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S U M M A R Y

Interpolation and random noise removal is a pre-requisite for multichannel techniques because

the irregularity and random noise in observed data can affect their performances. Projection

Onto Convex Sets (POCS) method can better handle seismic data interpolation if the data’s

signal-to-noise ratio (SNR) is high, while it has difficulty in noisy situations because it inserts

the noisy observed seismic data in each iteration. Weighted POCS method can weaken the

noise effects, while the performance is affected by the choice of weight factors and is still unsat-

isfactory. Thus, a new weighted POCS method is derived through the Iterative Hard Threshold

(IHT) view, and in order to eliminate random noise, a new adaptive method is proposed to

achieve simultaneous seismic data interpolation and denoising based on dreamlet transform.

Performances of the POCS method, the weighted POCS method and the proposed method

are compared in simultaneous seismic data interpolation and denoising which demonstrate

the validity of the proposed method. The recovered SNRs confirm that the proposed adaptive

method is the most effective among the three methods. Numerical examples on synthetic and

real data demonstrate the validity of the proposed adaptive method.
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1 I N T RO D U C T I O N

Observed seismic data is always irregularly sampled in spatial coor-

dinates due to factors such as presence of obstacles, forbidden areas

and feathering. Elimination of dead shots and dead traces in the

processing stage, is also a major reason for irregularity of observed

seismic data. Besides, the observed seismic data always contains

random noise because of effects from acquisition equipments or

the acquisition environment. The incomplete noisy seismic data

can affect the performances of multichannel techniques, such as

surface-related multiple elimination (SRME), wave equation based

migration and inversion. Therefore, seismic data interpolation and

random noise attenuation is an essential step.

Seismic interpolation methods can be divided into four categories

(Gao et al. 2012; Wang et al. 2014b): signal analysis and mathe-

matical transform based methods (Naghizadeh & Sacchi 2010b; Xu

et al. 2010; Naghizadeh & Innanen 2011; Gao et al. 2012; Wu et al.

2013; Zhang et al. 2013; Xue et al. 2014); prediction filters based

methods (Spitz 1991; Naghizadeh & Sacchi 2007); wave equation

based methods (Ronen 1987) and rank reduction based methods

(Gao et al. 2013; Kreimer et al. 2013; Ma 2013). Missing traces

and random noise can increase the rank of matrix which is com-

posed of seismic data at a given frequency, and the interpolated data

can be obtained through rank reduction. The least rank, affected

by the number of linear events in the window of analysis, should

be determined before interpolation and would affect the final per-

formance (Oropeza & Sacchi 2011; Gao et al. 2013; Ma 2013).

Methods based on wave equation always require distribution of un-

derground parameters and are computationally expensive (Ronen

1987). Methods based on prediction filters, use the predictability of

linear events in the frequency–space domain to interpolate aliased

high frequency data with filters derived from low frequencies (Spitz

1991; Naghizadeh & Sacchi 2007; Gao et al. 2012). Methods based

on mathematical transform are easy to handle and have drawn much

attention. Fourier based methods (Gao et al. 2010; Naghizadeh &

Sacchi 2010b; Xu et al. 2010; Naghizadeh & Innanen 2011; Gao

et al. 2012; Zhang et al. 2013) can handle linear or quasi-linear

events suitably, but they should be handled window by window for

curved events. Radon transform based methods (Trad et al. 2002;

Yu et al. 2007; Wang et al. 2010; Xue et al. 2014) can be divided into

three categories: linear radon, parabolic radon and hyperbolic radon

based methods, while only linear and parabolic radon transforms

are widely used because they are time-invariant and can be imple-

mented in frequency domain efficiently. Curvelet transform based

methods (Hennenfent & Herrmann 2008; Herrmann & Hennenfent

2008; Naghizadeh & Sacchi 2010a; Yang et al. 2012; Shahidi et al.
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2013) can handle curved seismic events suitably. In order to use

the prior information of curvelet coefficients, Mansour et al. (2013)

adopted the weighted one-norm minimization in which corrections

between locations of significant curvelet coefficients are applied to

interpolate the unknown seismic data. While curvelet transform is a

mathematical transform which has big redundancy and is time con-

suming especially for large scale seismic data. Tight frame based

method (Liang et al. 2014) does not rely on fixed basis and its atom

is determined through self-learning. But it is time consuming be-

cause a bank of compactly supported filters should be obtained first

from observed seismic data through self-learning, which limits its

wider applications. Dreamlet transform (Geng et al. 2009; Wu et al.

2013; Wang et al. 2014b) uses a physical wavelet as the basic atom

that satisfies wave equation automatically, and can represent seis-

mic data sparsely and efficiently compared with curvelet transform

(Wang et al. 2014b). Therefore, dreamlet transform is adopted as a

sparse transform to decompose seismic data in this paper.

Random noise in the observed seismic data can affect the

performances of interpolation methods, therefore, many authors

study the random noise attenuation algorithms (Liu & Chen 2013;

Beckouche & Ma 2014; Chen & Ma 2014). While most random

noise attenuation methods take advantage of the predictability of

signals, the irregularity of the observed seismic data can affect this

predictability and lead to unsatisfactory denoised results. Since the

missing traces in the observed seismic data can affect the final per-

formance of random noise attenuation, simultaneous interpolation

and denoising methods are studied in (Oropeza & Sacchi 2011;

Naghizadeh 2012; Kumar et al. 2013). A mask function was de-

signed based on the dominant dips identified by an angular search

in the f–k domain (Naghizadeh 2012), which is suitable for linear

or quasi-linear events. It should be handled window by window

for complicated events in real case studies. A rank reduction algo-

rithm based on multichannel singular spectrum analysis (MSSA)

was proposed for simultaneous reconstruction and random noise

attenuation (Oropeza & Sacchi 2011). The spatial data at a given

temporal frequency is organized into a block Hankel matrix, which

is a matrix of rank k in ideal conditions where k is the plane waves in

the window of analysis. The missing traces and additive noise can

increase the rank and random noise elimination and seismic data

interpolation can be achieved through rank reduction using random

singular value decomposition (R-SVD). But it is still just suitable

for linear or quasi-linear events. Kumar et al. (2013) exploited the

low rank structure of seismic data directly in midpoint-offset domain

and constructed a functional with nuclear norm minimization for si-

multaneous interpolation and random noise attenuation. Solving the

functional requires a projection onto the nuclear norm ball in each

iteration by performing a SVD and then thresholding the singular

values. SVD is time consuming, and in order to improve the effi-

ciency, factorization-based approach to nuclear norm minimization

was used, which should first parametrize the data as the product

of two low rank factors which may affect the final performance.

Most interpolation methods use low-rank as a constraint for noise

attenuation and interpolation because it has all the information of

the original noise-free data. Therefore, Habashy et al. (2011) used

this idea to compress source-receiver data and did full waveform in-

version based on source–receiver compression strategy efficiently.

Currently, most full waveform inversion methods still depend on

the complete seismic data with high SNR, therefore it is essential

to interpolate and denoise observed seismic data, simultaneously.

Projection Onto Convex Sets (POCS) method is an efficient

method for seismic data interpolation which belongs to the trans-

form based methods. As it cannot handle noisy data properly, a

new adaptive method based on the iterative hard threshold (IHT)

method is proposed to overcome that defect in this paper. The POCS

method proposed by Bregman (1965), was used in image reconstruc-

tion (Stark & Oskoui 1989; Wang et al. 2014a) and was introduced

into irregular seismic data interpolation by Abma & Kabir (2006).

Based on its original idea, many effective strategies are proposed.

Gao et al. (2010) use Fourier transform based POCS method with

an exponential threshold model to obtain interpolated data, and the

performances of different threshold models are compared to further

improve the convergence rate (Gao et al. 2012). Curvelet transform

(Candes et al. 2006), which is a sparse transform and works better

for curved seismic events compared with Fourier-based methods,

is also used (Yang et al. 2012; Zhang & Chen 2013). Dreamlet

transform is also used for seismic data interpolation with the POCS

method (Wang et al. 2014b) and the performance is better than

curvelet-based method. While the POCS method has difficulty in

noisy data interpolation, because it inserts the noisy observed data

in every iteration, and in order to weaken the noise effects, the

weighted strategy is used to reconstruct seismic data (Gao et al.

2012). However it still reinserts some random noise into the recon-

structed seismic data, affecting the final performance. Besides, the

performance is unsatisfactory when the first few iteration solutions

are far from the real solution and the value of the weight factor is

lower. In order to overcome these defects, a new adaptive method

is proposed based on the IHT method, taking advantage of thresh-

old strategy to eliminate random noise (Daubechies et al. 2004;

Herrmann et al. 2007).

In this paper, defects of the POCS and the weighted POCS meth-

ods are analysed. The POCS method has an implicit assumption that

observed seismic data has high SNR, while observed data always

contains random noise which deviates from this assumption. The

weighted POCS method still reinserts some random noise, and the

performance is unsatisfactory when the first few iteration solutions

are far from the real solution and the value of the weight factor is

lower, because it lacks data residual constraint. Thus a new weighted

POCS method is derived from the IHT point of view, and in order to

eliminate the effects of noise, a new adaptive method is proposed.

In the procedure, jittered undersampling strategy (Hennenfent &

Herrmann 2008) is used to obtain the sampled data and dreamlet

transform is used to decompose seismic data. Numerical examples

on synthetic and real data demonstrate the validity of the proposed

method.

2 T H E O RY

2.1 Dreamlet theory

Dreamlet transform, which is the tensor product of drumbeat trans-

form and beamlet transform (Geng et al. 2009; Wu et al. 2013), is

a sparse transform and can represent seismic data sparsely. In this

transform, the basic atom is a physical wavelet which satisfies the

wave equation automatically (Wu et al. 2011, 2013). The Gabor

frame is used as the local decomposition atom in this paper.

A drumbeat atom is shown in formula (1),

gt̄ω̄(t) = W (t − t̄) e−iω̄t , (1)

which is a time–frequency atom and W (t) is a Gaussian window

function. t̄ and ω̄ are local time and frequency, respectively. Then a
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time-series signal f (t) can be decomposed by drumbeat transform,

shown in eq. (2),

f (t) =
∑

t̄ω̄

〈 f (t), ĝt̄ω̄(t)〉 gt̄ω̄(t) =
∑

t̄ω̄

βt̄ω̄gt̄ω̄(t), (2)

where ĝt̄ω̄(t) is the unitary dual vector of gt̄ω̄(t) determined by

〈ĝt̄ω̄(t), gt̄ω̄(t)〉 = 1 (Chen et al. 2006); βt̄ω̄ is the drumbeat coeffi-

cient, which can be obtained through eq. (3),

βt̄ω̄ = 〈 f (t), ĝt̄ω̄(t)〉 =
∫

f (t)ĝ∗
t̄ω̄(t) dt, (3)

where ∗ stands for complex conjugate.

The expression of a beamlet atom is shown as follows:

bx̄ ξ̄ (x) = B(x − x̄) ei ξ̄ x , (4)

which is a space–wavenumber atom and B(x) is also a Gaussian

window function. x̄ and ξ̄ are space and wavenumber, respectively.

Then a spatial signal h (x) can be decomposed by beamlet transform,

shown in eq. (5),

h(x) =
∑

x̄ ξ̄

〈

h(x), b̂x̄ ξ̄ (x)
〉

bx̄ ξ̄ (x) =
∑

x̄ ξ̄

γx̄ ξ̄ bx̄ ξ̄ (x), (5)

where b̂x̄ ξ̄ (x) is the unitary dual vector of bx̄ ξ̄ (x) determined by

〈b̂x̄ω̄(x), bx̄ω̄(x)〉 = 1 (Chen et al. 2006); γx̄ ξ̄ is the beamlet coeffi-

cient, which subjects to eq. (6),

γx̄ ξ̄ = 〈h(x), b̂x̄ ξ̄ (x)〉 =
∫

h(x)b̂∗
x̄ ξ̄

(x) dx . (6)

Therefore, a basic dreamlet atom can be constructed through

tensor product of drumbeat atom and beamlet atom,

dt̄ω̄x̄ ξ̄ (x, t) = gt̄ω̄(t)bx̄ ξ̄ (x). (7)

Substitute eqs (1) and (4) into eq. (7), and a localized wave-packet

in time–space plane can be constructed,

dt̄ω̄x̄ ξ̄ (x, t) = W (t − t̄)B(x − x̄) e−i(ω̄t−ξ̄ x), (8)

A time–space atom constructed in this way satisfies wave equa-

tion causality automatically, and can represent seismic data sparsely

and efficiently. Fig. 1 shows some of the dreamlet basis, which are

the local basis and can be used to decompose seismic data locally.

Given the dreamlet basis dt̄ω̄x̄ ξ̄ (x, t), dreamlet coefficients ct̄ω̄x̄ ξ̄ ,

which are corresponding to seismic data u (x, t), can be obtained

uniquely,

ct̄ω̄x̄ ξ̄ = 〈u(x, t), d̂t̄ω̄x̄ ξ̄ (x, t)〉 =
�

u(x, t)d̂∗
t̄ω̄x̄ ξ̄

(x, t) dx dt

=
�

u(x, t)ĝ∗
t̄ω̄(t) b̂∗

x̄ξ
(x) dx dt, (9)

where ∗ stands for complex conjugate and d̂t̄ω̄x̄ ξ̄ (x, t) is the unitary

dual frame of dt̄ω̄x̄ ξ̄ (x, t). Then, seismic data u (x, t) can be char-

acterized with the unique dreamlet coefficients ct̄ω̄x̄ ξ̄ and the basis

atoms dt̄ω̄x̄ ξ̄ (x, t),

u(x, t) =
∑

t̄ω̄x̄ ξ̄

〈u(x, t), d̂t̄ω̄x̄ ξ̄ (x, t)〉dt̄ω̄x̄ ξ̄ (x, t)=
∑

t̄ω̄x̄ ξ̄

ct̄ω̄x̄ ξ̄ dt̄ω̄x̄ ξ̄ (x, t).

(10)

2.2 POCS method and its extension

Observed seismic data is always irregular and noisy which can be

connected with complete noise free seismic data using eq. (11),

dobs = Rd0 + η, (11)

where dobs is the observed seismic data, d0 represents the complete

noise free data, η indicates the random noise and R denotes the

sampling matrix which is a diagonal matrix composed of zero and

identity matrix, shown in eq. (12).

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I

O

...

O

I

I

O

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (12)

Each I in eq. (12) corresponds to sampling a trace and each O

corresponds to missing a trace. It is always ill-posed to solve eq. (11)

due to effects of random noise and limited bandwidth of observed

seismic data. Because seismic data can be sparsely characterized in

dreamlet domain, non-constraint objective functional is constructed

as follows,

�(x) =
∥

∥dobs − RDT x
∥

∥

2

2
+ λP(x), (13)

where x represents dreamlet coefficient vector, DT denotes inverse

dreamlet transform, λ is the regularization factor and P (x) indicates

a sparse constraint, such as L0 or L1 norm constraint. Eq. (13) with

L0 norm constraint can be solved using the POCS method with hard

threshold (Gao et al. 2010, 2012; Yang et al. 2012, 2013; Wang

et al. 2014a,b), and the detailed derivation is shown in Appendix A.

The exact formula is shown in eq. (14),

d̃k+1 = dobs + (I − R)DT Tλk

(

Dd̃k

)

, (14)

where d̃k is the kth iterative solution and Tλk
represents the hard

threshold operator performed element-wise which subjects to,

Tλ(xi ) =

{

xi , |xi | ≥ τ

0, |xi | < τ
, (15)

where xi is the ith element of dreamlet coefficient vector x, |•| repre-

sents the absolute value operator and τ =
√

λ is the threshold which

can be determined by the exponential threshold model expressed in

eq. (16),

τ k = τmax ec(k−1)/(N−1), c = ln(τmin/τmax), k = 1, 2, . . . , N ,

(16)
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Figure 1. Basic dreamlet atoms.
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Simultaneous interpolation and denoising 1185

where τmin, τmax are the minimum and maximum threshold which

should be determined according to seismic data.

There is an implicit assumption in the POCS formula that ob-

served seismic data should have high signal-to-noise ratio (SNR)

because of the insertion of observed seismic data. However, ob-

served seismic data is always noisy, therefore some authors use the

weighted strategy in noisy situations (Oropeza & Sacchi 2011; Gao

et al. 2012; Stanton & Sacchi 2013; Yang et al. 2013). Eq. (14) can

be changed into eq. (17) with the weighted strategy,

d̃k+1 = αdobs + (I − αR)DT Tλk

(

Dd̃k

)

, (17)

which could be called the weighted POCS method, and α ∈ (0, 1]

denotes a weight factor determined by the random noise level. Even

if the weighted POCS method can weaken the random noise effects,

it still inserts the random noise contained in αdobs, into the updated

solution which can affect the final accuracy. When the first few

solutions are far from the real solution and the value of the weight

factor α is lower, the interpolation performance is unsatisfactory.

For example, when α tends to 0 (α → 0), the weighted POCS

formula becomes d̃k+1 = DT Tλk

(

Dd̃k

)

, therefore the final result is

unsatisfactory if the first few solutions are far from the true solution

because it lacks data residual constraint. Thus a new weighted POCS

method is proposed in the next part, and in order to eliminate the

effects of random noise, a new adaptive method is proposed.

2.3 A new adaptive method

From the above analysis, the performances of the POCS and the

weighted POCS methods are unsatisfactory because of noisy data

(dobs) insertion or parts of noisy data (αdobs) insertion. As the α

decreases, the inserted components (αdobs) are much less than the

observed data, which leads to the updated solution being far from

the true solution in the first few iterations because the weighted

POCS method lacks the data residual constraint. Therefore, the

performance of the weighted POCS with lower values of α is unsat-

isfactory if the first few solutions are far from real solution. In order

to overcome this defect, we derived a new weighted POCS method

based on the IHT method, and in order to eliminate the effects of

noise, we exchange the order of projection operator and IHT op-

erator to obtain the novel method which is named as an adaptive

method (see Appendix B). The adaptive formula is shown in eq.

(18),

d̃k = αdobs + (I − αR)dk−1

xk = Tλk

(

D
(

d̃k + (1 − α) (dobs − Rdk−1)
))

dk = DT xk

. (18)

The reconstructed data are controlled by α value as well as the

data residual dobs − Rdk−1 which guarantees the solution’s conver-

gence. Compared with the weighted POCS method, the adaptive

method adds a random noise elimination procedure using threshold

strategy after each interpolation procedure, and high SNR seismic

data can be achieved. With the adaptive method, simultaneous seis-

mic data interpolation and denoising can be obtained.

3 N U M E R I C A L E X A M P L E S

First, a four-layer model is designed to prove the validity of

the proposed adaptive method. The weighted POCS method and

the adaptive method are tested in a noise free synthetic dataset
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Figure 2. Complete (left-hand panel) and 50 per cent traces missing (right-hand panel) synthetic data.
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1186 B. Wang et al.

with different α values. The results demonstrate the validity

of the proposed adaptive method and show the defect of the

weighted POCS method with lower α value. Tests on noisy

synthetic data demonstrate that the adaptive method has supe-

riority to the POCS method and the weighted POCS method.

Secondly, numerical examples on real noisy seismic data fur-

ther demonstrate the validity of the proposed method. In the

synthetic and real data examples, 50 per cent traces are miss-

ing based on the jittered undersampling strategy (Hennenfent &

Herrmann 2008).

3.1 Synthetic example

The synthetic data is shown in Fig. 2 (left-hand panel), which in-

cludes 201 traces with 1001 samples per trace. The trace interval

and time sampling interval are 12.5 m and 2 ms, respectively. In-

complete seismic data with 50 per cent traces missing is shown in

Fig. 2 (right-hand panel). The maximum iteration number is set to

50, and the recovered SNR curves are plotted in Fig. 3. Fig. 3 (left-

hand panel) represents recovered SNR curves based on the weighted

POCS method and Fig. 3 (right-hand panel) denotes recovered SNR

curves based on the new adaptive method with different α values.

The definition of SNR is shown below,

SN R = 20 log10
‖d0‖2

/

‖drec − d0‖2
, (19)

where d0 is the original noise free data and drec is the reconstructed

seismic data.

Fig. 3 demonstrates the validity of the proposed method and

points out the defect of the weighted POCS method with lower

values of α if the first few solutions are not correct. The thresh-

olds determined by the exponential threshold model decrease with

iterations, and the first few thresholds are big which makes the

reconstructed seismic data far from the true one in the first few

iterations for the weighted POCS method with lower values of

α. Since it lacks the data residual constraint, and cannot mod-

ify the updated solution into the correct one, therefore the per-

formance is unsatisfactory for lower values of α shown is Fig. 3

(left-hand panel). Fig. 3 (right-hand panel) demonstrates the va-

lidity of the proposed adaptive method which is controlled by

α value as well as data residual. The weight factor (α) only af-

fects the convergence rate, while the final recovered SNR is al-

most the same, and the zoomed SNR curves of Fig. 3 (right-hand

panel) is shown in Fig. 4 which can better describe the convergence

curve.

In order to test the effects of random noise, noisy synthetic data

was used to prove that the proposed method is superior to the POCS

and the weighted POCS methods. The noisy data with SNR 3.95 dB

is shown in Fig. 5 (left-hand panel), and the incomplete one is shown

in Fig. 5 (right-hand panel).

Based on the POCS method, the weighted POCS method

(α = 0.6) and the proposed adaptive method (α = 0.6) to in-

terpolate the noisy seismic data, interpolated seismic data can

be achieved. The interpolated results and corresponding residu-

als are shown in Fig. 6. The residual is defined as the difference

between the interpolated data and the original noise free data, that

is the difference between Fig. 6 (left-hand panel) and Fig. 2 (left-

hand panel), and the minor residual means it’s more superior of a

method.
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Figure 3. Recovered SNR curves with different weight factor α. Left-hand panel: weighted POCS method; right-hand panel: adaptive method.
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Simultaneous interpolation and denoising 1187

Figure 4. Zoomed figure of Fig. 3 (right-hand panel).

Fig. 6 shows that the weighted POCS can weaken random noise

effects to some extent compared with the POCS method, while

the adaptive method is the most effective one which can not only

interpolate seismic data, but also eliminate the random noise using

the threshold operator and its result is consistent with the original

noise free data (Fig. 2 left-hand panel). In order to see the details

of the interpolated seismic data by the three interpolation methods,

we plot single traces of seismic data for better comparisons shown

in Fig. 7. Figs 7(a)–(c) represent the 114th trace, 149th trace and

198th trace, respectively. In each subfigure, the 1st trace is from

the original noise free data, the 2nd trace is from the interpolated

data by the POCS method, the 3rd trace is from the interpolated

data by the weighted POCS method and the 4th trace is from the

interpolated data by the proposed adaptive method. From Fig. 7,

it can be noted that the POCS method cannot handle the noisy

data properly because of insertion of noisy data dobs; the weighted

POCS method can weaken the effects of random noise because it

just inserts parts of the observed data αdobs while the performance is

still unsatisfactory; the proposed method can attenuate the random

noise using the threshold operator and obtain the satisfactory result.

The final recovered SNRs are 6.7, 10.7 and 18.7 dB for the POCS

method, the weighted POCS method (α = 0.6) and the adaptive

method (α = 0.6), respectively.

Tests on this simple synthetic data demonstrate the validity of the

proposed method, thus an application to a real seismic data is given

to further prove its validity.

3.2 Real data application

A marine data is shown in Fig. 8 (left-hand panel), which contains

150 traces and 801 samples per trace. The trace interval is 12.5 m

and the time sampling interval is 4 ms. In order to test the superiority

of the proposed adaptive method, random noise is added onto the

original data, and the noisy data with SNR 6.4 dB is shown in Fig. 8

Figure 5. Noisy seismic data (left-hand panel) and incomplete noisy seismic data (right-hand panel).
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Figure 6. Interpolated results (left-hand column) and corresponding residuals (right-hand column). The top row is for the POCS method, the medium one is

for the weighted POCS method (α = 0.6) and the bottom one is for the adaptive method (α = 0.6).
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(a)                       (b)                       (c) 

Figure 7. Single trace comparisons of interpolated data and original noise free data. (a) 114th trace; (b) 149th trace and (c) 198th trace from seismic data. In

each subfigure, the 1st trace is from original noise free data; the 2nd trace is from interpolated data by the POCS method; the 3rd trace is from interpolated

data by the weighted POCS method; the 4th trace is from interpolated data by the proposed method.
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Figure 8. Complete (left-hand panel) and complete noisy (right-hand panel) seismic data.
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Figure 9. Incomplete noisy seismic data with 50 per cent traces missing.

(right-hand panel) and the incomplete noisy data with 50 per cent

traces missing is shown in Fig. 9.

For convenience of comparisons, the POCS method, the weighted

POCS method (α = 0.6) and the adaptive method (α = 0.6) are

tested with the same threshold, and the maximum iteration is set to

50. The interpolated results and corresponding residuals are plotted

in Fig. 10, and the residual is still defined as the difference between

the interpolated data (Fig. 10 left-hand panel) and the original noise

free data (Fig. 8 left-hand panel).

From Fig. 10 (left-hand panel), we realize that the interpolated

result of the adaptive method is consistent with the original noise

free data (Fig. 8 left-hand panel), while the results of the POCS

and the weighted POCS methods contain some random noise be-

cause of the insertion of noisy data dobs or parts of noisy data

αdobs. From the residuals (Fig. 10 right-hand panel), it can be noted

that the POCS and the weighted POCS methods insert the random

noise which will affect the final SNRs, while the adaptive method

eliminates the random noise with threshold strategy, though there

is minor signal leaking in the random noise elimination proce-

dure. In order to compare the details of the interpolated results

by the three methods, we extract single traces from the interpo-

lated data shown in Fig. 11. Figs 11(a)–(c) represent the 4th trace,

44th trace and 84th trace, respectively. In each sub-figure, the 1st

trace is from the original noise free data, the 2nd trace is from the

interpolated data by the POCS method, the 3rd trace is from the

interpolated data by the weighted POCS method and the 4th trace is

from the interpolated data by the proposed adaptive method. From

Fig. 11, we notice that the POCS method inserts the observed noisy

data dobs which makes the final interpolated data with lower SNR;

the weighted POCS method can weaken random noise compared

with the POCS method because of insertion of parts of the noisy

data αdobs, while the performance is still unsatisfactory; the pro-

posed method can eliminate the random noise using the threshold

operator and obtain the satisfactory result which is consistent with

the original noise free data (Fig. 8 left-hand panel). The final re-

covered SNRs are 8.6, 11.3 and 14.7 dB for the POCS method,

the weighted POCS method (α = 0.6) and the adaptive method

(α = 0.6), respectively.

From Figs 6, 7, 10 and 11, we can conclude that the pro-

posed adaptive method is more effective in simultaneous interpola-

tion and denoising, compared with the weighted POCS method

which is a little superior to the POCS method in weakening

random noise. The recovered SNRs in synthetic and real data

applications demonstrate the validity of the proposed adaptive

method.

4 C O N C LU S I O N

Simultaneous seismic data interpolation and random noise elimi-

nation is achieved based on the new adaptive method and dreamlet

transform. Defects of the POCS and the weighted POCS methods

are analysed for noisy data: the POCS method has an implicit as-

sumption that observed seismic data should have high SNR and has

difficulty for noisy data interpolation; the weighted POCS method

can weaken the random noise effect, while it still inserts some

random noise and its performance is unsatisfactory if the value

of weight factor α is lower. Then, based on the IHT method, the

adaptive method is proposed to interpolate and denoise seismic

data, simultaneously. Numerical examples on synthetic and real

data demonstrate that the interpolated results obtained by the adap-

tive method are better than those obtained by the POCS method and

the weighted POCS method in terms of recovered SNRs. The pro-

posed adaptive method can be applied to obtain interpolated data in

noisy situations, thus simultaneous interpolation and denoising can

be achieved, eventually.

All the interpolated results in this paper are based on jittered

undersampling strategy and cannot handle regular sampled data. If

regular sampling strategy or random sampling strategy with a big

gap is adopted, anti-aliasing strategy should be taken into consider-

ations (Naghizadeh & Sacchi 2010a; Gao et al. 2012; Naghizadeh

2012). Because the random noise is eliminated with threshold strat-

egy, there is minor signal leaking and more strategies should be

considered to protect the weak signal. Therefore, methods which

can achieve simultaneous anti-aliasing interpolation and random

noise elimination with weak signal protection, should be developed

in the future.
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Simultaneous interpolation and denoising 1191

Figure 10. Interpolated results (left-hand column) and corresponding residuals (right-hand column). The top row is for the POCS method, the medium one is

for the weighted POCS method (α = 0.6) and the bottom one is for the adaptive method (α = 0.6).
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1192 B. Wang et al.

(a) (b) (c)

Figure 11. Single trace comparisons of interpolated data and original noise free data. (a) 4th trace; (b) 44th trace and (c) 84th trace from seismic data. In each

subfigure, the 1st trace is from original noise free data; the 2nd trace is from interpolated data by the POCS method; the 3rd trace is from interpolated data by

the weighted POCS method; the 4th trace is from interpolated data by the proposed method.
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A P P E N D I X A : D E R I VAT I O N

O F T H E P O C S M E T H O D

Functional (13) with L0 constraint can be solved through the iterative

hard threshold (IHT) algorithm (Blumensath & Davies 2008, 2009;

Loris et al. 2010). Then, the iterative solution can be obtained by

the IHT method,

xk+1 = Tλk

(

xk +
(

RDT
)T (

dobs − RDT xk

)

)

, (A1)

where xk is the kth iterative solution in the dreamlet domain and

Tλk
is the hard threshold operator performed element-wise which

subjects to,

Tλ(xi ) =

{

xi , |xi | ≥ τ

0, |xi | < τ
, (A2)

where xi is the ith element of dreamlet coefficient vector x, |·| repre-

sents the absolute value operator and τ =
√

λ is the threshold which

can be determined by an exponential threshold model. Seismic data

interpolation is to obtain the whole seismic data in the data domain,

therefore, projecting the updated solution xk+1 onto the convex ob-

servation plane {d |dobs = Rd } can improve the convergence rate.

Then the POCS formula is derived, shown as follows,

d̃k+1 = dobs + (I − R)DT xk+1

= dobs + (I − R)DT Tλk

(

xk +
(

RDT
)T (

dobs − RDT xk

)

)

= dobs + (I − R)DT Tλk

(

Ddk + D
(

RT dobs − RT RDT xk

))

= dobs + (I − R)DT Tλk
(Ddk + D (dobs − Rdk))

= dobs + (I − R)DT Tλk
(D (dobs + (I − R) dk)) (A3)

where dk = DT xk is the solution in data space, d̃k+1 is the solution

after inserting observed data. Sampling matrix R, which is a diag-

onal matrix shown in eq. (12), subjects to R = RT = RT R = RR.

Denoting d̃k = dobs + (I − R) dk , then the POCS formula can be

derived,

d̃k+1 = dobs + (I − R)DT Tλk

(

Dd̃k

)

. (A4)

In fact, the POCS method belongs to two-step methods. In the

first step, we get the updated solution x in the dreamlet do-

main; then, project the solution onto the convex observation plane

{d |dobs = Rd } to accelerate the interpolation in data space domain.

In noisy situations, in order to weaken the random noise effects,

weighted strategy is adopted and the weighted POCS method can

be derived,

d̃k+1 = αdobs + (I − αR)DT Tλk

(

Dd̃k

)

. (A5)

where α ∈ (0, 1] is a weight factor.

A P P E N D I X B : D E R I VAT I O N O F T H E

N E W A DA P T I V E M E T H O D

Appendix A gives the derivation of the POCS method, while it

cannot handle noisy data interpolation properly because of observed

seismic data insertion. Similar with derivation of the POCS method,

we propose a new adaptive method in this Appendix B.

Seismic data interpolation is to obtain the whole seismic data

in the data domain, therefore, projecting the updated solution xk+1

obtained in eq. (A1) onto the observation plane {d |dobs = Rd } can

improve the convergence rate. Since observed data is always noisy,

only parts of observed seismic αdobs are inserted into the updated

solution (A1) using weighted strategy. Then a new weighted POCS

formula is derived, shown as follows,

d̃k+1 = αdobs + (I − αR)DT xk+1

= αdobs + (I − αR)DT Tλk

(

xk +
(

RDT
)T (

dobs − RDT xk

)

)

= αdobs + (I − αR)DT Tλk

(

Ddk + D
(

RT dobs − RT RDT xk

))

= αdobs + (I − αR)DT Tλk
(Ddk + D (dobs − Rdk))

= αdobs + (I − αR)DT Tλk
(D (αdobs + (I − αR) dk

+ (1 − α) (dobs − Rdk))) , (B1)
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where dk = DT xk is the solution in data space, d̃k+1 is the so-

lution after inserting parts of observed data αdobs, and α is a

weight factor. Sampling matrix R, which is a diagonal matrix

shown in eq. (12), subjects to R = RT = RT R = RR. Denoting

d̃k = αdobs + (I − αR) dk , then the new weighted POCS formula

can be derived,

d̃k+1 = αdobs + (I − αR)DT Tλk

(

D
(

d̃k + (1 − α) (dobs − Rdk)
))

.

(B2)

The new weighted POCS method, which is different from the orig-

inal one (eq. (17)), can be controlled by α value as well as the data

residual term dobs − Rdk. Even if α is lower, it can still converge

because of constraint of the data residual. In order to eliminate the

effects of random noise, we exchange the order of the IHT operator

and projection operator and obtain the new adaptive formula,

d̃k = αdobs + (I − αR)dk−1

xk = Tλk

(

D
(

d̃k + (1 − α) (dobs − Rdk−1)
))

dk = DT xk

. (B3)

This adaptive formula can deal with noisy seismic data and can

obtain simultaneous seismic data interpolation and denoising. When

α = 0, the adaptive formula degenerates to IHT method but in data

space domain; when α = 1, it degenerates to the POCS method

plus random noise elimination with threshold strategy. Therefore,

the new adaptive method has more flexibility and can be used in

wider applications.
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