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Simultaneous State Initialization and Gyroscope

Bias Calibration in Visual Inertial aided Navigation

Jacques Kaiser1, Agostino Martinelli1, Flavio Fontana2 and Davide Scaramuzza2

Abstract—State of the art approaches for visual-inertial sensor
fusion use filter-based or optimization-based algorithms. Due to
the nonlinearity of the system, a poor initialization can have a
dramatic impact on the performance of these estimation methods.
Recently, a closed-form solution providing such an initialization
was derived in [1]. That solution determines the velocity (angular
and linear) of a monocular camera in metric units by only
using inertial measurements and image features acquired in
a short time interval. In this paper, we study the impact of
noisy sensors on the performance of this closed-form solution.
We show that the gyroscope bias, not accounted for in [1],
significantly affects the performance of the method. Therefore,
we introduce a new method to automatically estimate this bias.
Compared to the original method, the new approach now models
the gyroscope bias and is robust to it. The performance of the
proposed approach is successfully demonstrated on real data
from a quadrotor MAV.

Index Terms—Sensor Fusion, Localization, Visual-Based Nav-
igation

I. INTRODUCTION

A
UTONOMOUS mobile robots navigating in unknown

environments have an intrinsic need to perform localiza-

tion and mapping using only on-board sensors. Concerning

Micro Aerial Vehicles (MAV), a critical issue is to limit

the number of on-board sensors to reduce weight and power

consumption. Therefore, a common setup is to combine a

monocular camera with an inertial measurements unit (IMU).

On top of being cheap, these sensors have very interesting

complementarities. Additionally, they can operate in indoor

environments, where Global Positioning System (GPS) signals

are shadowed. An open question is how to optimally fuse the

information provided by these sensors.

Currently, most sensor-fusion algorithms are either filter-

based or iterative. That is, given a current state and measure-

ments, they return an updated state. While working well in

practice, these algorithms need to be provided with an initial

state. The initialization of these methods is critical. Due to

nonlinearities of the system, a poor initialization can result

into converging towards local minima and providing faulty

states with high confidence.
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In this paper, we demonstrate the efficiency of a recent

closed-form solution introduced in [1, 2], which fuses visual

and inertial data to obtain the structure of the environment at

the global scale along with the attitude and the speed of the

robot. By nature, a closed-form solution is deterministic and,

thus, does not require any initialization.

The method introduced in [1, 2] was only described in

theory and demonstrated with simulations on generic Gaussian

motions, not plausible for an MAV. In this paper, we perform

simulations with plausible MAV motions and synthetic noisy

sensor data. Our simulations are therefore closer to the real

dynamics of an MAV. This allows us to identify limitations

of the method and bring modifications to overcome them.

Specifically, we investigate the impact of biased inertial mea-

surements. Although the case of biased accelerometer was

originally studied in [1], here we show that a large bias on the

accelerometer does not significantly worsen the performance.

One major limitation of [1] is the impact of biased gyroscope

measurements. In other words, the performance becomes very

poor in presence of a bias on the gyroscope and, in practice,

the overall method can only be successfully used with a

very precise - and expensive - gyroscope. Here, we introduce

a simple method that automatically estimates this bias. By

adding this new method for the bias estimation to the original

method [1], we obtain results that are equivalent to the ones

in absence of bias. This method is suitable for dynamic take

off and on-the-fly re-initialisation since it does not require a

calibration step with the MAV sitting stationary. Compared to

[1], the new method is now robust to the gyroscope bias and

automatically calibrates the gyroscope.

II. RELATED WORK

The problem of fusing visual and inertial data has been

extensively investigated in the past. However, most of the

proposed methods require a state initialization. Because of

the system nonlinearities, lack of precise initialization can

irreparably damage the entire estimation process. In literature,

this initialization is often guessed or assumed to be known

[3–6]. Recently, this sensor fusion problem has been success-

fully addressed by enforcing observability constraints [7, 8]

and by using optimization-based approaches [9–15]. These

optimization methods outperform filter-based algorithms in

terms of accuracy due to their capability of relinearizing past

states. On the other hand, the optimization process can be

affected by the presence of local minima. We are therefore

interested in a deterministic solution that analytically expresses

the state in terms of the measurements provided by the sensors

during a short time-interval.
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In computer vision, several deterministic solutions have

been introduced. These techniques, known as Structure from

Motion, can recover the relative rotation and translation up to

an unknown scale factor between two camera poses [16]. Such

methods are currently used in state-of-the-art visual navigation

methods for MAVs to initialize maps [6, 17, 18]. However, the

knowledge of the absolute scale, and, at least, of the absolute

roll and pitch angles, is essential for many applications ranging

from autonomous navigation in GPS-denied environments to

3D reconstruction and augmented reality. For these appli-

cations, it is crucial to take the inertial measurements into

consideration to compute these values deterministically.

A procedure to quickly re-initialize an MAV after a failure

was presented in [19]. However, this method requires an

altimeter to initialize the scale.

Recently, a closed-form solution has been introduced in [2].

From integrating inertial and visual measurements over a short

time-interval, this solution provides the absolute scale, roll

and pitch angles, initial velocity, and distance to 3D features.

Specifically, all the physical quantities are obtained by simply

inverting a linear system. The solution of the linear system can

be refined with a quadratic equation assuming the knowledge

of the gravity magnitude. This closed-form was improved in

[20] to work with unknown camera-IMU calibration; however,

since in this case the problem cannot be solved by simply

inverting a linear system, a method to determine the six

parameters that characterize the camera-IMU transformation

was proposed. As a result, this method is independent of

external camera-IMU calibration, hence, suitable for power-

on-and-go systems.

A more intuitive expression of this closed-form solution

was derived in [1]. While being mathematically sound, this

closed-form solution is not robust to noisy sensor data. For

this reason, to the best of our knowledge, it has never been

used in an actual application. In this paper, we perform an

analysis to find out its limitations. We start by reminding

the reader the basic equations that characterize this solution

(section III). In section IV, we show that this solution is

resilient to the accelerometer bias but strongly affected by

the gyroscope bias. We then introduce a simple method that

automatically estimates the gyroscope bias (section V). By

adding this new method for the bias estimation to the original

method, we obtain results that are equivalent to the ones

obtained in absence of bias. Compared to the original method,

the new method is now robust to the gyroscope bias and also

calibrates the gyroscope. In section VI, we validate our new

method against real world data from a flying quadrotor MAV

to prove its robustness against noisy sensors during actual

navigation. Finally, we provide the conclusions in section VII.

III. CLOSED-FORM SOLUTION

In this section, we provide the basic equations that charac-

terize the closed-form solution proposed in [1]1. Let us refer

to a short interval of time (e.g., of the order of 3 seconds).

We assume that during this interval of time the camera

1Note that in this paper we do not provide a new derivation of this solution
for which the reader is addressed to [1], section 3.

Fig. 1: Visual representation of Equation (1). The unknowns

of the equation are colored in purple.

observes simultaneously N point-features and we denote by

t1, t2, · · · , tni
the times of this interval at which the camera

provides an image of these points. Without loss of generality,

we can assume that t1 = 0. The following equation holds (see

[1] for its derivation):

Sj = λi
1
µi
1
− V tj −G

t2j
2
− λi

jµ
i
j (1)

with:

• µi
j the normalized bearing of point feature i at time tj in

the local frame at time t1;

• λi
j the distance to the point feature i at time tj ;

• V the velocity in the local frame at time t1;

• G the gravity in the local frame at time t1;

• Sj the integration in the interval [t1, tj ] of the rotated

linear acceleration data (i.e., the integration of the inertial

measurements).

A visual representation of Equation (1) is provided in Fig. 1.

The local frame refers to a frame of reference common to

the IMU and the camera. In a real application, we would

work in the IMU frame and have some additional constant

terms accounting for the camera-IMU transformation. We do

not express these constant calibration terms explicitly here for

clarity reasons.

The unknowns of Equation (1) are the scalars λi
j and the

vectors V and G. Note that the knowledge of G is equivalent

to the knowledge of the roll and pitch angles. The vectors µi
j

are fully determined by visual and gyroscope measurements
2, and the vectors Sj are determined by accelerometer and

gyroscope measurements.

Equation (1) provides three scalar equations for each point

feature i = 1, ..., N and each frame starting from the second

one j = 2, ...ni. We therefore have a linear system consisting

of 3(ni − 1)N equations in 6 +Nni unknowns. Indeed, note

that, when the first frame is taken at t1 = 0, Equation (1) is

always satisfied; thus does not provide information. We can

2The gyroscope measurements in the interval [t1, tj ] are needed to express
the bearing at time tj in the frame at time t1
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write our system using matrix formulation. Solving the system

is equivalent to inverting a matrix of 3(ni − 1)N rows and

6 +Nni columns.

In [1], the author proceeded to one more step before

expressing the underlying linear system. For a given frame

j, the equation of the first point feature i = 1 is subtracted

from all other point feature equations 1 < i ≤ N (Equation

(7) in [1]). This additional step, very useful to detect system

singularities, has the effect to corrupt all measurements with

the first measurement, hence worsening the performance of

the closed-form solution. Therefore, in this paper we discard

this additional step.

The linear system in Equation (1) can be written in the

following compact form:

ΞX = S. (2)

Matrix Ξ and vector S are fully determined by the measure-

ments, while X is the unknown vector. We have:

S ≡ [ST
2
, ..., ST

2
, ST

3
, ..., ST

3
, ..., ST

ni
, ..., ST

ni
]T

X ≡ [GT , V T , λ1

1
, ..., λN

1
, ..., λ1

ni
, ..., λN

ni
]T

Ξ ≡






















T2 S2 µ1

1
03 03 −µ1

2
03 03 03 03 03

T2 S2 03 µ2

1
03 03 −µ2

2
03 03 03 03

... ... ... ... ... ... ... ... ... ... ...

T2 S2 03 03 µN
1

03 03 −µN
2

03 03 03
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...

Tni
Sni

µ1

1
03 03 03 03 03 −µ1

ni
03 03

Tni
Sni

03 µ2

1
03 03 03 03 03 −µ2

ni
03

... ... ... ... ... ... ... ... ... ... ...

Tni
Sni

03 03 µN
1

03 03 03 03 03 −µN
ni























,

where Tj ≡ −
t2j
2
I3, Sj ≡ −tjI3 and I3 is the identity 3× 3

matrix, 03 is the 3 × 1 zero matrix. Note that matrix Ξ and

vector S are slightly different from the ones proposed in [1].

This is due to the additional step that, as we explained in

the previous paragraph, we discarded for numerical stability

reasons (see [1] section 3 for further details).

The sensor information is completely contained in the above

linear system. Additionally, in [1], the author added a quadratic

equation assuming the gravitational acceleration is a priori

known. Let us denote the gravitational magnitude by g. We

have the extra constraint |G| = g that we can express in matrix

formulation:

|ΠX|2 = g2, (3)

with Π ≡ [I3, 03, ..., 03]. We can therefore recover the initial

velocity, the roll and pitch angles, and the distances to the

point features by finding the vector X satisfying (2) and (3).

In the next sections, we will evaluate the performance of this

method on simulated noisy sensor data. This will allow us to

identify its weaknesses and bring modifications to overcome

them.

IV. LIMITATIONS OF [1]

The goal of this section is to find out the limitations of the

solution proposed in [1] when it is adopted in a real scenario.

In particular, special attention will be devoted to the case of an

MAV equipped with low-cost camera and IMU sensors. For

this reason, we perform simulations that significantly differ

from the ones performed in [1] (section 5.2). Specifically, they

differ because of the following two reasons:

• The simulated motion is the one of an MAV;

• The values of the biases are significantly larger than the

ones in [1].

This will allow us to evaluate the impact of the bias on the

performance.

A. Simulation setup

We simulate an MAV as a point particle executing a circular

trajectory of about 1m radius. We measure our error on the

absolute scale by computing the mean error over all estimated

distances to point features λi
j . We define the relative error as

the euclidean distance between the estimation and the ground

truth, normalized by the ground truth.

Synthetic gyroscope and accelerometer data are affected by

a statistical error of 0.5 deg/s and 0.5 cm/s2, respectively and

they are also corrupted by a constant bias.

We set 7 simulated 3D point-features about 3m away from

the MAV, which flies at a speed of around 2 m s−1. We found

that setting the frame rate of the simulated camera at 10Hz

provides a sufficient pixel disparity with the following setup.

In practice, increasing the frame rate above 30Hz decreases

the pixel disparity and introduces numerical instability for

this setup. The theoretical cases in which our system admits

singularities are provided in [1, 2]. Reducing the number

of considered frames also reduces the size of the matrices

and, thus, speeds up the computations. As an example, over

a time interval of 3 seconds, we obtain 31 distinct frames.

When observing 7 features, solving the closed-form solution

is equivalent to inverting a linear system of 3× 30× 7 = 630
equations and 6 + 7× 31 = 223 unknowns (see section III).

The method we use to solve the overconstrained linear

system ΞX = S is a Singular Value Decomposition (SVD)

since it yields numerically robust solutions.

In the next section, we will present the results obtained

with the original closed-form solution on the simulated data

mentioned, with different sensor bias settings. Our goal is to

identify its performance limitations and introduce modifica-

tions to overcome them.

B. Performance without bias

The original closed-form solution described in Equation

(2) will be used as a basis for our work. Moreover, we can

also use the knowledge of the gravity magnitude to refine

our results (Equation (3)). In this case, we are minimizing

a linear objective function with a quadratic constraint. In Fig.

2, we display the performance of the original Closed-Form

(CF) solution in estimating speed, gravity in the local frame,

and distances to the features with and without this additional

constraint.
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Fig. 2: Original closed-form solution estimations with and

without using the knowledge of the gravity (3). We are

observing 7 features over a variable duration of integration.

Note how the evaluations get better as we increase the

integration time. Indeed, our equations come from an extended

triangulation [2]. Therefore, it requires a significant difference

in the measurements over time to robustly estimate the state.

Without sensor bias, the original closed-form robustly es-

timates all the properties (below 0.1% error) after 2 seconds

of integration. Note that a robust estimation of the gravity

requires a shorter duration of integration than the speed and the

distance to the features. In general, we found that the gravity is

well estimated with the original closed-form solution due to its

strong weight in the equations (see section IV-C). Therefore,

constraining its magnitude does not improve the performance

much. In the following sections, we remove this constraint.

C. Impact of accelerometer bias on the performance

In order to visualize the impact of the accelerometer bias on

the performance, we corrupt the accelerometer measurements

by a bias (Fig. 3).

Despite a high accelerometer bias, the closed-form solution

still provides robust results. As seen in Fig. 3, neither the

estimation of the gravity, the velocity or the lambdas is

impacted by the accelerometer bias. To explain this behavior

we ran many simulations by also considering trajectories that

are not plausible for an MAV and by changing the magnitude

of the gravity.

We found the following conclusions. When the rotations

are small, the effect of a bias is negligible even if its value is

larger than the inertial acceleration. This is easily explained by

remarking that, in the case of negligible rotations, a bias on the

accelerometer acts as the gravity. Hence, its impact depends

on the ratio between its magnitude and the magnitude of the

gravity. If the rotations are important, the effect of a bias on

the accelerometer is negligible when its magnitude is smaller

than both the gravity and the inertial acceleration. Note that,

for an MAV that accomplishes a loop of radius 1m and speed

2m s−1, the inertial acceleration is 4m s−2.

|bias|=0 m/s2

|bias|=0.005 m/s2

|bias|=0.01 m/s2

|bias|=0.05 m/s2
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(d) Lambda estimation error

Fig. 3: Impact of the accelerometer bias on the performance

of the closed-form solution. We are observing 7 features over

a variable duration of integration.

In [1], the author provides an alternative formulation of the

closed-form solution including the accelerometer bias as an

observable unknown of the system. However, the estimation

of the accelerometer bias with that method is not robust since

our system is only slightly affected by it3.

D. Impact of gyroscope bias on the performance

To visualize the impact of the gyroscope bias on the

performance, we corrupt the gyroscope measurements by an

artificial bias (Fig. 4).

As seen in Fig. 4, the performance becomes very poor in

presence of a bias on the gyroscope and, in practice, the overall

method could only be successfully used with a very precise—

and expensive—gyroscope.

Note that, in [1], the author evaluates the performance of

the closed-form solution with a simulated gyroscope bias of

magnitude 0.5deg/s ≈ 0.0087rad/s. In Fig. 4, this bias would

yield a curve between the green and the blue ones, with relative

error below 10%.

V. ESTIMATING THE GYROSCOPE BIAS

Previous work has shown that the gyroscope bias is an

observable mode when using an IMU and a camera, which

means that it can be estimated [2]. In this section, we propose

an optimization approach to estimate the gyroscope bias using

the closed-form solution.

3Additionally, in [1] property 12, we prove that rotations must occur around
at least two independent axes to determine the bias. In general, for a motion
of a few seconds, an MAV accomplishes rotations around a single axis.
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Fig. 4: Impact of the gyroscope bias on the performance of

the closed-form solution. We are observing 7 features over a

variable duration of integration.

A. Nonlinear minimization of the residual

Since our system of equations (1) is overconstrained, invert-

ing it is equivalent to finding the vector X that minimizes the

residual ||ΞX − S||2. We define the following cost function:

cost(B) = ||ΞX − S||2, (4)

with:

• B the gyroscope bias;

• Ξ and S computed by replacing the angular velocity

provided by the gyroscope ω by ω −B.

By minimizing this cost function, we recover the gyroscope

bias B and the unknown vector X . Since our cost function

requires an initialization and is non-convex (see Fig. 7), the

optimization process can be stuck in local minima. However,

by running extensive simulations we found that the cost

function is convex around the true value of the bias. Hence,

we can initialize the optimization process with B = 03 since

the bias is usually rather small.

As seen in Fig. 6, this method can robustly estimate high

values of the gyroscope bias (relative error of final bias

estimate is below 2%). Fig. 5 displays the performance of

the proposed method in estimating speed, gravity in the local

frame, and distances to the features in presence of the same

artificial gyroscope bias from Fig. 4. As seen in Fig. 5, after 1s
of integration duration, the estimations agree no matter how

high the bias is. In other words, given that the integration

duration is long enough, this method is unaffected by the

gyroscope bias. Using Levenberg-Marquardt algorithm, the

optimization process reaches its optimal value after around 4
iterations and 20 evaluations of the cost function. Evaluating

|bias|=0 rad/s

|bias|=0.005 rad/s

|bias|=0.01 rad/s

|bias|=0.05 rad/s

|bias|=0.1 rad/s

(a) Legend

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Duration (s)

R
el

at
iv

e
E

rr
o

r

(b) Gravity estimation error

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Duration (s)

R
el

at
iv

e
E

rr
o

r

(c) Velocity estimation error

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Duration (s)

R
el

at
iv

e
E

rr
o

r

(d) Lambda estimation error

Fig. 5: Impact of the gyroscope bias on the performance of the

optimized closed-form solution. We are observing 7 features

over a variable duration of integration.

−10
−8
−6
−4
−2
0
2
4
6
8

10
·10−2

−10
−8
−6
−4
−2
0
2
4
6
8

10
·10−2

B
ia

s
(r

ad
/s

)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10
−8
−6
−4
−2
0
2
4
6
8

10
·10−2

Duration (s)

Fig. 6: Gyroscope bias estimation from nonlinear minimiza-

tion of the residual. We are observing 7 features over a

variable duration of integration. The true bias is B =
[−0.0170,−0.0695, 0.0698] with magnitude ||B|| = 0.1 and

the final bias estimate is [−0.0183,−0.0697, 0.0708].
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(b) Residual with respect to By and Bz

Fig. 7: Cost function (residual) with respect to the gyroscope

bias for a small amount of available measurements (integration

of 1 second while observing 7 features)

the cost function is equivalent to solving the linear system

described in Equation (2).

For very short time of integration (< 1 second), the cost

function loses its local convexity and the proposed method can

fail by providing a gyroscope bias much larger than the correct

one. To understand this misestimation, in Fig. 7 we plot the

residual with respect to the bias, which is the cost function we

are minimizing. We highlight a misestimation of the gyroscope

bias by setting the duration of integration to 1 second while

observing 7 features. We refer to the components of the

gyroscope bias by B = [Bx, By, Bz]. As we can see in Fig. 7,

the cost function admits a symmetry with respect to Bz (and

consequently it is not convex). This symmetry replicates the

minima of the true gyroscope bias along Bz . The optimization

process can therefore diverge from the true gyroscope bias. In

the next section, we present a method to use a priori knowledge

to guide the optimization process.

B. Removing the symmetry in the cost function

The symmetry in the cost function is induced by the strong

weight of the gravity in the Equation (1). In general, the

residual is almost constant with respect to the component of

the gyroscope bias along the direction ~u when ~u is collinear

with the gravity throughout the motion. Since an MAV nor-

mally operates in near-hover conditions, ~u is approximated

to the vector pointing upward in the gyroscope frame when

the MAV is hovering. If the MAV rotates such that ~u becomes

noncollinear with the gravity, the cost function does not exhibit

this symmetry anymore. In this case, the gyroscope bias is well

estimated. A simple solution to avoid having that symmetry

in our system would be to enforce that there is no such ~u by

forcing our MAV to perform rotations while it is operating.

Another way to artificially get rid of this symmetry is to tweak

the cost function. Specifically, we can add a regularization

term that penalizes high estimations of the component of the

bias along ~u:

cost(B) = ||ΞX − S||2 + λ(~u ·B)2, (5)

with ~u the direction collinear with the gravity throughout the

motion and λ the coefficient given to how much we want to

penalize this bias component.

For small values of λ, our cost function is similar to the

previous one and the bias can grow arbitrarily high. Note

that, instead of forcing this gyroscope bias component to be

close to 0, we can easily force it to be close to any value.

Therefore, we can use the a priori knowledge of a gyroscope

bias approximation:

cost(B) = ||ΞX − S||2 + λ(~u · (B −Bapprox))2,

with Bapprox being the known approximate gyroscope bias.

This methods allows us to reuse previously-computed gyro-

scope bias since it is known to slowly vary over time. The

value of λ should be set starting from the knowledge about

the range of change of the gyroscope bias. We can obtain this

variation with previously-computed gyroscope bias.

VI. EXPERIMENTS ON REAL DATA

We validate our method on a real dataset containing IMU

and camera measurements from a flying quadrotor along with

ground truth.

A. Experimental setup

For our evaluation, we consider an MAV flying in a room

equipped with a motion-capture system. This allows us to

compare the estimations of the velocity along with the roll

and pitch angles against ground truth.

We use the same MAV used in [18], Section 3.4. Specif-

ically, our quadrotor relies on the frame of the Parrot

AR.Drone 2.0 including their motors, motor controllers, gears,

and propellers. It is equipped with a PX4FMU autopilot

and a PX4IOAR adapter board. The PX4FMU includes a

200Hz IMU. The MAV is also equipped with a downward-

looking MatrixVision mvBlueFOX-MLC200w (752 × 480-

pixel) monochrome camera with a 130-degree field-of-view

lens (Fig. 8a). The data are recorded using an Odroid-U3

single-board computer. The MAV flies indoors at low altitude

(1.5m) (Fig. 8b). The feature extraction and matching is done

via the FAST corners [21, 22].
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(a) A closeup of our quadrotor: 1)
down-looking camera, 2) Odroid
U3 quad-core computer, 3) PIX-
HAWK autopilot.

(b) Our flying arena equipped
with an OptiTrack motion-capture
system (for ground-truth record-
ing).

Fig. 8: Experimental setup for identifying the limitations of

the performance. The drone is equipped with an IMU and a

down-looking camera.

B. Results

We compare the performance on the estimations of the

gravity and velocity obtained with three methods:

• The original closed-form solution [1] (Eq. (2));

• Our modified closed-form solution (Eq. (4));

• The loosely-coupled visual-inertial algorithm (MSF) [23]

using pose estimates from the Semi-direct Visual Odom-

etry (SVO) package [6] (how to combine MSF with SVO

can be found in [18]).

The reason we included SVO+MSF in the validation is to have

a reference state-of-the-art pose estimation method. However,

MSF requires to be initialized with a rough absolute scale,

whereas our method works without initialization. We set

the integration duration for the closed-form solution to 2.8

seconds, since it is sufficient to obtain robust results (see Fig.

6). The camera provides 60fps, but we discard most of the

frames and consider only 10Hz (this is discussed in section

IV-A).

As seen in Fig. 9a, the performance obtained by our

method is similar than the performance obtained by a well-

initialized MSF. We remind the reader that unlike MSF, the

closed-form solution does not require the knowledge of the

absolute scale to be provided. Moreover, the original closed-

form solution and the optimized closed-form solution have

similar performance. Indeed, for this dataset the gyroscope

bias was estimated to B = [0.0003, 0.009, 0.001], which is

very small (||B|| = 0.0091).
To prove the robustness of our method compared to the

original closed-form, we corrupt the gyroscope measurements

provided by the dataset with an artificial bias in Fig. 9b and

Fig. 9c.

As seen in these figures, our method is robust against

gyroscope bias whereas the original closed-form is not.

VII. CONCLUSION

In this paper, we studied the recent closed-form solution

proposed by [1] which performs visual-inertial sensor fu-

sion without requiring an initialization. We implemented this

method in order to test it with plausible MAV motions and

synthetic noisy sensor data. This allowed us to identify its

performance limitations and bring modifications to overcome

them.
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(a) No artificial bias.
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(b) Artificial bias of magnitude 0.05rad/s.
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(c) Artificial bias of magnitude 0.1rad/s.

Fig. 9: Estimation error of the optimized closed-form solution

against the original closed-form solution [1] and SVO [18].

The duration of integration is set to 2.8 seconds, and 10 point

features are observed throughout the whole operation. In Fig.

9b and Fig. 9b, we corrupted the gyroscope measurements

with an artificial bias.
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We investigated the impact of biased inertial measurements.

Although the case of biased accelerometer was originally

studied in [1], we showed that the accelerometer bias does not

significantly worsen the performance. One major performance

limitation of this method was due to the impact of biased

gyroscope measurements. In other words, the performance

becomes very poor in presence of a bias on the gyroscope

and, in practice, the overall method could only be successfully

used with a very precise (and expensive) gyroscope. We then

introduced a simple method that automatically estimates this

bias.

We validated this method by comparing its performance

against state-of-the-art pose estimation approach for MAV.

For future work, we see this optimized closed-form solution

being used on an MAV to provide accurate state initialization.

This would allow aggressive take-off maneuvers, such as hand

throwing the MAV in the air, as already demonstrated in [19]

with a range sensor. With our technique, we could get rid of

the range sensor.
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