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Simultaneous temporal superresolution and
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Abstract—Due to low light emission of fluorescent samples,
live fluorescence microscopy imposes a tradeoff between spatio-
temporal resolution and signal-to-noise ratio. This can result in
images and videos containing motion blur or Poisson-type shot
noise, depending on the settings used during acquisition. Here, we
propose an algorithm to simultaneously denoise and temporally
super-resolve movies of repeating microscopic processes that is
compatible with any conventional microscopy setup that can
achieve imaging at a rate of at least twice that of the fundamental
frequency of the process (above 4 frames per second for a 2 Hz
process). Our method combines low temporal resolution frames
from multiple cycles of a repeating process to reconstruct a
denoised, higher temporal resolution image sequence which is the
solution to a linear program that maximizes the consistency of
the reconstruction with the measurements, under a regularization
constraint. This paper describes, in particular, a parallelizable
superresolution reconstruction algorithm and demonstrates its
application to live cardiac fluorescence microscopy. Using our
method, we experimentally show temporal resolution improve-
ment by a factor of 1.6, resulting in a visible reduction of motion
blur in both on-sample and off-sample frames.

Index Terms—Temporal superresolution, motion blur, image
denoising, image reconstruction, fluorescence microscopy.

I. INTRODUCTION

Superresolution microscopy has recently gained popularity

with the development of new techniques, such as stimulated

emission depletion microscopy (STED) [1], [2] and structured

illumination microscopy (SIM) [3], [4]. These superresolution

techniques, along with localization techniques [5] such as

PALM [6] and STORM [7], allow for imaging with resolution

finer than that set by the optical diffraction limit. While much

of the research has focused on improving spatial resolution,

temporal resolution in microscopy has received considerably

less attention despite it being a significant issue in live fluores-

cence imaging. And although a number of fast imaging meth-

ods have been proposed [8]–[10], the fact still remains that live

fluorescence imaging of dynamic samples imposes a tradeoff

between spatio-temporal resolution and signal-to-noise ratio

during acquisition [11]. Temporal resolution in fluorescence

microscopy is limited by the fluorophore emission rate, which

imposes that the camera integration time must be long enough
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to acquire enough photons for an acceptable signal-to-noise

ratio. Unfortunately, when imaging rapid, dynamic processes,

a long integration time results in motion blur, and a low

sampling rate can result in temporal aliasing. Using a higher

sampling rate and a shorter exposure time can reduce motion

blur and temporal aliasing, but will also decrease the signal-

to-noise ratio. Furthermore, increasing the sampling rate and

decreasing the exposure time is not always possible, since

cameras designed for fluorescence microscopy have an upper

limit on their frame rate (typically between 30-100 frames

per second) and a lower limit on integration time (often on

the order of milliseconds). We wish to image rapid, dynamic

processes (such as the beating heart in developing animal

embryos) with both high temporal resolution and a high signal-

to-noise ratio. Since this is not possible using a hardware

solution exclusively, we propose to overcome this tradeoff

by implementing a computational method that simultaneously

improves both temporal resolution and signal-to-noise ratio, at

the cost of taking multiple acquisitions of the same dynamic

process.

Our approach differs from the existing methods that have

been proposed for temporal superresolution, whose main fea-

tures we summarize hereafter. Bub et al. proposed a temporal

pixel multiplexing method for microscopy to achieve temporal

superresolution by offsetting pixel exposure times during a

single frame capture [12]. However, this came at the cost of

spatial resolution, and it required a modified camera setup with

multiplexed pixels. In a related work, Reddy et al. proposed

a novel camera architecture with programmable, multiplexed

pixels [13]. This method was able to recover a high-speed

image sequence at full spatial resolution by exploiting the

spatio-temporal redundancy in videos. However, the method

again required a modified camera that may not be readily

available to most microscopy labs. Additionally, the method

assumed that spatially moving objects remain at a constant

brightness along the time dimension, which may not be true

in fluorescence biomicroscopy. Other methods, such as the

staggered exposure approach by Shechtman et al. [14] and

the coded sampling work by Agrawal et al. [15] used multiple

synchronized cameras, each with different temporal sampling

patterns, to achieve temporal superresolution. However, such

approaches are not well-suited to fluorescence microscopy,

since they would divide the already low photon count be-

tween multiple cameras. Related to [15], Veeraraghavan et

al. proposed a coded strobing method using a single camera

to image high-speed periodic events [16]. However, strobing

and pulsed illumination methods, while able to reduce motion

blur for high-speed imaging, require precisely-controlled, high
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intensity illumination [17]. When imaging live fluorescent

samples, using high intensity illumination can lead to flu-

orophore saturation, photodamage, and photobleaching [18],

[19].

We are interested in imaging the dynamics of the beating

heart in fluorescence under low illumination intensity, at full

spatial resolution, at high frame rates, with a high signal-

to-noise ratio, and with hardware commonly found in most

microscopy labs. To accomplish this, we take advantage of the

repetitive motion of the heart to acquire a long, low temporal

resolution image sequence containing multiple heart cycles.

We then combine these multiple low temporal resolution

cycles into a higher temporal resolution version of a single

heart cycle. While we focus on imaging the heart, our method

is designed to be applicable to imaging any repeating process.

Our approach is related to the spatial superresolution

method of, for example, Sroubek et al. [20], Farsiu et al. [21],

and Ben-Ezra et al. [22], where several low spatial resolution

images with translational shifts were combined into a high spa-

tial resolution image. Here, we instead reconstruct a temporal

superresolution sequence from multiple low temporal resolu-

tion image sequences. Our reconstruction approach leverages

two key ingredients: (i) availability of multiple low resolution

measurements and (ii) knowledge about the imaging system

(including its parameters), as specified through a well-defined

forward model. Attempting to recover the high resolution

sequence from a single low resolution measurement would

result in a highly ill-posed inverse problem: the system is

under-determined, and many different high resolution solu-

tions could produce the same low resolution measurements.

Instead, by combining multiple measurements, each collected

with different acquisition parameters (i.e. temporal shifts), the

problem becomes over-determined, and can be solved to yield

super-resolution.

While a previous method we developed assumed uniform

temporal shifts between low resolution sequences [23], here

we allow for non-uniform, sub-resolution temporal warping

in the acquired image sequence for repeating motions that

are not strictly periodic. In addition to improving resolution,

this superresolution approach is robust to noise, and the

combination of multiple acquisitions has a noise reducing

effect. Unlike other methods to increase the frame-rate, our ap-

proach does not require any modifications to the conventional

image acquisition setup. It only requires collecting multiple

temporal cycles of one’s sample with an imaging rate at least

twice that of the fundamental frequency of the process. We

make a Fiji [24] plugin to demonstrate the superresolution

reconstruction available online at [25].

This paper is organized as follows. In Section II, we present

the acquisition and superresolution method. In Section III, we

demonstrate the improvement this technique offers for tempo-

ral resolution and noise reduction in live cardiac microscopy.

In Section IV, we summarize the advantages of our method

and discuss some details to consider when using the algorithm.

II. METHODS

Many biological processes, such as the expansion and

contraction of the heart, are repeating. We take advantage of

this repetition to reconstruct a single cycle with high frame-

rate from a low frame-rate movie containing multiple cycles

of our process of interest.

A. Image Acquisition Model

At every pixel (voxel) coordinate x = (x, y, z),
we wish to reconstruct a single, high temporal resolu-

tion cycle of the sample’s emitted fluorescence intensity,

Iref [x, n] , n = 0, . . . , Nref − 1, where Nref is the number of

samples covering the duration of one cycle, and where the

sample spacing TH is sufficiently small to prevent temporal

aliasing of the fundamental frequency. We assume that at a

given coordinate x, the sample’s fluorescence emission inten-

sity, I [x, n], at any time point n ∈ Z (not only 0 ≤ n < Nref),

is a temporally repeating signal such that I [x, n] is either equal

(up to some additive noise) to a matching time point in Iref, or

can be interpolated from Iref, provided that Iref is chosen to be

a complete cycle. More specifically, using linear interpolation,

our assumption translates to:

I [x, n] = (1− (w[n]− ⌊w [n]⌋)) Iref [x, ⌊w [n]⌋]

+ (w[n]− ⌊w [n]⌋) Iref [x, ⌈w [n]⌉]

+ vs [x, n] ,

(1)

where w [n] is the real-valued “index” in Iref that corresponds

to I [x, n] (0 ≤ w [n] < Nref), and vs [x, n] is an additive noise

term.

Our approach consists of acquiring a long sequence

Î [x, n] , n = 0, . . . , N − 1 containing K > 1 cycles of our

repeating process with a larger sample spacing TL (TL > TH),

and we aim at combining information from all K cycles to

obtain an estimate of the reference sequence Iref [x, n] with

the desired sample spacing TH. We further assume that the

ratio between sampling steps, TL

TH
= p

q
, is a rational number,

and we assume that the number of measured periods is more

than the sampling ratio (i.e. 1 < p
q
< K) so that the problem

is overdetermined.

The measured sequence can be expressed as a discrete

convolution of an upsampled (by insertion of q − 1 zeros

between samples) version of the high-resolution sequence with

the system’s temporal impulse response h, followed by a

decimation by p. Specifically,

Î [x, n] =
(

(I [x, ·])↑q ∗ h
)

↓p
[x, n] + vm [x, n] , (2)

where vm [x, n] represents additive measurement noise, and h
represents the rectangular filter,

h[n] =

{

1
Nint

0 ≤ n < Nint

0 otherwise
, (3)

modeling the system’s temporal integration time Tint and

integration window width, Nint = round
(

Tint

TL

p
q

)

. This con-

volution and temporal warping is shown in Figure 1, where

each measured sample, Î [x, n], is an integration of the ideal

reference signal, Iref [x, n], over some time window (denoted

by the dark rectangles). Since the measured signal repeats,

some samples will correspond to overlapping windows in the

ideal signal that are slightly shifted by a fractional offset.
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Fig. 1. A temporally repeating process (such as the cardiac cycle) is imaged
over multiple cycles using a long exposure time and a low frame rate to

produce Î [x, n]. Each acquired frame corresponds to a finite time window
(denoted by the dark rectangles) of the underlying model signal, Iref [x, n].
Although the camera frame-rate 1/TL and integration time Tint are always kept
constant, the measured signal may vary temporally, compared to the model
signal. Therefore, a frame in one cycle may correspond to a different duration
of the underlying signal compared to a similar frame in a different cycle.

Using discrete matrix-vector notation similar to that used

in [20], we can also express our forward model at pixel

location x = (x, y, z) as

gx = DpHUqSfx + vx, (4)

where

gx =
(

Î [x, 0] , . . . , Î [x, N − 1]
)⊤

, (5)

fx =
(

Iref [x, 0] , . . . , Iref [x, Nref − 1]
)⊤

, (6)

⊤ denoting transposition, and Dp is an N ×Np matrix that

downsamples by p, H is an Np×Np circulant matrix with

shifted versions of the filter h [n] as its rows, Uq is an

Np×Np/q matrix that upsamples by q, S is an Np/q ×Nref

matrix with elements

Sij =







1− (w[i]− ⌊w [i]⌋) j = ⌊w [i]⌋
w[i]− ⌊w [i]⌋ j = ⌈w [i]⌉
0 otherwise

(7)

that rearranges and interpolates the high-resolution reference

cycle fx according to sub-frame positions w [n] (unknown in

practice), and vx is an additive noise vector that incorporates

both vm [x, n] and vs [x, n].

B. Sub-resolution Temporal Registration

The first task to invert Equation (4) is estimating the

best matching sub-frame indices, w [n], for each time point

n = 0, . . . , N − 1. To do this, we first define a new set of

sub-frame indices in the low-resolution signal,

wℓ [n] =
q

p
w [n] , (8)

which we split into a large, whole-sample integer shift w̄ℓ[n]
and a smaller sub-sample shift ∆n,

wℓ[n] = w̄ℓ[n] + ∆n, (9)

where |∆n| < 1. We then use a two-step process to separately

estimate w̄ℓ[n] and ∆n that is similar to the approach used

in [26], with the exception that we explicitly estimate the sub-

sample shift.

We first identify a low-resolution reference cycle

Îref [x,m] ,m = 0, . . . , ⌊ q
p
Nref⌋ − 1 from the long sequence

Î [x, n]. For simplicity, we consider the first M = ⌊ q
p
Nref⌋

time points in Î [x, n] to be our reference cycle Îref [x,m]. In

practice, the reference cycle can be user-defined by its first

and last frame, determined automatically by taking the M
first frames (with M an estimate of the cardiac frequency

obtained from the peak frequency component in the Fourier

transform of the entire signal), or a combination of both

(user-adjustment following automatic period estimation).

While the sub-frame accuracy of the reference sequence is

not necessary for successful super-resolution, the assumption

in Equation (1), which states that each time point in the long

sequence can be obtained by interpolating two frames from

the reference cycle, should not be violated.

To determine the whole-sample shift w̄ℓ[n], we find the best

match Îref [x, w̄ℓ [n]] to Î [x, n]. Specifically, we use a dynamic

programming synchronization algorithm [27] to find w̃ [n] ∈ Z

for n = 0, . . . , N − 1, such that

Q =
N−1
∑

n=0

∑

x

∣

∣

∣
Î [x, n]− Îref [x, (w̃ [n] mod M)]

∣

∣

∣
(10)

is minimized with respect to w̃ [n], under the constraint that

wmin ≤ w̃ [n]− w̃ [n− 1] ≤ wmax, (11)

where mod denotes the modulo operator, M = ⌊ q
p
Nref⌋, and

wmin and wmax are positive integers (0 < wmin ≤ wmax)

that allow for nonuniform temporal warping, restrict w̃ [n] to

be monotonically increasing, and limit excessive dilation. In

practice, wmin and wmax can be used to restrict the search space,

and thereby reduce the computational burden, when bounds

on the variability in heartbeat rhythm can be estimated. The

whole-sample shift is then given by

w̄ℓ [n] = w̃ [n] mod M. (12)

To determine the sub-sample shift ∆n, we approximate the

reference signal at spatial location x and sub-integer index

wℓ[n] = w̄ℓ[n] + ∆n with a first order Taylor series and a

finite difference approximation to the derivative,

Î [x, n] ≈ Îref [x, w̄ℓ [n]] +

∆n

(

Îref [x, w̄ℓ [n+ 1]]− Îref [x, w̄ℓ [n]]
)

.
(13)

Using a least-squares approach, we take all spatial locations

x into account to find

∆n = argmin
s

∑

x

((

Î [x, n] − Îref [x, w̄ℓ [n]]
)

−
(

Îref [x, w̄ℓ [n+ 1]] − Îref [x, w̄ℓ [n]]
)

s
)2

.

(14)
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This is a reverse interpolation problem using a piecewise

linear approximation to the underlying function Îref [x, n].
Instead of using linear interpolation to find the value of the

function at a given location, we wish to find the location at

which the function takes on a given value, assuming that the

function is piecewise linear. In practice, we use a higher order

approximation (such as the cubic approximation described

in Appendix A) rather than a linear approximation to the

underlying function.

Once we obtain w̄ℓ[n] and ∆n, we can determine the best

matching sub-integer reference index

w[n] =
p

q
(w̄ℓ[n] + ∆n) (15)

and populate the matrix S in Equation (7).

C. Superresolution Reconstruction

The task of superresolution reconstruction is an inverse

problem to recover the unknown fx from the measured gx. We

solve this independently at each spatial location x = (x, y, z)
by minimizing an ℓ1 cost function,

f̂x (λ) = argmin
fx

‖DpHUqSfx − gx‖1 + λ‖Γfx‖1, (16)

where λ is a regularization weighting constant, and Γ is a

Tikhonov regularization second-order difference operator that

is chosen to favor temporally smooth solutions,

Γ =











2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0

. . .

−1 0 0 . . . −1 2











, (17)

and all other matrices are given by the forward imaging model

in Equation (4). This is a strictly one-dimensional temporal

reconstruction problem, and we solve this independently at

each pixel without any spatial constraints.

The minimization in Equation (16) is equivalent to the

minimization problem:

f̂x = argmin
fx,ỹ

∑

i

ỹi s.t.

−ỹ ≤

[

DpHUqS

λΓ

]

fx −

[

gx

0

]

≤ ỹ,

(18)

where ỹ is a helper variable vector that bounds the data

fidelity error and the regularization error. Since the double-

sided inequality in Equation (18) can be rewritten as a single-

sided inequality,








DpHUqS

−DpHUqS

λΓ
−λΓ









fx − ỹ ≤









gx

−gx

0

0









, (19)

we can pose the minimization in Equation (16) as a linear

programming problem subject to an inequality constraint,

ŷ =min c⊤y

s.t. Ay ≤ b

and y ≥ 0,

(20)

with the following matrix definitions:

c⊤ =
[

01×Nref
11×(N+Nref)

]

,

y =

[

(fx)Nref×1

ỹ(N+Nref)×1

]

,

A =









DpHUqS −IN×N 0N×Nref

−DpHUqS −IN×N 0N×Nref

λΓ 0Nref×N −INref×Nref

−λΓ 0Nref×N −INref×Nref









,

b =









gx

−gx

0Nref×1

0Nref×1









.

(21)

We find the solution to this linear programming problem by

the simplex method [28]. To reconstruct the full temporal

superresolution video, we apply the optimization at each

pixel location independently. We then produce the complete

temporal superresolution sequence,

ÎSR [x, n] = ÎSR [x, y, z, n] = f̂x(λ), (22)

by assembling the solutions at all pixel locations x = (x, y, z).
Since each pixel location can be treated independently, the

computation time can be significantly reduced through paral-

lelization on multi-core processors or multi-node clusters.

D. Optimal value of λ

If, for each value of λ, the energy of each of the two terms

in the minimization (16) is computed separately and a locus is

recorded in a plot with the two energies in the x and y axes,

respectively, one can empirically observe that the resulting

curve has the approximate shape of the letter L. The optimal

choice for λ is the corner of this L-curve [29], as it provides

a good balance between the two terms of Equation (16). We

find this corner by finding the value of λ ∈ [λmin, λmax] that

minimizes the two-group linear regression error,

λopt = argmin
λ⋆

λ⋆

∑

λ=λmin

(

L (λ)− L̂1 (λ)
)2

+

λmax
∑

λ=λ⋆

(

L (λ)− L̂2 (λ)
)2

,

(23)

where

L (λ) =
(

‖DpHUqSf̂x (λ)− gx‖1, λ‖Γf̂x (λ) ‖1

)

(24)

is a point on the L-curve, and L̂1, L̂2 are least-squares linear

regressions to L (λ) in the ranges [λmin, λ
⋆] and [λ⋆, λmax],

respectively. The motivation behind this approach is that the

L-curve’s corner location is the point that best separates the

L-curve into two straight-line regions.
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Fig. 2. We measure a static fluorescent sample’s mean intensity over time while under a linear sweep-frequency (chirp) illumination from 0 Hz to 30 Hz, as
illustrated in (b). Sampling a linear chirp signal below the Nyquist rate results in temporal aliasing, as shown in (a: top). A non-aliased acquisition taken at
100 fps is shown for comparison. Fourteen sequences acquired at 30 fps are used for temporal superresolution reconstruction. The superresolution sequence,
shown in (a: bottom) reveals rapid, high frequency changes in intensity that are normally lost when imaging at 30 fps. A comparison of the signals’ frequency
spectrum in (c) reveals a superresolution improvement in bandwidth over the 30 fps sequence by a factor of 1.6×. See supplementary movie 1 for the full
sequence.

III. EXPERIMENTS

To validate our method, we conducted both computational

simulations and in vivo experiments. During the in vivo

experiments, we imaged spatially static (but with a tempo-

rally varying intensity) as well as moving samples using

an epi-fluorescence microscopy setup (illumination and light

collection occur through the same microscope objective). To

demonstrate our method with 4D imaging, we used a multi-

view selective plane illumination microscope [30] to image

live zebrafish embryos. After acquisition, we reconstructed

a full resolution, temporal superresolution video by solving

the linear programming problem in Equation (20) using the

cplexlp solver from the IBM CPLEX optimization pack-

age [31]. In our experiments, we assumed loose bounds on

the signal’s temporal warping with wmin = 1 and wmax = M
2 .

We obtained all our ℓ1 reconstructions through independent

temporal processing on a pixel-by-pixel basis without any

spatial post-processing. For each ℓ1 reconstruction, unless

otherwise mentioned, we determined the value of λ by

performing the reconstruction on a small, manually-selected

region of interest with several different values and selecting

the optimal value according to Equation (23). All experiments

and procedures involving zebrafish embryos were performed

following standard techniques [32] under a protocol approved

by the Institutional Animal Care and Use Committee at the

University of California, Santa Barbara.

A. Quantifying Resolution Improvement

To quantify the method’s temporal resolution improvement

experimentally, we imaged a static fluorescent sample (drawn

on a glass coverslip with a Sharpie Accent Highlighter, San-

ford L.P., Oak Brook, III.) illuminated by a time-varying light

source. The illumination (and also the emitted fluorescence)

followed a repeating temporal chirp signal, where each cycle

is a sinusoid with its frequency increasing linearly from 0

Hz to 30 Hz over two seconds. We imaged the sample with a

Leica DMI6000B inverted microscope and an HCX PL S-APO

20×/0.50 air objective. We acquired fourteen low temporal

resolution cycles, each with a known uniform temporal shift, at

30 frames per second using a Hamamatsu ImageEM C9100-13

EM-CCD camera. EM-CCD cameras have a much higher sen-

sitivity and gain than regular CCD cameras, and therefore are

well adapted for fluorescence microscopy despite the relatively

low frame rate at full resolution and full field (512×512 pixels

per frame). At 30 frames per second, the second half of the

sequence (corresponding to illumination frequencies between

15 Hz to 30 Hz) is aliased because the camera sampling rate

is too slow to accurately capture the rapid flickering of the

sample. Naive interpolation and resampling cannot recover

these aliased high frequencies. However, by using 14 low

resolution cycles (with known uniform shifts) to reconstruct

a sequence with a 4× temporal magnification factor, our

temporal superresolution method recovers oscillations up to

24 Hz (Figure 2, Supplementary movie 1). This is equivalent

to a 1.6-fold increase in bandwidth, which is consistent with

the theoretically-derived practical superresolution limit in [33].

We conducted further simulations to explore the relationship

between the number of cycles used for reconstruction and the

superresolution performance. In these simulations, we used

a one-dimensional temporal chirp signal, with its frequency

increasing linearly from 0 Hz to 150 Hz over one second,

as the original high-resolution signal. The signal was low-

pass filtered and sampled at 150 Hz so that frequencies above

75 Hz were lost. For reconstruction, we first assumed the
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Fig. 3. Our simulations reconstructing a temporal chirp signal (with a 2×
reconstruction factor, p/q = 2) show that, relative to the number of cycles
used for the reconstruction, the resolution improvement follows an exponential
rise to a maximum limit of approximately 1.9× when the registration is
perfect (σ = 0 frames). In the presence of zero-mean, normally distributed
registration error with a standard deviation of σ, the resolution improvement
also follows an exponential rise, but to a lower maximum limit.

shifts w[n] to be known (no registration error, σ = 0) and

uniformly distributed over one frame interval. We measured

resolution improvement by comparing the bandwidth of the

reconstructed signal (with a 2× reconstruction factor, p/q = 2)

to the bandwidth of the observed, low-resolution signal, and

we repeated the simulation using up to 60 cycles for the

reconstruction. As expected, we found that the resolution im-

provement increases significantly as more cycles are included,

but eventually, including additional cycles provides negligible

improvement and is limited to a resolution improvement factor

of approximately 1.9× when p/q = 2 for a 2× reconstruction

factor (Figure 3, σ = 0 curve, see further description in

Section III-B).

B. Influence of Registration Error

The performance of the sub-frame temporal registration

step is critical to the superresolution reconstruction qual-

ity. Since sub-resolution registration accuracy is difficult to

measure in practice (due to a lack of a ground truth in

experimental data), we conducted a simulation on synthetic

data to quantify the registration error. We generated a reference

signal, Îref[n] = cos (2πf (n∆T )), and a warped test signal,

Î[n] = cos (2πf (n∆T + ε[n])), where ε[n] is a random shift

drawn from a uniform distribution between −∆T/2 and ∆T/2,
f is the signal frequency, and ∆T is the sample spacing. For

consistency with our in vivo imaging experiments in which

we image the zebrafish heart (beating at approximately 3 beats

per second) at 30 frames per second, we chose f = 3 Hz and

∆T = 1/30 s. We registered the test signal Î[n] to the reference

signal Îref[n] and compared the registered time indices to the

true time indices to determine the registration error. In this

simulation, for a sample size of 1000 time points, we observed

that 80% of registered samples are within ±0.02 frames of the

true temporal shift.
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Fig. 4. We reconstruct a temporal chirp with a 2× reconstruction factor (p/q =
2) from 10 cycles under different levels of registration error σ. As the standard
deviation of the registration error increases, the resolution improvement in the
reconstructed signal decreases. Beyond a standard deviation σ = 0.5 frames,
the reconstructed resolution is worse than the original resolution (resolution
improvement factor < 1×).

We next performed a simulation to characterize the effect

of registration error on the resolution improvement in the

reconstruction. We generated 10 cycles of a repeating temporal

chirp signal with a known sample index w[n] at each sample.

We then low-pass filtered and downsampled the signal by a

factor of 2, and performed the reconstruction using incorrect

sample indices, w[n] + ε[n], where ε[n] is a random error

drawn from a zero-mean normal distribution with a standard

deviation σ. We repeated this with various values of σ, and

for each value of σ, we repeated this simulation 8 times. As

σ increases, the resolution improvement decreases, and past

σ = 0.5 frames, the resolution of the reconstruction is worse

than the original resolution due to the registration step match-

ing dissimilar samples together (Figure 4). We then repeated

the simulation in which we varied the number of cycles used

for reconstruction, this time imposing a random registration

error to each sample, drawn from a normal distribution with

standard deviation σ = 0.1, 0.2, and 0.25. As we increase the

number of cycles, the resolution improvement still increases,

but the maximum resolution improvement limit decreases as

σ increases (Figure 3). We can use this result to estimate the

registration error in the experimental data used in Figure 2.

Since we used 14 cycles in our reconstruction in Figure 2,

and we observed a resolution improvement of approximately

1.6×, we estimate our registration error to have a standard

deviation of approximately 0.1 frames.

C. Comparison to Other Approaches

In most live imaging scenarios, the acquisition frame rate

is limited by the hardware of the camera system. These frame

rate limits are set by the camera manufacturer based on the

sensor technology, pixel readout time, and data transfer/storage

time. For example, the Hamamatsu ImageEM C9100-13 EM-

CCD camera which we used in our experiments is limited

to a maximum frame rate of approximately 30 frames per
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second at full resolution. Two common ways to achieve

higher frame rates are through pixel binning and ROI (re-

gion of interest) selection. These are both common features

on many commercial camera systems. In both cases, the

number of pixels per image decreases, allowing the camera

to acquire more frames per second. However, pixel binning

reduces spatial resolution and ROI selection reduces the field

of view. With our temporal superresolution method, we are

able to achieve a higher effective frame rate without these

disadvantages, as we demonstrate in Figure 5 and Figure 6

with fluorescent images of the beating heart in an embryonic

Tg(cmlc2:eGFP) zebrafish [34] at 2 days post fertilization

(dpf). In Figure 5, we acquired one image sequence at 60

frames per second with 2× spatial binning in both x and y
dimensions, and we acquired a second image sequence at 30

frames per second, with 512×512 pixels, and without pixel

binning. We then used the 30 fps sequence (which spanned 12

cardiac cycles) to reconstruct a single cardiac cycle with a 2×
temporal magnification factor using our algorithm. In Figure 6,

we again show an image from this temporal superresolution

reconstruction alongside an image from a sequence acquired

at 60 frames per second using a 256×256 region of interest. In

both figures, the Tg(cmlc2:eGFP) zebrafish heart was imaged

in fluorescence using a Leica DMI6000B inverted microscope

with an HCX PL FLUOTAR L 40x/0.60 air objective and a

Hamamatsu ImageEM C9100-13 EM-CCD camera. The full

cardiac cycle corresponding to Figure 5 and Figure 6 are

shown in supplementary movie 2 and supplementary movie 3,

respectively.

An important aspect in our method is the ℓ1 norm in the

minimization function, Equation (16). Minimizing an ℓ1 norm

is more computationally expensive than minimizing an ℓ2
norm (for a least-squares solution). The latter is much easier

to implement and faster to compute, but the solution is more

affected by outlier data. Outlier data can be caused by the shot

noise typical in low-light fluorescence microscopy, irregularity

in the repeating signal (such as arrhythmia), or registration

error. We compared our proposed ℓ1 reconstruction with the

corresponding least-squares reconstruction (i.e. the solution to

Equation (16), except with ℓ2 norms replacing both of the ℓ1
norms) and with the result of temporal interpolation to evaluate

the reconstructed image quality for both on-sample and off-

sample time points. Specifically, we used both ℓ1 and ℓ2 norms

to reconstruct the cardiac cycle of a three day-old (three days

post-fertilization) Gt(tpm4-citrine)ct31a zebrafish embryo [35]

from a low temporal resolution sequence acquired at 30

frames per second [23]. We chose λ for the ℓ1 reconstruction

according to Equation (23), and we chose λ for the least-

squares reconstruction to provide a similar background noise

level as that of the ℓ1 reconstruction. We compared this

to both cubic interpolation and motion interpolation (using

Adobe After Effects [36]). Results show that our proposed

method is best able to reduce motion blur (Figure 7). In

fact, results show that the least-squares approach tends to

over-smooth the solution, which can worsen the problem of

motion blur. Additionally, while interpolation methods can be

used to create higher rate sequences, they do not actually

improve the effective temporal resolution, and they cannot

Fig. 5. The cardiac cycle of a live Tg(cmlc2:eGFP) zebrafish is imaged in
fluorescence with a 40× objective and a Hamamatsu C9100-13 EM-CCD
camera, which has a maximum frame rate of 30 frames per second at full
resolution. (a) 2× pixel binning allows us to acquire images at 60 frames
per second, although with decreased spatial resolution (256×256 pixels).
(b) Our temporal superresolution method is able to reconstruct a sequence
with 60 frames per second at full spatial resolution (512×512 pixels) by
combining twelve cardiac cycle sequences acquired at 30 frames per second.
(c-f) Zoomed in regions show the loss in spatial resolution with pixel binning
as compared to our method. Scalebar is 100 µm. See supplementary movie 2
for the full cardiac cycle.

Fig. 6. (a) Using the same setup as used for Fig 5, our temporal superresolu-
tion method is able to reconstruct a sequence with 60 frames per second at full
field (512×512 pixels) by combining twelve cardiac cycle sequences acquired
at 30 frames per second. (b) Selecting a 256×256 region of interest allows
us to acquire images at 60 frames per second, although with only a quarter
of the field of view (central boxed region). The full field image (512×512
pixels) is shown in the background for reference. See supplementary movie 3
for the full cardiac cycle.

reduce temporal aliasing or motion blur. Naive interpolation

(using linear or cubic interpolation) can introduce additional

spatial blur as a result of blending neighboring frames. Motion

interpolation can avoid these frame-blending artifacts when

calculating intermediate frames, but does not improve the

resolution of frames that fall on integer samples. Our method

is able to reconstruct a true higher rate sequence without

additional spatial blurring in intermediate frames and with

reduced motion blur in both on-sample and off-sample frames

(Figure 7, Supplementary movie 4).

D. 3D Cardiac Reconstruction

We applied our method to reconstruct a 3D time series of a

beating heart in a live Tg(cmlc2:eGFP) zebrafish embryo (at
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Fig. 7. The cardiac cycle of a live fluorescent Gt(tpm4-citrine)ct31a zebrafish embryo (3 dpf) is imaged at 30 fps with a 20× objective. (a-d) An off-sample
frame halfway in between two original video frames (between t = 233ms and t = 267ms) and (e-h) its neighboring on-sample frame (at t = 267ms) are
reconstructed by (a,e) cubic interpolation, (b,f) motion interpolation using Adobe After Effects [36], (c,g) minimizing an ℓ2 version of our cost function with
λ = 0.1, and (d,h) minimizing our proposed ℓ1 cost function with λ = 0.15. These choices for λ produce similar background noise levels in both the ℓ1
and ℓ2 reconstructions. Arrows denote a bright region in the heart wall that is blurred due to the motion of the heart. A comparison of this region in each
reconstruction shows that our proposed ℓ1 method is best at reducing this motion blur, both for off-sample and on-sample frames. Scalebars are 50 µm.

2.5 days post-fertilization) expressing green fluorescent protein

in the heart [34]. We acquired a dataset consisting of 125

z-slices (with 2 µm spacing between adjacent slices) at 60

frames per second using a custom-built multiview selective

plane illumination microscope with two illumination arms and

two detection arms [30]. Using this setup, we illuminated the

sample through both illumination arms with a 3-µm thick light

sheet produced by rapidly scanning a Cobolt MLD 488 nm

laser beam through the sample. We acquired images from

a single view with a Nikon CFI Apo LWD 25×/1.1 water

dipping objective and a Hamamatsu ORCA-Flash 4.0 V2

camera. To reduce file size and speed up processing time,

we downsampled the images in the x and y directions to

180 pixels × 180 pixels. Prior to our temporal superresolution

reconstruction, we synchronized the z-slices using the method

in [27]. We used nine heartbeat cycles to reconstruct a tempo-

ral superresolution sequence with twice the original sampling

rate and with regularization parameter λ = 0.5. In addition to

temporal superresolution, our method also reduces noise, as

shown in Figure 8 and supplementary movie 5.

To quantify the noise reduction of our temporal superres-

olution method, we calculated the peak signal-to-noise ratio

(SNR), PSNR = 10 log10
[

max
(

I2
)

/σ2
]

, and the contrast-to-

noise ratio (CNR), CNR = 10 log10 [(µ1 − µ2) /σ], where I
is the entire 3D + time image sequence, σ is the standard

deviation of a background region of the image sequence, and

µ1 and µ2 are, respectively, the mean pixel intensities in

appropriately chosen heart and background regions of interest.

As shown in Table I, our method performs better than the

wavelet-based PURE-LET method (which specifically takes

into account Poisson-type noise, yet does not take advantage

of temporal redundancy) [38] and our previous multicycle

method [37] at denoising the experimental cardiac fluorescence

image sequences.

TABLE I
DENOISING COMPARISONS FOR DATA IN FIGURE 8.

SNR [dB] CNR [dB]

Raw Synchronized 38.17 12.59

Multicycle Median Denoising [37] 43.64 15.17

PURE-LET Denoising [38] 43.86 15.80

Temporal Superresolution 44.10 15.93

IV. DISCUSSION

Improvements in this paper over our preliminary work [23]

include a sub-frame temporal registration method that relaxes

the requirement for perfectly periodic motions, and a proce-

dure for determining the regularization parameter based on the

L-curve [29]. Additionally, we demonstrate application in 4D

(3D + time) fluorescence imaging of the beating heart in a

live zebrafish embryo (Figure 8). Our software, in the form

of a Fiji plugin, is available online for download at [25]. For

distribution purposes, this version uses an iterative reweighted

least squares algorithm to solve the ℓ1 minimization [39] rather

than the commercial IBM CPLEX package used in Section III.

In terms of quality, both packages produce similar results (to

within 1%); however, CPLEX was up to 2.5× as fast as our

reweighted least squares implementation on our setup.

We conclude by discussing some general features of the

algorithm, in particular to answer the question: how many low-

resolution cycles are necessary for a desired temporal super-

resolution factor? For 2D spatial superresolution with equally

spaced sub-resolution shifts, if the reconstruction factor in each
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(a) (b)

(c) (d) (e) (f)

Fig. 8. We imaged the heart of a live, 2.5 dpf, Tg(cmlc2:eGFP) zebrafish embryo in fluorescence at 60 frames per second. (a) 125 z-slices are synchronized
to reconstruct a 3D volume. Due to the low illumination intensity and the short integration time used during acquisition, the resulting image is severely
corrupted by Poisson-type noise. (b) Our temporal superresolution reconstruction is able to simultaneously temporally superresolve the image sequence and
remove much of the noise. We used nine cardiac cycles with a regularization parameter λ = 0.5 to reconstruct a single denoised heart beat with an effective
sampling rate of 120 frames per second. See supplementary movie 5 for the full video showing the cardiac cycle. (c) An image with low signal-to-noise ratio
from a single timepoint and z-slice is shown from the original image sequence. (d) The image is denoised using the multicycle denoising method in [37]. (e)
The image is denoised using PURE-LET denoising [38]. (f) The corresponding denoised image is shown from our temporal superresolution reconstruction
with λ = 0.5. Quantitative denoising results are tabulated in Table I. Scale bar is 100 µm.

dimension M is an integer, the number of necessary low-

resolution images has been shown to be K = M2 [33], [40].

It follows that for one-dimensional temporal superresolution, if

the reconstruction factor, M = p
q

, is an integer, one should be

able to expect the number of necessary low-resolution cycles

to be K = M. However, when the sub-integer shifts, ∆n,

of the low-resolution cycles are randomly distributed over

the interval [0, Nint], using additional cycles improves results

by making the problem overdetermined [40]. Since the sub-

integer shift is dependent on the phase of the underlying signal

relative to the camera sampling rate, and since we do not

gate our acquisitions, this sub-integer shift is not within our

control. As a result, we often require K > M low-resolution

cycles for reconstruction. The exact number of low-resolution

cycles necessary will depend on the signal content, noise

level, reconstruction factor M, and the desired reconstruction

accuracy [40]. Though there is no strict rule for the required

number of low-resolution cycles, in our experiments we follow

the guideline of having at least four times as many low-

resolution cycles as our reconstruction factor, K ≥ 4M. It is

also important to note that a reconstruction factor of M does

not necessarily correspond to a superresolution factor of M.

For example, we have shown in Figure 3 that, on synthetic data

with no registration error and no signal-intrinsic variations,

the resolution improvement is limited to approximately 1.9×
for a reconstruction factor of 2× (p/q = 2). While a larger

reconstruction factor may continue to improve resolution be-

yond this limit, it is important to note that the condition

number of the system matrix grows rapidly with respect to

the reconstruction factor. Furthermore, a larger reconstruction

factor leads to a more unstable inverse problem which requires

heavier regularization to constrain the reconstruction to be

smooth [41]. As a result, in practice we focus on superres-

olution with a 2× reconstruction factor.

We anticipate our method to be useful in cardiac develop-

ment studies as a preprocessing step for algorithms such as cell

segmentation and cell tracking, which perform more accurately

with higher SNR and higher temporal resolution. In addition
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to cardiac imaging, we also anticipate our method to be

useful for imaging other repeating biological processes such as

muscle contractions, repeating depolarization waves (calcium

imaging), and motion of individual cilia. In the presence of

global sample motion (e.g. drift), it will be necessary to

perform spatial registration as a pre-processing step in addition

to temporal registration [42].

In summary, live fluorescence microscopy is often a difficult

setting for quantitative imaging, particularly when imaging

rapid dynamic samples. The tradeoff between spatio-temporal

resolution and signal-to-noise ratio often results in images that

are unsatisfactory in one aspect or the other (or both). Our

method improves both without any additional hardware or

hardware modifications. We achieve denoising by combining

multiple cycles of the signal through the ℓ1 minimization in

Equation (16). Additionally, this minimization also uses these

multiple cycles to simultaneously achieve temporal superres-

olution (by a factor of 1.6 in experimental data), which is

not possible with standard denoising algorithms. While our

method is limited to repeating processes such as the cardiac

cycle, we do not require (or assume) the process to be strictly

periodic, as our method handles nonuniform temporal warping

in the repeating process.

APPENDIX A

REVERSE CUBIC INTERPOLATION

FOR SUB-SAMPLE SHIFT ESTIMATION

Rather than using a piecewise linear approximation to solve

for the sub-sample shift ∆n in Section II-B, in practice it

is preferable to use a higher order approximation, such as a

monotone cubic approximation [43], in which

Î [x, n] ≈Îref [x, w̄ [n]]H1(∆n)+

Îref [x, w̄ [n+ 1]]H2(∆n)+

D [x, w̄ [n]]H3(∆n)+

D [x, w̄ [n+ 1]]H4(∆n),

(25)

where D [x, w̄[n]] is the temporal derivative of Îref at

w̄[n] (which we calculate using the method in [43]), and

Hk(∆n), k = 1, . . . , 4 are the cubic Hermite basis functions

evaluated at ∆n. Assuming that 0 < ∆n < 1,

H1(∆n) = 2∆3
n − 3∆2

n + 1, (26)

H2(∆n) = −2∆3
n + 3∆2

n, (27)

H3(∆n) = ∆3
n − 2∆2

n +∆n, (28)

H4(∆n) = ∆3
n −∆2

n. (29)

Given the image Î [x, n] and the whole-sample, integer shift

w̄[n], we calculate ∆n with the following minimization:

∆n = argmin
t

C(t), (30)

where

C(t) =
∑

x

(

Îref [x, w̄ [n]]H1(t)

+ Îref [x, w̄ [n+ 1]]H2(t)

+D [x, w̄ [n]]H3(t)

+D [x, w̄ [n+ 1]]H4(t)

− Î [x, n]
)2

,

(31)

which is a minimization of a scalar polynomial function and

can be solved by finding the roots of d
dtC(t).
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