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Abstract

This work presents, analyzes and tests stabilized space-time finite ele-
ment methods on fully unstructured simplicial space-time meshes for the
numerical solution of space-time tracking parabolic optimal control prob-
lems with the standard L2-regularization.
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1 Introduction

Let us consider the following space-time tracking optimal control problem: For
a given target function yd ∈ L2(Q) (desired state) and for some appropri-
ately chosen regularization parameter % > 0, find the state y ∈ Y0 = {v ∈
L2(0, T ;H1

0 (Ω)) : ∂tv ∈ L2(0, T ;H−1(Ω)), v = 0 on Σ0} and the control u ∈
U = L2(0, T ;L2(Ω)) = L2(Q) minimizing the cost functional

J(y, u) =
1

2

∫
Q

|y − yd|2 dQ+
%

2
‖u‖2L2(Q) (1)

subject to the linear parabolic initial-boundary value problem (IBVP)

∂ty − divx(ν∇xy) = u in Q, y = 0 on Σ, y = 0 on Σ0, (2)

where Q := Ω× (0, T ), Σ := ∂Ω× (0, T ), Σ0 := Ω×{0}, T > 0 is the final time,
∂t denotes the partial time derivative, divx is the spatial divergence operator,
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∇x is the spatial gradient, and the source term u on the right-hand side of the
parabolic PDE serves as control. The spatial domain Ω ⊂ Rd, d = 1, 2, 3, is
supposed to be bounded and Lipschitz. We assumed that 0 < ν1 ≤ ν(x, t) ≤ ν2

for almost all (x, t) ∈ Q with positive constants ν1 and ν2.
This standard setting was already investigated in the famous book by J.L. Li-

ons [6]. Since the state equation (2) has a unique solution y ∈ Y0, one can
conclude the existence of a unique control u ∈ U minimizing the quadratic
cost functional J(S(u), u), where S is the solution operator mapping u ∈ U
to the unique solution y ∈ Y0 of (2); see, e.g., [6] and [9]. There is an huge
number of publications devoted to the numerical solution of the optimal con-
trol problem (1)–(2) with the standard L2(Q) regularization; see, e.g., [9]. The
overwhelming majority of the publications uses some time-stepping or discon-
tinuous Galerkin method for the time discretization in combination with some
space-discretization method like the finite element method; see, e.g., [9]. The
unique solvability of the optimal control problem can also be established by
showing that the optimality system has a unique solution. In [5], the Banach-
Nec̆as-Babus̆ka theorem was applied to the optimality system to show its well-
posedness. Furthermore, the discrete inf-sup condition, which does not follow
from the inf-sup condition in the infinite-dimensional setting, was established for
continuous space-time finite element discretization on fully unstructured simpli-
cial space-time meshes. The discrete inf-sup condition implies stability of the
discretization and a priori discretization error estimates. Distributed controls
u from the space U = L2(0, T ;H−1(Ω)) together with energy regularization
were investigated in [4], where one can also find a comparison of the energy
regularization with the L2(Q) and the sparse regularizations.

In this paper, we make use of the maximal parabolic regularity of the reduced
optimality system in the case of the L2(Q) regularization and under additional
assumptions imposed on the coefficient ν. Then we can derive a stabilized finite
element discretization of the reduced optimality system in the same way as it
was done for the state equation in our preceding papers [3] The properties of
the finite element scheme lead to a priori discretization error estimates that are
confirmed by the numerical experiments.

2 Space-Time Finite Element Discretization

Eliminating the control u from the optimality system by means of the gradient
equation p+ %u = 0, we arrive at the reduced optimality system the weak form
of which reads as follows: Find the state y ∈ Y0 and the adjoint state p ∈ PT
such that, for v, q ∈ V = L2(0, T ;H1

0 (Ω)), it holds

%

∫
Q

[
∂ty v + ν∇xy · ∇xv

]
dQ+

∫
Q

p v dQ = 0,

−
∫
Q

y q dQ+

∫
Q

[
− ∂tp q + ν∇xp · ∇xq

]
dQ = −

∫
Q

yd q dQ,
(3)
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where PT := {p ∈ L2(0, T ;H1
0 (Ω)) : ∂tp ∈ L2(0, T ;H−1(Ω)), p = 0 on ΣT }.

The variational reduced optimality system (3) is well-posed; see [5, Theorem
3.3]. Moreover, we additionally assume that the coefficient ν(x, t) is of bounded
variation in t for almost all x ∈ Ω. Then ∂tu and Lu := −divx(ν∇xu) as
well as ∂tp and Lp := −divx(ν∇xp) belong to L2(Q); see [2]. This property is
called maximal parabolic regularity. In this case, the parabolic partial differ-
ential equations involved in the reduced optimality system (3) hold in L2(Q).
Therefore, the solution of the reduced optimality system (3) is equivalent to the
solution of the following system of coupled forward and backward systems of
parabolic PDEs: Find y ∈ Y0 ∩HL,1(Q) and p ∈ PT ∩HL,1(Q) such that the
coupled PDE optimality system

%
[
∂ty − divx(ν∇xy)

]
= −p in L2(Q),

−∂tp q − divx(ν∇xp) = y − yd in L2(Q)
(4)

hold, where HL,1(Q) = {v ∈ H1(Q) : Lv := −divx(ν∇xv) ∈ L2(Q)}. The
coupled PDE optimality system (4) is now the starting point for the construction
of the coercive finite element scheme.

Let Th be a regular decomposition of the space-time cylinderQ into simplicial
elements, i.e., Q =

⋃
K∈Th K, and K ∩K ′ = ∅ for all K and K ′ from Th with

K 6= K ′; see, e.g., [1] for more details. On the basis of the triangulation Th, we
define the space-time finite element spaces

Y0h = {yh ∈ C(Q) : yh(xK(·)) ∈ Pk(K̂), ∀K ∈ Th, yh = 0 on Σ∩Σ0}, (5)

PTh = {ph ∈ C(Q) : ph(xK(·)) ∈ Pk(K̂), ∀K ∈ Th, ph = 0 on Σ∩ΣT }, (6)

where xK(·) denotes the map from the reference element K̂ to the finite element
K ∈ Th, and Pk(K̂) is the space of polynomials of the degree k on the reference
element K̂. For brevity of the presentation, we set ν to 1. The same derivation
can be done for ν that fulfill the condition divx(ν∇xwh)|K ∈ L2(K) for all wh
from Y0h or PTh and for all K ∈ Th (i.e., piecewise smooth) in addition to the
conditions imposed above. Multiplying the first PDE in (4) by vh + λ∂tvh with
vh ∈ Y0h, and the second one by qh − λ∂tqh with qh ∈ PTh, integrating over K,
integrating by parts in the elliptic parts where the scaling parameter λ does not
appear, and summing over all K ∈ Th, we arrive at the variational consistency
identity

ah(y, p; vh, qh) = `h(vh, qh) ∀(vh, qh) ∈ Y0h × PTh, (7)

with the combined bilinear and linear forms

ah(y, p; v, q) =
∑
K∈Th

∫
K

[
%
(
∂ty v + λ∂ty∂tv +∇xy · ∇xv − λ∆xy ∂tv

)
+p(v + λ∂tv)− ∂tp q + λ∂tp∂tq +∇xp · ∇xq
+λ∆xp ∂tq − u(q − λ∂tq)

]
dK and (8)

`h(v, q) = −
∑
K∈Th

∫
K

yd(q − λ∂tq) dK, (9)
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respectively. Now, the corresponding consistent finite element scheme reads as
follows: Find (yh, ph) ∈ Y0h × PTh such that

ah(yh, ph; vh, qh) = `h(vh, qh) ∀(vh, qh) ∈ Y0h × PTh. (10)

Subtracting (10) from (7), we immediately get the Galerkin orthogonality rela-
tion

ah(y − yh, p− ph; vh, qh) = 0 ∀ (vh, qh) ∈ Y0h × PTh, (11)

which is crucial for deriving discretization error estimates.

3 Discretization Error Estimates

We first show that the bilinear ah is coercive on Y0h×PTh with respect to norm

‖(v, q)‖2h = % ‖v‖2h,T + ‖q‖2h,0 = %
(
‖v(·, T )‖2L2(Ω) + ‖∇xv‖2L2(Q) + λ‖∂tv‖2L2(Q)

)
+‖q(·, 0)‖2L2(Ω) + ‖∇xq‖2L2(Q) + λ‖∂tq‖2L2(Q).

Indeed, for all (vh, qh) ∈ Y0h × PTh, we get the estimate

ah(vh, qh; vh, qh) =
∑
K∈Th

∫
K

[
%
(
∂tvh vh + λ|∂tvh|2 + |∇xvh|2 − λ∆xvh ∂tvh

)
+qh(vh + λ∂tvh)− ∂tqh qh + λ|∂tqh|2 + |∇xqh|2

+λ∆xqh ∂tqh − vh(qh − λ∂tqh)
]

dK

≥ µc ‖(vh, qh)‖2h, (12)

with µc = 1/2 provided that λ ≤ c−2
invh

2, where cinv denotes the constant in the
inverse inequality ‖divx(∇xwh)‖L2(K) ≤ cinvh−1‖∇xwh‖L2(K) that holds for all
wh ∈ Y0h or wh ∈ PTh. For k = 1, the terms ∆xvh and ∆xqh are zero, and
we do not need the inverse inequality, but λ should be also O(h2) in order to
get an optimal convergence rate estimate. The coercivity of the bilinear form
ah immediately implies uniqueness and existence of the finite element solution
(yh, ph) ∈ Y0h × PTh of (10). In order to prove discretization error estimates,
we need the boundedness of the bilinear form

|ah(y, p; vh, qh)| ≤ µb‖(y, p)‖h,∗‖(vh, qh)‖h ∀(vh, qh) ∈ Y0h × PTh, (13)

and for all y ∈ Y0h + Y0 ∩HL,1(Q) and p ∈ PTh + PT ∩HL,1(Q), where

‖(y, p)‖2h,∗ = ‖(y, p)‖2h + %
∑
K∈Th

λ ‖∆xy‖2L2(K) + [(%+ 1)λ−1 + λ] ‖y‖2L2(Q)

+
∑
K∈Th

λ ‖∆xp‖2L2(K) + [2λ−1 + λ] ‖p‖2L2(Q)

Indeed, using Cauchy’s inequalities and the Friedrichs inequality ‖w‖L2(Q) ≤
cFΩ‖∇xw‖L2(Q) that holds for all w ∈ Y0 or w ∈ PT , we can easily prove (13)
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with µb = (max{4, 1 + λc2FΩ, 3 + %−1, 1 + λc2FΩ%
−1})1/2. Now, (11), (12), and

(13) immediately lead to the following Céa-like estimate of the discretization
error by some best-approximation error.

Theorem 1. Let yd ∈ L2(Q) be a given target, and let ν ∈ L∞(Q) fulfill the
assumptions imposed above. Furthermore, we assume that the regularization
(cost) parameter % ∈ R+ is fixed. Then the Céa-like estimate

‖(y−yh, p−ph)‖h ≤ inf
vh∈Y0h,qh∈PTh

(
‖(y−vh, p−qh)‖h+

µb
µc
‖(y−vh, p−qh)‖h,∗

)
holds, where (y, p) and (yh, ph) are the solutions of (3) and (10), respectively.

This Céa-like estimate immediately yields convergence rate estimates of the
form

‖(y − yh, p− ph)‖h ≤ c(u, p)hs (14)

with s = min{k, l} provided that y ∈ Y0 ∩ HL,1(Q) ∩ H l+1(Q) and p ∈ PT ∩
HL,1(Q)∩H l+1(Q), where l is some positive real number defining the regularity
of the solution; see [3] for corresponding convergence rate estimates for the state
equation only.

4 Numerical Results

Let {φ(j) : j = 1, . . . , Nh} be a nodal finite element basis for Y0h, and let
{ψ(m) : m = 1, . . . ,Mh} be a nodal finite element basis for PTh. Then we
can express each finite element function yh ∈ Y0h and ph ∈ PTh via the finite
element basis, i.e. yh =

∑Nh

j=1 yjφ
(j) and ph =

∑Mh

m=1 pmψ
(m), respectively. We

insert this ansatz into (10), test with basis functions φ(i) and ψ(n), and obtain
the system

Kh

(
yh
ph

)
=

(
0
fh

)
with Kh = (ah(φ(j), ψ(m);φ(i), ψ(n)))m,n=1,...,Mh

i,j=1,...,Nh
, fh = (`h(0, ψ(n)))n=1,...,Mh

,
yh = (yj)j=1,...,Nh

and ph = (pm)m=1,...,Mh
. The (block)-matrix Kh is non-

symmetric, but positive definite due to (12). Hence the linear system is solved
by means of the flexible General Minimal Residual (GMRES) method, precon-
ditioned by a block-diagonal algebraic multigrid (AMG) method, i.e., we apply
an AMG preconditioner to each of the diagonal blocks of Kh. Note that we
only need to solve once in order to obtain a numerical solution of the space-time
tracking optimal control problem (1)–(2), consisting of state and adjoint state.
The control can then be recovered from the gradient equation p+ %u = 0.

The space-time finite element method is implemented by means of the C++

library MFEM [7]. We use BoomerAMG, provided by the linear solver library
hypre, to realize the preconditioner. The linear solver is stopped once the initial
residual is reduced by a factor of 10−8. We are interested in convergence rates
with respect to the mesh size h for a fixed regularization (cost) parameter %.
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4.1 Smooth Target

For our first example, we consider the space-time cylinder Q = (0, 1)3, i.e.,
d = 2, the manufactured state

y(x, t) = sin(x1 π) sin(x2 π)
(
a t2 + b t

)
,

as well as the corresponding adjoint state

p(x, t) = −% sin(x1 π) sin(x2 π)
(
2π2 a t2 + (2π2 b+ 2 a)t+ b

)
,

with a = 2π2+1
2π2+2 and b = 1. The desired state yd and the optimal control u are

then computed accordingly, and we fix the regularization parameter % = 0.01.
This problem is very smooth and devoid of any local features or singularities,
hence we expect optimal convergence rates. Indeed, as we can observe in Fig. 1,
the error in the ‖(·, ·)‖Y0×PT

-norm decreases with a rate of O(hk), where k is
the polynomial degree of the finite element basis functions.

104 105 106 107
10−7

10−6

10−5

10−4

10−3

10−2

#dofs

‖(y − yh, p− ph)‖Y0×PT

k = 1
k = 2
k = 3

O(h1)
O(h2)
O(h3)

Fig. 1: Convergence rates for different polynomial degrees k = 1, 2, 3.

4.2 Discontinuous Target

For the second example, we consider once more the space-time cylinder Q =
(0, 1)3, and specify the target state

yd(x, t) =

{
1,

√
(x1 − 0.5)2 + (x2 − 0.5)2 + (t− 0.5)2 ≤ 0.25,

0, else,
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as an expanding and shrinking circle that is nothing but a fixed ball in the space-
time cylinder Q. We use the fixed regularization parameter % = 10−6. Here, we
do not know the exact solutions for the state or the optimal control, thus we
cannot consider any convergence rates for the discretization error. However, the
discontinuous target state may introduce local features at the (hyper-)surface
of discontinuity. Hence it might be beneficial to use adaptive mesh refinements
driven by an a posteriori error indicator. In particular, we use the residual
based indicator proposed by Steinbach and Yang [8], applied to the residuals of
the reduced optimality system (4). The final indicator is then the sum of the
squares of both parts.

In Fig. 2, we present the finite element functions yh, ph, and uh, plotted
over cuts of the space-time mesh Th at different times t. We can observe that
the mesh refinements are mostly concentrated in annuli centered at (0.5, 0.5),
e.g. for t = 0.5, the outer and inner radii are ∼ 7

36 ± 1
36 , respectively; see Fig. 2

(middle row).

5 Conclusions

We proposed a stable, fully unstructured, space-time simplicial finite element
discretization of the reduced optimality system of the standard space-time track-
ing parabolic optimal control problem with L2-regularization. We derived a
priori discretization error estimates. We presented numerical results for two
benchmarks. We observed optimal rates for the example with smooth solutions
as predicted by the a priori estimates. In the case of a discontinuous target,
we use full space-time adaptivity. In order to get the full space-time solution
(yh, ph, uh), one has to solve only one system of algebraic equations. In this
paper, we used flexible GMRES preconditioned by AMG.
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