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Simultaneous Spline Approximation and Topographic
Analysis for Lidar Elevation Data in Open-Source GIS

Helena Mitasova, Lubos Mitas, and Russell S. Harmon

Abstract—Application of a spline approximation method to
computation and analysis of lidar-based digital elevation models
is investigated to determine its accuracy and capability to create
surfaces at different levels of detail. Quadtree segmentation that
adapts to the spatial heterogeneity of data points makes the
method feasible for large datasets. The results demonstrate the
importance of smoothing for the surface accuracy and noise
reduction. A tension parameter is effective for tuning the level
of detail in the elevation surface. Simultaneous computation of
topographic parameters is applied to extraction of sand dunes’
features for assessment of dune migration and beach erosion.

Index Terms—Change detection, lidar, open-source geographic
information system (GIS), spline, topographic analysis.

I. INTRODUCTION

L
IDAR data are often collected for a specific purpose, such

as monitoring of coastal change [1] or update of flood in-

surance maps [2]. Due to their high resolution and rich infor-

mation content, the lidar data are used for a wide range of ad-

ditional applications [3] with different requirements in terms of

resolution, accuracy, and digital surface representation. There-

fore, a variety of techniques and algorithms are needed to make

the best use of this type of data.

Depending on the application, elevation surfaces derived

from lidar data are represented by triangular irregular networks

(TINs) [4] or regular grids [5], [6]. In this letter, the focus is

on regular grid digital bare ground models (DGMs) and digital

surface models (DSMs): DGM with vegetation and buildings.

Gridding techniques based on averaging points within a given

grid cell are sufficient for applications using resolutions that

are lower than the lidar point density [7] and when the point

coverage is spatially homogeneous. However, spatial distri-

bution of lidar data points can vary significantly, especially

for bare ground data in vegetated areas. In addition, there are

applications where the grid cell size of DGM/DSM needs to be

smaller than the average distance between points, and for these

cases a robust spatial approximation is essential.

Spatial approximation of lidar data poses significant chal-

lenges. Due to point densities that often exceed 1 point m , lidar

captures more detail than traditional methods leading to massive

datasets (with millions of data points) even for small projects.
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Contours and topographic parameters (gradients and curvatures)

derived from lidar-based surfaces usually have a noisy pattern

caused by the combined effect of various types of errors and

natural surface roughness [4], [8], and need to be further pro-

cessed (filtered, smoothed) to make them suitable for most ap-

plications. Various approximation methods have been used for

lidar data gridding, including inverse distance weighting [5], [6],

splines [9], and kriging, often with mixed results, because these

methods were designed for data with different properties than

lidar point clouds.

In this letter, we present a flexible spatial approxima-

tion method for simultaneous computation of grid-based

DGM/DSM and topographic parameters from scattered lidar

point data. We describe the segmentation procedure for pro-

cessing of large datasets and analyze the influence of the

function’s parameters on the resulting surface errors and

deviations. The function is applied to monitoring of coastal

topographic change based on surface geometry analysis.

II. SPATIAL APPROXIMATION METHOD

To compute a DGM/DSM and its first- and second-order pa-

rameters from lidar point clouds, a generalized thin plate spline

function with regular derivatives of all orders is employed.

Quadtree-based segmentation is used to make the method

applicable to massive datasets.

A. Regularized Spline With Tension and Smoothing

Regularized spline with tension (RST) belongs to approxima-

tion functions that minimize the deviations from the measured

points and a smoothness seminorm [10]. The RST smoothness

seminorm includes derivatives of all orders with their weights

decreasing with the increasing derivative order [10], [11],

leading to function

(1)

(2)

where is elevation at a point , is a trend,

are coefficients, is number of given points, is a

radial basis function, , is a generalized tension

parameter, is a distance, is the

Euler constant, and is the exponential integral function

[12]; see also [13]. The coefficients , are obtained by

solving the following system of linear equations:

(3)
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(4)

where are positive weighting factors representing a

smoothing parameter at each given point .

The method has both geostatistical and physical interpreta-

tion [10]. It is formally equivalent to universal kriging with the

choice of the covariance function determined by the smoothness

seminorm. The physical interpretation, as a thin surface that can

be tuned from rigid plate to rubber sheet by changing its tension,

makes the application more intuitive. The tension parameter

controls the distance over which the given points influence the

resulting surface, while smoothing controls the vertical devia-

tion of the surface from data points. By using an appropriate

combination of tension and smoothing, it is possible to apply the

function to various types of surfaces from smoothly changing

topography to rough terrain, and select a level of detail repre-

sented by a DGM/DSM without changing the resolution. The

optimal values of parameters often can be found by minimizing

the crossvalidation error [10], [11].

B. Topographic Analysis

Surface gradients and curvatures are important for feature

recognition and as inputs for a wide range of models (e.g., hy-

drology). Standard algorithms compute the topographic param-

eters at a grid point using the elevation at this point and its 3 3

neighborhood [14]. This approach works well for smooth sur-

faces where local polynomial approximation is adequate. How-

ever, for high-resolution data, the small neighborhood may not

be sufficient to adequately capture the geometry of topographic

features. Alternatively, the topographic parameters can be com-

puted simultaneously with approximation using partial deriva-

tives of the RST function and principles of differential geometry

[15]. The explicit form of the RST derivatives can be found in

[16, App. B.2].

The steepest slope angle and aspect angle are then com-

puted from a gradient (its direction is upslope)

as follows [15]:

(5)

For applications in geosciences, two types of curvature are the

most relevant. Profile curvature , computed in gradient direc-

tion, reflects the change in slope, while tangential curvature

estimated in direction perpendicular to the gradient reflects the

change in aspect angle. In this letter we use the profile curvature

that is computed as follows [15]:

(6)

The values of slope, aspect, profile, and tangential curvatures

can be combined to define basic geometric relief forms and to-

pographic features [15], [17].

C. Implementation for Large Datasets

Theoretically, the RST method requires solution of a system

of linear equations, making the method computationally in-

Fig. 1. Segmentation of lidar data using quadtrees. The midsize segment has
484 grid points to be interpolated using the points within the segment S and its
neighborhood, defined by the “growing window”W .

tractable for large datasets typical for lidar surveys. The problem

can be solved by applying the function locally because, at a

given point (or within a small area), the function is not sensi-

tive to data at some sufficiently distant location. A widely used

approach, both for splines and kriging, is the neighborhood ap-

proximation, in which a separate function is computed for each

grid point using points in its neighborhood, with usu-

ally between 12–24 [10]. This approach may lead to minor dis-

continuities in the resulting surface that are visible in the aspect

and curvature maps.

Alternatively, it is possible to apply the approximation func-

tion within a segment of a grid using the points located within

this segment and additional points from its neighborhood. If the

data points have a heterogeneous spatial distribution, the decom-

position into segments with approximately the same number of

points can be done efficiently using quadtrees. The quadtree

has all data points stored in its leaf nodes in such a way that

each leaf’s array has no more than points and the union of

all rectangles defined by leaf nodes of is the entire region.

A threshold three-dimensional (3-D) distance can be defined

to identify points that are practically identical (e.g., due to the

scanning overlaps), and such points are removed from the input

dataset during the decomposition procedure.

The approximation is then performed for each segment using

not only this segment’s points, but also the points from its neigh-

borhood. The number of points used for approximation is se-

lected so that , where to ensure smooth

connection of segments, and , where is the

maximum size of the system of linear equations that can still

be computed efficiently (around 400). The additional points are

obtained using a “growing overlapping window” (Fig. 1), ini-

tialized as a subregion defined by the current segment increased

by and on each side. If does not have enough points, it

is increased by and until . If, at the same time,

(too many points), the and are split in half until

increasing gives . Thus, the smooth con-

nection of segments and computational efficiency can be con-

trolled by adjusting the values of . For special

cases, where most of the region has homogeneously distributed

points with only few areas with sparse points (e.g., water or gap
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between swaths) can be set to a relatively small value (less

than 100) to ensure computational efficiency, because is

automatically increased for larger segments using the following

relation [18]:

(7)

where , is the width of the given segment,

and is the width of the smallest segment.

To ensure the numerical stability and minimize the impact of

scale on tension parameter, the distances are normalized using

the average segment size , where is the area of the

entire region and is the approximate number of

segments (with their windows ).

The RST function has been implemented in open-source

GRASS geographic information system (GIS) [16], [18] in

modules s.surf.rst and v.surf.rst. It is also available for online

gridding of lidar data [19].

III. APPLICATIONS

The RST method was applied to analysis of short-term coastal
topographic change using two sets of lidar surveys for North
Carolina, U.S. The first set is based on mapping of the coast
using the Airborne Topographic Mapper II [1], [20] with ter-
rain sampled from an altitude of 700 m at one point per 1–3 m
density using an elliptic scanning pattern. The vertical and hori-
zontal accuracy is 0.15 m (bare areas) and 0.80 m, respectively.
Only the first return points were acquired, representing the ter-
rain surface with vegetation and buildings. The second set in-
cludes data from Floodplain Mapping Program survey 2001 [2]
acquired by Leica Geosystems aeroscan with linear scanning
pattern and about one point per 3-m density measured from an
altitude of 2300 m. Bare ground data were available with the
published vertical accuracy of 0.20 m and the horizontal accu-
racy of 2 m.

A. Impact of RST Parameters on a Lidar-Based Surface

To assess the suitability of the RST function for generating
DGM/DSM from lidar data an analysis of impact of its param-
eters on the resulting surface geometry and accuracy was per-
formed. The analysis was done for the density of points given by
a minimum 3-D distance m. The DGMs and DSMs were
interpolated at 1-m resolution so that the dune features used in
the topographic change analysis were adequately represented.

First, smoothing was set to 0.0, and tension was changed
gradually from 900 to 100. The surface passed exactly through
the data points, and the root mean square of deviation (RMSD)
was zero; however, the surface was noisy, including the bare
sandy areas [Fig. 2(a)], and at lower tensions ( ) over-
shoots were present [Fig. 2(a) insert]. Maps of gradients and
curvatures derived from these surfaces were noisy and reflected
the lidar scanning pattern rather than topography. Introduction
of a small value of smoothing ( ) substantially improved
the resulting surface while preserving the sharp features, such
as dune crests [Fig. 2(b)]. The solution was without overshoots
for a wide range of tension values [Figs. 3(f) and 4(a)], the noise
was reduced, and topographic features emerged that are mean-
ingful for applications.

Fig. 2. Impact of tension ' and smoothing w on the 1999 DSM. (a) ' = 400,
w = 0:0. Insert shows overshoots for ' = 100, w = 0:0. (b) ' = 100,
w = 0:1. Thew and' values are given for the RST implementation as s.surf.rst

module run with the �t flag [16].

The level of detail represented by the DSM was then set by
tuning the tension and smoothing parameters [21]. For example,
the surface computed with and was still noisy,
but it captured what appear to be mailboxes on the edge of the
road [Fig. 3(a) and (e)]. For applications that require smooth
dune surface with clearly defined dune crests, a surface com-
puted with and was more useful, as it allowed
us to use curvatures for extraction of crests while the small fea-
tures were smoothed out [Figs. 3(b) and 5]. Bare ground data
from the 2001 survey had most of the small features already re-
moved along with vegetation, as illustrated by the detail of the
1-m resolution DGM approximated by RST [Fig. 3(c)] and 6-m
resolution DGM product derived by the standard methods that
smoothed out most of the road [Fig. 3(d)].

For a constant value of smoothing parameter and changing
tension, smoothing effect increases automatically as the ten-
sion decreases, minimizing the possibility for unacceptable
overshoots. This effect is illustrated by the relation between
the changing tension parameter and surface deviations for
a constant smoothing parameter [Fig. 4(a)]. The
deviations in open areas were low both for DSM and DGM, but
they rapidly increased for DSM computed with low values of
tension in the vegetated areas due to high values of curvatures.
Higher DSM deviations in vegetated areas may be appropriate
because the surface is not very well defined and measurement
errors are higher. Maps of spatial distribution of deviations
[Fig. 4(b)] illustrate that the bare dune surface and the road
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Fig. 3. Elevation surface along the road. (a) The 1999 DSM with ' = 400,
w = 0:1. (b) The 1999 DSM with ' = 200, w = 1:0. (c) The 2001 DGM
' = 100, w = 0:1. (d) The 2001 DGM at lower (6 m) resolution. (e) Aerial
photo with highlighted driveways. (f) Relation between the tension parameter
and mean absolute error (MAE) and deviation (MAD) for the road area.

had deviations lower than the published data accuracy for both
DSM and DGM for almost all tested values of tension. Analysis
of relationship between the tension/smoothing parameters and
DSM accuracy using on-ground RTK-GPS measurements (per-
formed in 2004 with 0.10-m published vertical accuracy) on a
paved road showed the highest error for low-tension parameter
[Fig. 3(f)]. Error decreased when tension was increased until it
reached minimum for , [Fig. 3(f)]. Further
increase in tension leads to slow increase in error; however,
the error remains very low (less than 0.08 m) for a wide
range of parameters, confirming the high accuracy of both the
lidar measurements and the RST approximation method when
applied to the paved road. The surface deviations decrease
steadily with increasing tension, with the values below the
error for most of the tested tension values. The 2001 data have
higher error (RMSE MAE m), with substantially
higher mean bias error (MBE) when compared to the 1999 data
(MBE m compared to MBE m).

B. Extraction of Topographic Features

In the study of a dune field, located within the Jockey’s Ridge

state park in North Carolina, U.S., the high-resolution DSM,

DGM, and topographic parameters were used to extract features

Fig. 4. Deviations between the DSM, DGM (w = 0:1) and given data.
(a) Relation between MAD and tension in open sand areas, areas with
vegetation, and for the entire DSM, DGM. Tension. (b) Spatial distribution of
deviations for DSM and DGM.

Fig. 5. Horizontal dune migration (1999–2001) represented by dune crests
extracted from DSM/DGM using profile curvature draped over DGM.

that are indicators of dune migration [17], [21]. The optimal pa-

rameters for extraction of dune crests were , .

At this level of detail, the crests can be defined as grid cells with

profile curvature m and elevation m. Map

algebra was used to combine the dune crests extracted from the

1999 DSM and 2001 DGM (Fig. 5) and identify the migrating

and stable sections of the dune crests. The resulting map was

then used to measure the horizontal migration rates that reached
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Fig. 6. Assessment of change in beach morphology using profile curvature
derived from 2-m resolution DSM (' = 200 and w = 0:1). (a) Stable
berms. Upper inset illustrates noisy pattern of curvatures for higher tension.
(b) Scarp indicating rapid erosion. Inset shows change in the beach shape using
a cross-section. Red line represents mean high water level.

10 m/year in some locations [17]. The slip faces were extracted

as areas with slope and m, and new slip faces

were identified in 2001 DGM compared to 1999 surface.

The second study used the 1998–2000 lidar data to quantify

beach erosion on the Bald Head Island located near the mouth of

the Cape Fear River, NC. Profile curvature, derived along with

approximation of 2-m resolution DSMs, was used as an indi-

cator of beach morphological change. The curvature map for

1998 beach includes a subtle pattern of parallel convex and con-

cave strips, indicating the presence of berms, typical for stable

beach [Fig. 6(a)]. The beach morphology significantly changed

in year 2000, with higher values of slopes and curvatures and a

single concave strip, typical for a beach scarp that developed due

to rapid beach erosion [Fig. 6(b)]. The change in morphology

was accompanied by shoreline and volume change with signifi-

cant loss of sand that puts several homes into the high-risk zone.

IV. CONCLUSION

The evaluation of the RST method has demonstrated its flex-

ibility and accuracy for approximation and analysis of high-res-

olution, lidar-based DSM/DGM. For a given grid cell size, the

level of detail represented by DGM/DSM can be selected by

tuning the tension parameter. Introduction of a small value of

smoothing improves stability and accuracy of the method for a

wide range of tension values. Availability of the method within

the open-source GIS [18] provides full access to the source code

and opportunities for further improvements of its capabilities.
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