SIMULTANEOUS SPLINE APPROXIMATION AND INTERPOLATION PRESERVING NORMS

C. K. CHUI, E. R. ROZEMA, P. W. SMITH, AND J. D. WARD

Abstract

In this paper, it is proved that splines of order $k(k \geqslant 2)$ have property SAIN. The proof of this result is based on the important properties of B-splines.

1. Introduction. In a recent manuscript [5], Lambert proved that the twice continuously differentiable cubic splines possess property SAIN (simultaneous approximation and interpolation which is norm preserving) on $C[a, b]$ where the interpolatory constraints are point evaluations. In this paper we establish the more general result for splines of any order greater than 1 while at the same time supplying a simple proof. More precisely, we will show

Theorem 1. Splines of order $k($ degree $k-1)$ and continuity class $C^{k-2}[a, b]$ possess property $S A I N$ on $C[a, b]$ with respect to a finite number of point evaluations.

Deutsch and Morris [2] introduced the property SAIN:
Definition. Let X be a normed linear space, M a dense subset of X, and Γa finite dimensional subspace of X^{*}. The triple (X, M, Γ) has property SAIN if, for every $x \in X$ and $\varepsilon>0$, there exists $y \in M$ such that

$$
\|x-y\|<\varepsilon, \quad\|x\|=\|y\|, \quad \text { and } \quad \gamma(x)=\gamma(y)
$$

for every $\gamma \in \Gamma$.
This definition was motivated by the work of Wolibner [6] and Yamabe. (See [2] for references.) Also Lambert [4] has studied property SAIN for L_{1} and $C(T)$, and Holmes and Lambert [3] studied the property SAIN from a geometrical point of view.
2. Proof of Theorem 1. Let S^{k} denote the set of splines of order k and continuity class C^{k-2} with a finite number of knots in $[a, b]$. Further set $\Gamma=\operatorname{span}\left[\delta_{\tau_{1}}, \ldots, \delta_{\tau_{l}}\right]$ where δ_{x} represents the usual point evaluation functional at x which is an element of $C[a, b]^{*}$. We now show that $\left(C[a, b], S^{k}, \Gamma\right)$ has property SAIN.

Our proof relies heavily on the fundamental properties of B-splines. Following de Boor [1], we denote by $N_{i, k}$ the normalized B-spline of order k supported on $\left[t_{i}, t_{i+k}\right]$ where $\left\{t_{i}\right\}_{i=0}^{N}$ is a partition of $[a, b]$, and where $N_{i, k}(t) \equiv\left(t_{i+k}-t_{i}\right)\left[t_{i}, \ldots, t_{i+k}\right]_{S}(S-t)_{+}^{k-1}$ with $\left[t_{i}, \ldots, t_{i+k}\right]_{S}$ denoting the

[^0]k th divided difference operator in the variable S. Recall the following important properties of the $N_{i, k}$:
(i) $N_{i, k}(t) \geqslant 0$ for all t,
(ii) $\operatorname{supp} N_{i, k}=\left[t_{i}, t_{i+k}\right]$, and
(iii) $\sum_{i=j+1-k}^{j} N_{i, k}(t) \equiv 1, t \in\left[t_{j}, t_{j+1}\right]$.
(For a detailed account of B-splines, see [1] .) Let π denote a partition of $[a, b]$, i.e., $\pi=\left\{t_{i}\right\}_{i=0}^{N}$ with $a=t_{0}<\cdots<t_{N}=b$. The mesh size of π will be denoted by $|\pi| \equiv \max _{0 \leqslant i \leqslant N-1}\left(t_{i+1}-t_{i}\right)$. In order for the $N_{i, k}$'s to be a basis of the C^{k-2} (order k) splines, with knots only in π, it is necessary to create $k-1$ knots on the left of t_{0} and $k-1$ knots on the right of t_{N}. Given a partition π of $[a, b]$ we define $\tilde{\pi}$ as the partition $t_{-k+1}<\cdots<t_{N+k-1}$ where the extra points are chosen so that $|\tilde{\pi}|=|\pi|$.

Proceeding with the proof, let $f \in C[a, b]$ be given along with interpolation points $\left\{\tau_{i}\right\}_{i=1}^{l}$ and $\varepsilon>0$. Without loss of generality assume that f attains its norm at some τ_{i}. It remains to display a spline of the correct type which interpolates f at the τ_{i}, is within ε of f in the supremum norm, and which is norm preserving. Pick $\delta>0$ so that the modulus of continuity ω of f satisfies $\omega(f, \delta) \leqslant \varepsilon / 2 k$ and let π (and hence $\tilde{\pi}$) be chosen so that $|\pi|=|\tilde{\pi}| \leqslant \delta$ and $(k+1)|\tilde{\pi}| \leqslant \min _{i \neq j}\left|\tau_{i}-\tau_{j}\right|$. Define

$$
g(t)=\sum_{i=-k+1}^{N-1} \alpha_{i} N_{i, k}(t)
$$

where $\alpha_{i}=f\left(\tau_{m}\right)$ for $i=j-k+1, \ldots, j$ whenever $t_{j} \leqslant \tau_{m}<t_{j+1}, m=1$, \ldots, l; and $\alpha_{i}=f\left(t_{i}\right)$ otherwise, provided that we define $f\left(t_{i}\right) \equiv f(a)$ for those $t_{i}<a$. It is clear from (i), (ii), and (iii) that $\|g\|=\|f\|, g$ interpolates f at the τ_{i} and

$$
\begin{aligned}
\|g-f\| & =\left\|\sum_{i=-k+1}^{N-1} \alpha_{i} N_{i, k}(t)-f(t)\right\|=\left\|\sum_{i=-k+1}^{N-1}\left(\alpha_{i}-f(t)\right) N_{i, k}(t)\right\| \\
& \leqslant \max _{-k+1 \leqslant i \leqslant N-1} \max _{t \in B_{i}}\left|\alpha_{i}-f(t)\right| \leqslant \omega(f, 2 k \delta) \leqslant 2 k \omega(f, \delta) \leqslant \varepsilon
\end{aligned}
$$

where $B_{i} \equiv\left[t_{i}, t_{i+k}\right] \cap[a, b]$. This completes the proof of the theorem.
Remark. In the course of the proof of Theorem 1, we add, if necessary, an additional interpolation constraint at a point where f attains its norm. This is to insure that g satisfies the norm preservation property. However, even without adding this additional interpolation constraint, we still have $\|g\|$ $\leqslant\|f\|$, and the theorem then follows by applying Lemmas 2.1 and 2.2 of [2].

There are many ways to extend Theorem 1. For instance, one can consider the natural splines

$$
S_{0}^{2 k}=\left\{s \in S^{2 k}: s^{(j)}(a)=s^{(j)}(b)=0, k \leqslant j \leqslant 2 k-2\right\}
$$

and obtain the following:
Corollary. The natural splines $S_{0}^{2 k}$ have the property SAIN.
To prove this result, we just alter the construction above to insure that

References

1. C. R. de Boor, On calculating with B-splines, J. Approximation Theory 6 (1972), 50-62.
2. F. R. Deutsch and P. D. Morris, On simultaneous approximation and interpolation which preserves the norm, J. Approximation Theory 2. (1969), 355-373. MR 40 \#6146.
3. R. Holmes and J. M. Lambert, A geometric approach to property (SAIN), J. Approximation Theory 7 (1973), 132-142.
4. J. M. Lambert, Simultaneous approximation and interpolation in L_{1} and $C(T)$, Pacific J. Math. 45 (1973), 293-296. MR 47 \#7295.
5. -, Simultaneous approximation and interpolation which preserves the norm by cubic splines in $C[a, b]$ (submitted).
6. W. Wolibner, Sur un polynôme d'interpolation, Colloq. Math. 2 (1951), 136-137. MR 13, 343.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843

Department of Mathematics, University of Tennessee, Chattanooga, Tennessee 37401

[^0]: Presented to the Society, January 24, 1974; received by the editors October 15, 1974.
 AMS (MOS) subject classifications (1970). Primary 41A65, 41A05.
 Key words and phrases. Property SAIN, spline approximation and interpolation, norm preservation, B-spline.

