk(r) =
√

γ

π
exp[−γ|I(r) − θk|2] . (2)

Here, γ and θ are image parameters that depend on the noise variance and mean
intensity value of each class. One can find the optional estimate for f by applying
a classical MRF model and Bayesian MAP estimation [5].

Marroquin [3] proposed a different probabilistic model for the generation of
label field to overcome the difficulties with classical MRF models like sensitive
to noise and initialization. Instead of the conventional 1-step procedure, he pro-
posed a 2-step probabilistic model, with an additional hidden Markov random
vector field p: each vector p(r) indicates the probability the pixel r belongs to
one of the regions given the intensity of that pixel, and it takes values on the
M -vertex simplex SM :

SM = {u ∈ RM :
M∑

k=1

uk = 1, uk ≥ 0, k = 1, ..., M} . (3)

Then, the optimal estimate for f can be calculated from p.

2.2 General Framework

We incorporate the Markov random vector field p into our framework. To obtain
the optimal estimator f∗ for the label field and T ∗ for transformation, we follow
the steps:
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1. Find the MAP estimators p∗, T ∗ for p, T : p∗, T ∗ = arg maxp∈SN
M

,T

P (p, T |I, J)
2. Determine f∗(r) = arg maxf(r) P (f |p = p∗, I) = arg maxk p∗

k(r)

The first step itself is a 2-step procedure, in which the best T is found given
the current estimate for p, then the best estimate for p is found, given the current
estimate for transformation T :

1. Find an initial estimate p̄ for p by individual segmentation;
2. Repeat until convergence or often enough:

(a): Set T̄ = arg maxT P (T |p̄, I, J)
(b): Set p̄ = arg maxp P (p|T̄ , I, J)

We now analyze step (a). We consider image I to be the reference image,
transformation T to be a spatial mapping from I to J . Using Bayes’ rule, we
have:

P (T |p̄, I, J) ∝ P (I|p̄)P (J |p̄, T )P (T ) . (4)

In order to maintain spatial coherence and smoothness, the transformation
T (r) may be required to be similar to its value at the spatial neighbors. We
assume a Gibbs distribution on the expected deformations: P (T ) = exp(−E(T )),
where E(T ) is T in the form of an energy. The likelihood of the observations can
be rewritten:

P (J |p̄, T ) =
∏

r∈ΩI

P (J(T (r))|p̄) . (5)

For a Gaussian noise distribution, we have:

p(J(T (r))|p̄) =
M∑

k=1

wk(T (r))p̄k(r) = w(T (r)) · p̄(r) . (6)

where

wk(T (r)) =
√

γ

π
exp[−γ|J(T (r)) − θk)|2] . (7)

Finally we get:
P (T |p̄, I, J) ∝ exp[−U(T )] . (8)

where
U(T ) = −

∑

r∈ΩI

log(w(T (r)) · p̄(r)) + E(T ) . (9)

Step (a) is equivalent to minimizing of U(T ).
For step (b):

P (p|T̄ , I, J) ∝ P (I|p)P (J |p, T̄ )P (p) . (10)

Since p is Markovian, P (p) can be expressed as P (p) = exp(−V (p)), where, for
example,

Vrs(p(r), p(s)) = λ|p(r) − p(s)|2 = λ

M∑

k=1

(pk(r) − pk(s))2 . (11)

where λ is a positive parameter, and < r, s > are neighboring sites in ΩI .
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So, we get:

P (p|T̄ , I, J) ∝ exp[−U(p)] . (12)

with

U(p) = −
∑

r∈ΩI

log(v(r) · p(r)) −
∑

r∈ΩI

log(w(T̄ (r)) · p(r)) +
∑

C

VC(p) . (13)

Step (b) is then equivalent to minimizing of energy U(p). we use iterative
gradient descent method for optimization of both T and p. Here, p(r) must be
projected back into SM .

2.3 The Representation of Transformation

For the case where T is a rigid transformation, we represent it by a rotation
matrix A and a translation vector c: T (r) = Ar + c. In two dimensions, the
rotation matrix A depends upon a single angle α. Since for a rigid registration,
all the pixels undergo the same transformation, it is sufficiently smooth for E(T )
to be dropped, so we can set it to zero. By minimizing U(T ), we get parameters
α, c to represent T̄ .

For non-rigid transformation, we represent T using a combination of a global
transformation and a local transformation:

T = Tglobal + Tlocal . (14)

The global transformation is represented by a rigid transformation, while for
and the local transformation, we use a B-spline based FFD model [1]:

Tlocal(r) =
3∑

m=0

3∑

n=0

Bm(u)Bn(v)Φi+m,j+n . (15)

where Φ denotes lattice of control points, i, j denote the indices of the control
points and u, v correspond to the relative positions of r in lattice coordinates.
The lattice of control points is defined as a grid with uniform spacing which is
placed on the underlying reference image.

For Tglobal, the E(T ) can be dropped, and for Tlocal, we may use a 5 pixels
neighborhood clique C: E(T ) =

∑
C VC(T ) where

∑

C

VC(T (r)) = 2(T (xr, yr+1)+T (xr − 1, yr)−T (xr, yr)−T (xr − 1, yr + 1))2

+ (T (xr − 1, yr) + T (xr + 1, yr) − 2T (xr, yr))2

+ (T (xr, yr − 1) + T (xr, yr + 1) − 2T (xr, yr))2 . (16)
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3 Experiments

In this section, we use brain MR images to illustrate the performance of our
approach of simultaneous segmentation and registration presented above.

In order to compare the algorithms, we need to establish a performance
index, which should be objective and quantitative. We propose the following
performance index ξ:

ξk =
2VGPk

VPk + VGk

where VGPk denotes the total number of pixels that were correctly assigned to
class k by a given procedure; VPk is the total (correct + incorrect) number of
pixels belonging to class k by this procedure and VGk denotes the total number
of pixels belonging to class k in the ground truth. Higher performance index
indicates better segmentation result here.

Our initial experiments are on brain MR images provided by Brainweb [6]. We
segment the images into 3 tissue classes in the brain: cerebrospinal fluid (CSF),
gray matter (GM), and white matter (WM). Our first experiment is on images
with known rigid transformation between them. We make a transformation on
zero noise brain image with 5.00 degree rotation and 11.0 pixels translations in
both directions. Various amount of zero-mean Gaussian white noise are indepen-
dently added to the original and transformed images to produce the observed
images I and J . The test images, together with their single and SSR results are
shown in Fig. 1. We compare these two results with our performance index: as
can be seen from Table 1, in each tissue class, the performance index of SSR
is always higher than that of the single segmentation. The recovered transfor-
mation is 5.03 degree and the translations in two direction are 10.7 and 10.4
pixels.

Our second experiment is on images with an unknown non-rigid transforma-
tion: we take two different slices of brain MRI as I and J ; the image experimental
results are shown in Fig. 2. We can see from the performance index in Table 2
that the SSR gives more correct classification for pixels in each class than the sin-
gle segmentation. The recovered transformation is represented by transforming
the floating image into the reference image domain, since no real transformation
ground truth can be provided here, we can only get a visually qualitative im-
pression of our registration result. We aim to study how to evaluate non-rigid
registration methods later.

Table 1. Performance index comparison between single and SSR segmentation for
experiment1

tissue class CSF GM WM

single 0.893 0.869 0.930
SSR 0.894 0.874 0.937
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Fig. 1. Simultaneous segmentation and registration (SSR) experiment on rigid reg-
istration. (a)reference image I. (b)floating image J. (c)segmentation result of image I
without SSR. (d)segmentation result with SSR. (e)segmentation ground truth in image
I domain. (f)transformation of floating image to reference image using rigid registra-
tion.
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Fig. 2. Simultaneous segmentation and registration (SSR) on non-rigid registration.
(a)reference image I. (b)floating image J. (c)segmentation result of image I without
SSR.(d)segmentation result with SSR. (e)segmentation ground truth in image I domain.
(f)transformation of floating image to reference image using non-rigid registration.
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Table 2. Performance index comparison between single and SSR segmentation for
experiment2

tissue class CSF GM WM

single 0.882 0.888 0.939
SSR 0.890 0.892 0.942

4 Summary

In this paper, we have developed a framework to achieve simultaneously seg-
mentation and registration to make the two problems’ solutions facilitate each
other. We use a hidden Markov measure vector field to make the interactions
between these two problems possible. It is used for segmentation step to label
each pixel with highest probability of certain tissue type and for registration step
to act as a key element in similarity measure. For reason of space, we have only
illustrated this framework to brain MR images for both rigid and non-rigid regis-
tration cases, with promising results for both segmentation and registration: the
segmentation results achieved by fusion of the images performs better than the
segmentation results got from single image, meanwhile, using the segmentation
results also produces a good registration.
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