SIMULTANEOUS SIMILARITY OF MATRICES

SHMUEL FRIEDLAND

Let M_n be the set of $n \times n$ matrices over the algebraically closed field k, G_n the general linear group in M_n , $M_{n,m} = M_n \times \cdots \times M_n (m+1 \text{ times})$. G_n acts naturally on $M_{n,m}$ by the conjugation $TM_{n,m}T^{-1}$. For $\alpha = (A_0, \ldots, A_m) \in M_{n,m}$ denote by $\operatorname{orb}(\alpha)$ the orbit of α in $M_{n,m}$,

$$orb(\alpha) = \{\beta \in M_{n,m}, \beta = T\alpha T^{-1} = (TA_0T^{-1}, \dots, TA_mT^{-1}), T \in GL_n\}.$$

It is a well-known problem to classify $\operatorname{orb}(\alpha)$ for $m \geq 1$. See for example [2]. Rosenlicht in [3] outlined a general classification based on the ideas of algebraic geometry. The classification consists of a finite number of steps. In each step we get an algebraic irreducible variety V in $M_{n,m}$ which is invariant, that is $TVT^{-1} = V$ for all $T \in G_n$. Then, we consider $k(V)^G$ —the field of rational functions on V which are invariant, i.e. these functions are constant on $\operatorname{orb}(\alpha)$. It follows that $k(V)^G$ is finitely generated, let us say by χ_1, \ldots, χ_j . Then there exists locally closed algebraic invariant set V^0 in V such that for any $\alpha \in V^0\chi_1, \ldots, \chi_j$ are well defined on $\operatorname{orb}(\alpha)$ and the values of χ_k , $k = 1, \ldots, j$, on $\operatorname{orb}(\alpha)$ determine this orbit uniquely in V^0 .

The purpose of this announcement is to describe explicitly the open invariant varieties V^0 together with the invariant rational functions $\varphi_1, \ldots, \varphi_k$ defined on V^0 such that the values of $\varphi_1, \ldots, \varphi_k$ on $\operatorname{orb}(\alpha)$ determine a finite number of orbits. We also describe some results on orbits in $S_{n,m} = S_n \times \cdots \times$ $S_n (m+1 \text{ times}) (S_n = \text{ the set of } n \times n \text{ complex symmetric matrices})$ under the action of O_n -complex orthogonal group in M_n .

For $\alpha = (A_0, \ldots, A_m)$, $\beta = (B_0, \ldots, B_m)$ let $\operatorname{adj}(\alpha, \beta) \colon M_n \to M_{n,m}$ be a linear operator given by $\operatorname{adj}(\alpha, \beta)(X) = (A_0X - XB_0, \ldots, A_mX - XB_m)$.

We identify $adj(\alpha, \alpha)$ with $adj(\alpha)$. Let $r(\alpha, \beta)$ and $r(\alpha)$ be the ranks of $adj(\alpha, \beta)$ and $adj(\alpha)$ respectively. Then $r(\alpha)$ is the first discrete invariant of $orb(\alpha)$ and it gives the dimension of the manifold $orb(\alpha)$. Suppose that $\beta \in orb(\alpha)$. Then one easily shows that $r(\alpha, \beta) = r(\alpha)$. Fix α and consider all $\xi \in M_{n,m}$ which satisfy the inequality

(1)
$$\chi(\alpha) = \{\xi, r(\alpha, \xi) \le r, \xi = (X_0, \dots, X_m) \in M_{n,m}\}.$$

The set $\mathcal{X}(\alpha)$ is an algebraic set in $M_{n,m}$ which can be given by

$$N(r) = egin{pmatrix} n^2 \ r+1 \end{pmatrix} egin{pmatrix} n^2 & (m+1) \ r+1 \end{pmatrix}$$
 polynomial equations.

Key words and phrases. Simultaneous similarity, invariant functions, symmetric matrices.

© 1983 American Mathematical Society 0273-0979/82/0000-1031/\$01.50

Received by the editors December 22, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 14D25, 14L30, 15A21.

Indeed, in tensor notation, $adj(\alpha, \xi)$ is represented as the following matrix

$$\operatorname{adj}(\alpha,\xi) = (I \otimes A_0 - X_0^t \otimes I, \dots, I \otimes A_m - X_m^t \otimes I)$$

where X^t denotes the transposed matrix of X. Let $f_1(\alpha, \xi), \ldots, f_p(\alpha, \xi), p = N(r)$ be all $(r+1) \times (r+1)$ minors of $\operatorname{adj}(\alpha, \xi)$. Then (1) is given by the equations $f_i(\alpha, \xi) = 0, i = 1, \ldots, N(r)$. Let \mathcal{W}_r be a linear space of all polynomials $p(\xi)$ —in the $(m+1)n^2$ entries of X_0, \ldots, X_m of degree $d \leq r+1$. Denote by $u_1 = u_1(\xi), \ldots, u_{s(r)} = u_{s(r)}(\xi)$ the standard basis in \mathcal{W}_r . Then

(2)
$$f_i(\alpha,\xi) = \sum_{j=1}^{s(r)} \pi_{ij}^{(r)}(\alpha) u_j(\xi), \quad i = 1, \dots, N(r).$$

Put $\pi^{(r)}(\alpha) = (\pi^{(r)}_{ij}(\alpha)), i = 1, ..., N(r), j = 1, ..., s(r)$. Then

$$\rho(\alpha) = \operatorname{rank} \pi^{(r(\alpha))}(\alpha)$$

is the second discrete invariant of $\operatorname{orb}(\alpha)$. Define

(3)
$$V_{r,\rho}^{0} = \{\alpha, \alpha \in M_{n,m}, \operatorname{rank} \operatorname{adj}(\alpha) = r, \operatorname{rank} \pi^{(r)}(\alpha) = \rho\}.$$

Then $V_{r,\rho}^0$ is an open algebraic set in $M_{n,m}$. (It may be empty for some choices of r and ρ .)

Finally, we recall that two $p \times q$ rectangular matrices A and B are row equivalent $(A \sim B)$ if there exists a nonsingular matrix Q such that B = QA. Any $p \times q$ matrix A can be brought to the unique row-echelon form E using the elementary row operations. $E = (e_{ij})$ is characterized by $1 \le p_1 < \cdots < p_{\rho} \le q$, $\rho = \operatorname{rank} E$, since $e_{ip_i} = 1$, $e_{jp_i} = e_{iq} = 0$ for j < i, $q < p_i$ and $i > \rho$. The integers p_1, \ldots, p_{ρ} are called the discrete invariants of E and the entries e_{ij} , $p_i < j, j \neq p_{i+1}, \ldots, p_{\rho}$, for $i = 1, \ldots, \rho$ are called the continuous invariants of E. Once p_1, \ldots, p_{ρ} are specified these invariants are given as well-determined rational functions of entries of E.

THEOREM 1. Assume that $V_{r,\rho}^0$ is nonempty. Let $\alpha, \beta \in V_{r,\rho}^0$. If $\beta \in \operatorname{orb}(\alpha)$ then $\pi^{(r)}(\alpha) \sim \pi^{(r)}(\beta)$. Moreover, there are at most $\kappa = r^{(n^2-r)(mn^2+n^2-r)}$ distinct orbits $\operatorname{orb}(\alpha_1), \ldots, \operatorname{orb}(\alpha_k)$ such that $\pi^{(r)}(\alpha_1), \ldots, \pi^{(r)}(\alpha_k)$ have the same row-echelon form.

SKETCH OF THE PROOF. We first note that if $\beta \in \operatorname{orb}(\alpha)$ then $\pi^{(r)}(\alpha) \sim \pi^{(r)}(\beta)$. Indeed, since $\beta = T\alpha T^{-1}$ the tensor representation of $\operatorname{adj}(\alpha, \xi)$ yields $\operatorname{adj}(\beta, \xi) = T_1 \operatorname{adj}(\alpha, \xi) \operatorname{diag}\{T_1^{-1}, \ldots, T_1^{-1}\}, T_1 = I \otimes T$. The Cauchy-Binet formula implies that any minor of $\operatorname{adj}(\beta, \xi)$ is a linear combination of all $(r+1) \times (r+1)$ minors of $\operatorname{adj}(\alpha, \xi)$ and the coefficients in this dependence are functions of T, i.e. independent of ξ ! Whence the subspace spanned by the rows of $\pi^{(r)}(\alpha)$ contains the rows of $\pi^{(r)}(\beta)$. Interchanging the roles of α and β we get $\pi^{(r)}(\alpha) \sim \pi^{(r)}(\beta)$. Fix α . We then show the existence of a neighborhood $D(\alpha)$ such that the conditions $\beta \in D(\alpha)$ and $\pi^{(r)}(\alpha) \sim \pi^{(r)}(\beta)$ imply that $\beta \in \operatorname{orb}(\alpha)$. For that, in the matrix $\operatorname{adj}(\alpha)$ pick up a nonzero $r \times r$ minor. We then consider the corresponding r linear equations out of $(m+1)n^2$ equations $A_iX - XA_i = 0, i = 0, \ldots, m$. This r-system has $n^2 - r$ free parameters $x_{ij}, (i,j) \in \mathcal{A}(X = (x_{ij}))$. Since X = I is a solution, the above

system has the unique solution X = I whose free parameters are given by $x_{ij} = \delta_{ij}, (i, j) \in \mathcal{A}$. Consider the same r-equations in a more general system $A_iX - XB_i = 0, i = 0, \dots, m$. Thus, there exists a neighborhood $D(\alpha)$ of α in $M_{n,m}$ such that for any $\beta \in D(\alpha)$ the above r-system is linearly independent and has the unique solution $X(\alpha,\beta), x_{ij} = \delta_{ij}, (i,j) \in \mathcal{A}$ with det $X(\alpha,\beta) \neq 0$. Suppose that $\pi^{(r)}(\alpha) \sim \pi^{(r)}(\beta)$. So each $(r+1) \times (r+1)$ minor of $\operatorname{adj}(\beta, \alpha)$ is a linear combination of all $(r+1) \times (r+1)$ minors of $adj(\alpha, \alpha)$ which are equal to zero! So rank $\operatorname{adj}(\alpha,\beta) = \operatorname{rank} \operatorname{adj}(\beta,\alpha) \leq r$. If in addition $\beta \in D(\alpha)$ then rank $\operatorname{adj}(\alpha,\beta) = r$ and the matrix $X(\alpha,\beta)$ must satisfy all $(m+1)n^2$ equalities $A_iX - XB_i = 0, i = 0, \dots, m$. So $\beta \in orb(\alpha)$. Consider finally the variety $\mathcal{X} = \mathcal{X}(\alpha)$. Let $\mathcal{X} = \bigcup_{i=1}^{k} \mathcal{X}_i$ be the decomposition of \mathcal{X} into irreducible components. To this end we show that each χ_i contains at most one orbit. Assume that $\alpha \in \mathcal{X}_1$ and let \mathcal{X}_1^0 be the open manifold of all regular points of \mathfrak{X}_1 . The above arguments prove that $D(\alpha) \cap \mathfrak{X}_1^0 \subset \operatorname{orb}(\alpha)$. On the other hand $\operatorname{orb}(\alpha) \subset \mathcal{X}_1$. As \mathcal{X}_1^0 and $\operatorname{orb}(\alpha)$ are connected we deduce that $\operatorname{orb}(\alpha) = \mathcal{X}_1^0$. A simple degree argument shows that $k \leq \kappa$. Therefore we have at most κ distinct orbits. \Box

Let $1 \leq p_1 < p_2 < \cdots < p_{\rho} \leq q = s(r)$. Let $V^0_{r,\rho,p_1,\ldots,p_{\rho}}$ be the set of all $\alpha \in V^0_{r,\rho}$ whose row-echelon form of $\pi^{(r)}(\alpha)$ has the discrete invariants p_1,\ldots,p_{ρ} . Then the entries e_{ij} , $p_i < j$, $j \neq p_{i+1},\ldots,p_{\rho}$, $i = 1,\ldots,\rho$, in the row-echelon form the invariant rational functions which determine the orb (α) up to κ orbits at most. In fact, we conjecture that if α and β lie in the same connected component of $V^0_{r,\rho}$ and $\pi^{(r)}(\alpha) \sim \pi^{(r)}(\beta)$ then $\operatorname{orb}(\alpha) = \operatorname{orb}(\beta)$.

For $\alpha \in S_{n,m}$ let $\operatorname{sorb}(\alpha) = \{\beta, \beta = T\alpha T^{-1}, T \in O_n\}$, $\alpha(z) = \sum_{i=0}^m A_i z^i$, where $z \in C$ (the field of complex numbers). Let $p(\lambda, z) = \det(\lambda I - \alpha(z))$ be the characteristic polynomial of α . Clearly $p(\lambda, z)$ is invariant on $\operatorname{sorb}(\alpha)$ or $\operatorname{orb}(\alpha)$. It can be shown that for most $\alpha \in S_{n,m}$ the equation $p(\lambda, z) = 0$ (α is fixed) will have n distinct λ roots for all except a finite number of z, possibly $z = \infty (p(\lambda, \infty) = \det(\lambda I - A_m))$ and at those exceptional points the equation $p(\lambda, z) = 0$ will not have triple roots. We call such α and corresponding $p(\lambda, z)$ simple.

THEOREM 2. There are at most $2^{(n-1)(mn-1)}$ distinct sorb $(\alpha_1), \ldots, \text{sorb}(\alpha_k)$ such that all these orbits have the same simple characteristic polynomial.

We conjecture that if A_0, \ldots, A_m are real symmetric then sorb(α) is determined by its characteristic polynomial up to a finite number of orbits.

The detailed results are given in [1].

REFERENCES

- 1. S. Friedland, Simultaneous similarity of matrices, Advances in Math. (to appear).
- 2. I. M. Gelfand, The cohomology of infinite dimensional Lie algebras, some questions of integral geometry, Actes, Congr. Internat. Math. 1 (1970), 95-111.
- M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401– 443.

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, ISRAEL

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MILWAUKEE, MILWAUKEE, WISCONSIN 53201