
Simultaneous Timing Driven Clustering and Placement
for FPGAs

Gang Chen and Jason Cong

Computer Science Deparment, University of California,
Los Angeles, CA 90095, USA

{chg, cong}@cs.ucla.edu

Abstract. Traditional placement algorithms for FPGAs are normally carried out
on a fixed clustering solution of a circuit. The impact of clustering on wire-
length and delay of the placement solutions is not well quantified. In this paper,
we present an algorithm named SCPlace that performs simultaneous clustering
and placement to minimize both the total wirelength and longest path delay. We
also incorporate a recently proposed path counting-based net weighting scheme
[16]. Our algorithm SCPlace consistently outperforms the state-of-the-art
FPGA placement flow (T-VPack + VPR) with an average reduction of up to
36% in total wirelength and 31% in longest path delay.

1 Introduction

A typical LUT-based FPGA architecture [1] contains a two-level physical hierar-
chy: Basic Logic Elements (BLE) and Cluster-based Logic Blocks (CLB). As de-
scribed in Fig. 1, each BLE contains one K-input LUT and one flip-flop (FF), and the
LUT and FF share the same output. As described in Fig. 2, each CLB contains N
BLEs, I inputs and N outputs. Each of the I inputs can drive all the BLEs, and each
BLE drives an output. Here K, N, and I are parameters described by the architecture
file. The interconnect delay between BLEs within the same CLB is usually much
smaller than the delay between BLEs in different CLBs.

Fig. 1. VPR’s Basic Logic Element

(BLE)

Fig. 2. VPR’s Cluster-Based Logic

Block (CLB)

In a typical FPGA design flow, a circuit is first synthesized and mapped into a net-
list of LUTs and FFs. Then it goes through the following three steps: clustering,
placement and routing. The clustering step arranges LUTs and FFs into CLBs accord-
ing to the timing and the connectivity of the mapped netlist; the placement places the
clustered netlist onto the array of on-chip CLBs; the routing routes all the wires in the
netlist with the available routing resources on the device.

The drawback of this design flow is that the clustering and placement stages are ar-
tificially separated. During the clustering stage, we have great freedom to change a
circuit’s structure, but a fast and accurate estimation of the final placement wire-
length, timing and routability information is not available. During the placement
stage, we can optimize wirelength, timing and routability simultaneously, but the so-
lution space is greatly confined because we are committed to a fixed circuit structure.
Since the mistakes made during the clustering phase cannot be corrected during the
placement process, it will ultimately generate a sub-optimal place and route result.

FF

FF FF

FF

FF

FF FF

FF FF

FF

FF

FF

(a) Initial network (b) Clustering solution from T-Vpack

FF

FF FF

FF

FF

FF

(d) Optimal placement with optimal clustering
(D = 1)

(c) Optimal placement on Clustering solution
from T-Vpack (D = 2)

FF

FF

FFFF

FF

FF

Fig. 3. Impact of Clustering on Placement

Fig. 3 illustrates the impact of clustering on placement. The initial network (a)
consists of six FFs. We assume each CLB contains two BLEs, and the device is a 2 x
2 grid. The delay model used here is the Manhattan distance. The “optimal” cluster-
ing solution in (b), which consists of three CLBs and one logic level, can be obtained
from T-VPack [17] (which minimizes the number of clusters and the number of lev-
els). However, the optimal placement solution (c) on this optimal clustering has a
longest path delay of two. Instead, when we perform clustering together with place-
ment, we can obtain a placement solution (d) with a longest path delay of one.

In this paper, we propose a novel algorithm to perform clustering optimization dur-
ing the placement for wirelength and timing minimization. We also incorporate a re-
cently proposed path counting-based net weighting scheme in our approach. This new
algorithm outperforms the current state-of-the-art FPGA placement flow T-VPack +
VPR with an average reduction of up to 36% in total wirelength and 31% in longest
path delay. Another significant contribution is that our combined approach has a run-
time complexity similar to the existing VPR placement algorithm.

2 Review of Existing FPGA Clustering and Placement Algorithms

Packing LUTs and FFs into CLBs is a critical step in the cluster-based FPGA de-
sign flow, since it has a great impact on both timing and routability. VPack [17] packs
each logic block to its capacity to minimize the number of clusters and encourages
input sharing to minimize the number of connections between clusters. The timing-
driven version, T-Vpack [17], minimizes the number of connections on the critical
path since on average the internal connections are much faster than the external con-
nections. Rpack [4] introduces an effective routability metric and presents a routabil-
ity driven clustering algorithm for cluster-based FPGAs. PRIME [10] integrates re-
timing with performance-driven clustering/partitioning. For a given area bound for
each cluster, if duplication is allowed, PRIME can generate a quasi-optimal solution
with a delay of no more than a small constant over the minimal delay.

Placement is a classic problem and becomes increasingly difficult and important as
the design size rapidly increases. There are three classes of widely used placement
methods: min-cut based placer [11][5][23], analytical placer [12][15][20] and simu-
lated annealing-based placer [14][21][1]. Min-cut based placers recursively partition
the circuit until the number of cells in each partition is small enough and then assign
cells to appropriate rows. The min-cut based methods are usually very fast, but since
the cutsize is not an exact function of either wirelength, timing or routability, the
quality is not as good as other placers. The analytical method includes the force di-
rected and quadratic programming method. The force directed method introduces at-
tracting, repelling and other additional forces and then solves a linear equation system
using the forces. The quadratic programming (QP) method solves the placement
problem by solving a sequence of quadratic programming problems derived from the
circuit connectivity information. The force directed and quadratic-programming
methods have a short runtime and produce good results, but they are not flexible
enough to handle complex constraints. The simulated annealing algorithm simulates
the annealing process that is used to produce high-quality metal structures by gradu-
ally cooling down the temperature. The initial placement is gradually optimized by
performing a number of moves at each temperature. Each move is accepted with a
certain probability p = e-delta_cost/T, where delta_cost is the change in cost function and
T is the current temperature. Simulated annealing-based placers are very flexible for
handling different kinds of constraints, and they usually generate a good solution in a
reasonable amount of time. In recent years there have been several novel placement
algorithms that incorporate multiple placement techniques. For example, Mongrel
[13] adopts a middle-down methodology in which a global placement solution is ob-
tained by placing logic cells into coarse bins. During the global placement phase, a
Relaxation Based Local Search methodology is applied to generate global complex
modifications to the current placement. A novel ripple move [13] based legalization
procedure is also presented. After the global placement is completed, a detailed
placement is obtained by applying the optimal interleaving [13] technique.
Dragon2000 [22] uses a top down hierarchical approach, and integrates the partition-
ing-based cutsize minimization techniques and the simulated annealing-based wire-
length minimization techniques. mPL [6] and mPG [7] are based on the multilevel
framework to improve both runtime and quality of the placement

3 Simultaneous Timing Driven Clustering and Placement
Algorithm

3.1 Overview

Our algorithm uses a simulated annealing-based optimization engine [21][1][18].
We first perform an initial clustering on the mapped netlist, and then generate a ran-
dom placement of the clustered netlist. During the annealing process, we optimize the
clustering structure and circuit placement at the same time. To improve the sub-
optimal clustering structure during placement, we introduce a fragment level move.
After each move, we update the cost function and decide whether to keep the move or
not. We iteratively perform a certain number of moves at each temperature and then
reduce the temperature until the acceptance rate is too low. In order to optimize both
wirelength and circuit delay, we minimize a weighted function of bounding-box wire-
length cost and timing cost (weighted edge delays). For the net weighting, we imple-
ment a recently proposed path counting-based net weighting scheme.

3.2 Clustering Optimization During Placement

Our main contribution is to perform clustering optimization during placement.
There are two types of moves in our approach. The first type of move is the block
level move, in which an entire CLB is moved to a new location and swapped with an-
other CLB if necessary. The second type of move is the fragment level move, in
which only a BLE is moved to a new CLB and swapped with another BLE if neces-
sary. Due to the powerful fragment level move, we are able to significantly improve
the sub-optimal clustering structure to achieve a high quality placement. This is espe-
cially important when the chip utilization is high, and the clustering stage has to per-
form unrelated packing to squeeze the design into the device. Due to the lack of
physical information, it is almost impossible for a clustering algorithm to make the
right packing decisions among unrelated logics. With the simultaneous clustering op-
timization and placement optimization, we can correct mistakes made during the pre-
vious stage and significantly improve both routability and timing.

When we perform a fragment level move, we need to check whether the new CLB
is in a valid configuration. When we check the feasibility of each CLB, we need to
check the number of BLEs and the number of inputs. For real industry architectures,
we also need to check the number of clocks, the number of feedbacks, the number of
control signals, etc. Hence, we dynamically update a hash-map for each involved
CLB whenever a fragment level move is performed. The complexity of the update is
O(K), where K is the input size of the LUT.

3.3 Path Counting-Based Net Weighting

The net-based timing-driven placers (e.g. [18]) convert timing information into net
weight and optimize a weighted function of all nets. The basic idea of net weighting

is to assign higher weights to timing critical nets and lower weights to non-critical
nets. The net weighting scheme is both efficient and flexible enough to handle com-
plex constraints, but most existing methods do not take into account the path informa-
tion.
Here we incorporate a novel net weighting scheme [16] proposed by Dr. T. Kong,
which accurately counts all paths (critical and non-critical) for certain types of dis-
count functions such as D(x, y) = a-x/y. This scheme considers path sharing, and thus
assigns a higher weight to the edges shared by two or more critical paths. For more
details about path counting, please refer to [16].

4 Runtime/Quality Trade-Off

For a given architecture, each CLB contains N BLEs, I inputs and N outputs. In the
input clustered netlist, the number of CLBs is n, and the number of BLEs is m. n ≤ m
≤ N*n, and O(m) = O(N*n) = N*O(n). If every swap performed at each temperature
is at the BLE level, the number of swaps needed will be O((N*n) 4/3), which is quite
costly.

However, we perform both block level move and fragment level move in our ap-
proach. At each temperature, the number of block level moves performed is n4/3, and
the number of fragment level moves performed is (α∗m)1.33 ≈ (α∗N∗n)1.33. We can
change the value of α between 0 and 1, and achieve the runtime/quality trade-off.

5 Complexity Analysis

We first analyze the computation complexity of VPR’s placement engine T-VPlace
[18]. The timing analysis is performed once per temperature change, which is an O(n)
operation. At each temperature the inner loop of the placer is executed O(n4/3) times
(i.e., O(n4/3) swaps are performed). In the inner loop is the incremental-bounding-box-
update operation that is worst case O(kmax), where kmax is the fanout of the largest net
in the circuit. The average case complexity for this bounding box update is O(1)
[2][3]. Also in the inner loop is the computation of the Timing_Cost for each connec-
tion affected by a swap. This is also O(kmax). In the average case this is O(kavg) where
kavg is the average fanout of all nets in the circuit. Since kavg is typically quite small,
the average complexity of this Timing_Cost computation is O(1) as well. The overall
result is that the VPR algorithm is worst case O[kmax·(n)4/3], but on average it is
O(n4/3). The average case complexity is really the only relevant value here. The com-
plexity of the algorithm is the average over millions of swaps, so a user will always
see the average case complexity.

In our algorithm SCPlace, at each temperature the complexity of the block level
moves is O(n4/3), and the complexity of the fragment level move is O((α∗N∗n)4/3). In
reality, the value of N is not very big, and we can always choose α to make

O((α∗N∗n)4/3) = O(n4/3). Hence, the overall complexity is O(n4/3+n4/3) = O(n4/3). As a
result, our algorithm’s complexity can be similar to VPR, and hence very scalable.

6 Experimental Results

We implemented our algorithm SCPlace under the VPR framework. For the pur-
pose of comparison, we downloaded the VPR 4.3 source code, architecture file and
the complete set of 20 MCNC benchmark circuits used by VPR from [24]. We modi-
fied the architecture file to specify the number of BLEs contained in a single CLB.
For all of the 20 MCNC circuits, we compare with the commonly used academic
FPGA design flow [17]. We first run the script.algebraic in SIS [19], followed by
Flowmap [9]. Then we run T-VPack [17] to generate an initial clustering solution.
This initial clustering is then given to both VPR and SCPlace to perform placement.
The default architecture we use assumes that each CLB contains 4 LUTs, and each
LUT has 4 inputs. In section 6.1 and 6.2, we perform 100% fragment moves and no
block moves. In section 6.3 we perform both block and fragment moves and explore
the trade-off between quality and runtime. Only the runtime of the second half of
benchmark set is reported since the circuits in the first half are too small.

6.1 Wire-Length Comparison

Table 1. Wirelength Comparison with T-
VPack + VPR

 Circuit VPR SCPlace Improvement
ex5p 112.47 98.91 13.71%
apex4 113.639 101.45 12.02%
misex3 123.616 105.64 17.02%
Tseng 94.9456 70.57 34.55%
alu4 123.03 104.68 17.53%
dsip 195.544 138.69 41.00%
seq 173.641 152.99 13.50%

diffeq 132.271 107.20 23.39%
apex2 190.324 165.73 14.84%
s298 166.899 164.96 1.17%
des 278.122 257.286 8.10%

bigkey 171.986 196.81 -12.61%
spla 426.227 352.635 20.87%

elliptic 359.011 284.821 26.05%
ex1010 463.618 364.774 27.10%

pdc 704.286 580.969 21.23%
frisc 584.732 482.289 21.24%

s38584.1 576.457 354.476 62.62%
s38417 696.701 494.657 40.85%
clma 1701.02 1271.88 33.74%

Average 21.89%

Table 2. Impact of Architecture on
Wirelength

 Circuit CLB=2 CLB=4 CLB=6 CLB=8 CLB=10
ex5p 8.14% 13.75% 15.33% 19.66% 23.02%

apex4 4.33% 13.41% 22.02% 25.10% 28.01%
misex3 6.75% 14.36% 19.17% 20.28% 17.11%
Tseng 14.70% 34.42% 30.72% 33.41% 36.11%
alu4 10.36% 19.24% 18.59% 22.57% 17.20%
dsip -12.77% 39.57% 56.25% 75.67% 70.18%
seq 5.34% 16.51% 19.78% 21.18% 24.71%

diffeq 6.47% 23.01% 34.68% 35.88% 40.03%
apex2 3.08% 15.08% 15.99% 25.35% 21.41%
s298 -2.06% 0.73% -0.22% 4.05% 4.53%
des 1.62% 7.22% 19.56% 12.41% 23.19%

bigkey -20.79% -12.61% -7.76% 14.66% 36.21%
spla 13.37% 21.30% 26.25% 26.44% 27.21%

elliptic 9.23% 25.23% 42.19% 35.79% 45.67%
ex1010 13.87% 27.99% 43.18% 43.43% 52.82%

pdc 12.76% 19.97% 25.45% 28.09% 32.44%
frisc 3.15% 16.38% 28.35% 27.06% 36.00%

s38584.1 25.04% 60.29% 71.14% 68.35% 75.66%
s38417 23.84% 43.79% 51.20% 47.81% 59.23%

clma 14.92% 35.27% 41.90% 53.35% 54.96%
Average 7.07% 21.75% 28.69% 32.03% 36.28%

In Table 1, we compare our algorithm SCPlace with VPR using the total weighted
bounding box wire lengths as the only optimization objective. The weights for nets of
different sizes can be found in [8]. When we combine clustering with placement, we
can outperform VPR by 22% on average.

In Table 2, we illustrate the impact of architecture on the wirelength improvement
obtained from SCPlace. When we change the size of the CLB (N) from 2 to 10, the
wirelength gap between SCPlace and T-Vpack+VPR increases monotonically from

7% to 36%. The result shows that as the size of CLB increases, it is more and more
difficult to generate a good clustering solution with small wirelength without physical
information. Since SCPlace explores different clustering solutions during the place-
ment stage, it generates clustering and placement solutions with much shorter wire-
length.

6.2 Timing Comparison

Table 3. Timing Comparison with T-VPack
+ VPR

Circuit

VPR

Path
count

%

Fragm
ent

%

Frag
+path
count

%

ex5p 50.45 44.95 12.24% 44.65 12.99% 40.75 23.80%
apex4 47.44 44.71 6.12% 44.02 7.77% 41.44 14.49%
misex3 51.04 44.15 15.61% 43.91 16.24% 38.53 32.47%
tseng 38.85 36.43 6.65% 35.89 8.24% 35.11 10.65%
alu4 53.16 45.46 16.95% 47.51 11.89% 42.50 25.07%
dsip 38.32 40.96 -6.45% 38.32 0.00% 40.12 -4.49%
seq 51.26 46.56 10.11% 43.97 16.59% 42.90 19.51%
diffeq 47.73 38.76 23.15% 39.58 20.60% 41.15 16.01%
apex2 56.36 50.97 10.58% 52.37 7.62% 47.23 19.34%
s298 87.36 90.76 -3.74% 89.31 -2.18% 80.98 7.88%
des 83.88 67.15 24.91% 74.39 12.75% 65.44 28.18%
bigkey 41.37 40.95 1.03% 43.35 -4.57% 41.35 0.03%
spla 72.47 63.12 14.81% 64.09 13.07% 58.27 24.35%
elliptic 71.07 55.72 27.54% 59.17 20.11% 48.49 46.58%
ex1010 97.88 79.10 23.75% 86.85 12.70% 74.82 30.81%
pdc 113.15 76.95 47.04% 78.44 44.24% 67.60 67.38%
frisc 81.39 92.53 -12.0% 79.82 1.97% 75.73 7.47%
s38584.1 64.37 46.66 37.96% 56.93 13.07% 47.78 34.71%
s38417 76.63 70.15 9.24% 56.89 34.71% 49.89 53.61%
clma 137.20 116.8 17.52% 113.8 20.61% 102.0 34.52%
Average 14.15% 13.42% 24.62%

Table 4. Impact of Architecture on
Timing

 Circuit CLB=2 CLB=4 CLB=6 CLB=8 CLB=10
ex5p 8.69% 23.80% 23.04% 17.09% 13.71%
apex4 5.82% 14.49% 16.79% 24.06% 23.25%
misex3 11.19% 32.47% 34.07% 30.73% 14.08%
Tseng 1.71% 10.65% 0.16% 22.32% 20.69%
alu4 22.95% 25.07% 28.02% 15.56% 20.23%
dsip 5.36% -4.49% 13.35% -6.06% 7.40%
seq 18.38% 19.51% 35.20% 27.04% 27.26%

diffeq 4.93% 16.01% 12.58% 30.15% 6.21%
apex2 11.51% 19.34% 25.09% 16.86% 18.39%
s298 -4.20% 7.88% 1.10% -6.83% 4.40%
des 5.82% 28.18% 7.48% 38.16% 17.10%

bigkey 11.87% 0.03% -7.81% 27.89% 0.61%
spla 40.52% 24.35% 39.41% 28.42% 40.85%

elliptic 31.94% 46.58% 19.21% 23.02% 33.41%
ex1010 23.26% 30.81% 28.96% 41.19% 27.86%

pdc 31.40% 67.38% 44.15% 59.63% 45.95%
frisc 6.95% 7.47% 5.21% -4.52% 3.81%

s38584.1 23.67% 34.71% -1.80% -0.68% 20.86%
s38417 53.19% 53.61% 45.03% 70.61% 41.38%
clma 26.05% 34.52% 60.14% 58.87% 79.80%

Average 17.05% 24.62% 21.47% 25.68% 23.36%

In Table 3, we compare SCPlace with both VPR and TTT [16] in timing optimiza-
tion. If we use path counting-based net weighting scheme only in SCPlace, we can
outperform VPR by 14% (column 4); if we perform clustering optimization only in
SCPlace, we can outperform VPR by 13% (column 6); if we integrate the path count-
ing-based net weighting scheme with the clustering optimization, SCPlace signifi-
cantly outperforms the original VPR result by 25%.

In Table 4, we illustrate the impact of architecture on the delay improvement ob-
tained from SCPlace. For architecture with the CLB size of 2, the timing gap between
SCPlace and T-Vpack+VPR is 17%. When the size of the CLB (N) increases from 4
to 10, the timing gap between SCPlace and T-Vpack+VPR remains in a narrow range
between 22 to 25%. The result shows that even when the CLB size is relatively small
(2 or 4), it is difficult to generate a good clustering solution with small delay without
physical information. Since SCPlace explores different clustering solutions during the
placement stage, it generates clustering and placement solutions with much better de-
lay.

6.3 Runtime Speedup

Table 5. Effect of α on timing (CLB = 4)
 α=0.25 α=0.50 α=1.0

Circuit Timing runtime Timing runtime Timing runtime
des 24.47% 26.15% 28.29% 38.13% 32.64% 70.28%

bigkey -10.20% 30.42% 16.00% 42.59% 7.18% 72.58%
spla 27.09% 41.17% 34.99% 49.39% 28.57% 76.59%

elliptic 51.06% 42.89% 48.61% 51.12% 49.63% 73.86%
ex1010 29.69% 36.08% 31.24% 41.53% 31.73% 64.08%

pdc 58.75% 32.75% 69.24% 39.72% 86.41% 58.41%
frisc 0.66% 33.61% -0.72% 40.23% 7.33% 60.61%

s38584.1 43.58% 26.62% 47.86% 32.53% 34.81% 47.41%
s38417 27.05% 32.01% 53.17% 37.47% 60.67% 59.77%
clma 27.80% 25.82% 38.38% 31.75% 41.08% 48.29%

Average 21.59% 32.75% 31.18% 40.45% 30.83% 63.19%

Table 6. Effect of α on timing (CLB = 10)
 α=0.25 α=0.50 α=1.0

Circuit Timing runtime Timing runtime Timing runtime
des 16.59% 24.53% 19.22% 36.35% 20.88% 71.59%

bigkey -4.34% 36.24% -9.78% 54.49% 2.95% 98.44%
spla 33.13% 61.99% 43.21% 74.56% 40.32% 121.37%

elliptic 50.30% 45.57% 54.03% 47.84% 52.97% 72.16%
ex1010 38.80% 54.47% 26.00% 61.75% 32.12% 98.68%

pdc 49.99% 50.79% 52.58% 60.38% 54.95% 95.26%
frisc -2.29% 46.78% 10.42% 57.29% 14.86% 88.07%

s38584.1 30.30% 31.73% 39.66% 33.08% 39.01% 52.39%
s38417 22.18% 43.91% 41.60% 50.76% 40.63% 81.65%
clma 54.89% 28.85% 71.51% 36.69% 83.96% 58.08%

Average 20.18% 42.49% 27.05% 51.32% 31.25% 83.77%

Table 7. Routed Delay and Track Count Comparison

 VPR SCPlace %
Circuit Routed

delay
#tracks Routed

delay
#tracks Routed

delay
#tracks

ex5p 52.38 646 45.47 627 15.20% 3.03%
apex4 55.93 627 46.32 665 20.75% -5.71%
misex3 56.56 588 40.92 588 38.22% 0.00%
tseng 41.08 483 36.35 437 13.01% 10.53%
alu4 55.16 594 47.47 506 16.20% 17.39%
dsip 38.80 935 35.73 660 8.59% 41.67%
seq 58.13 744 49.12 768 18.34% -3.13%

diffeq 50.41 506 39.57 506 27.39% 0.00%
apex2 58.00 775 48.03 725 20.76% 6.90%
s298 103.69 648 89.43 621 15.95% 4.35%
des 88.32 960 69.26 832 27.52% 15.38%

bigkey 42.60 495 48.40 550 -11.98% -10.00%
spla 78.65 1452 67.68 1287 16.21% 12.82%

elliptic 75.16 1156 62.14 1054 20.95% 9.68%
ex1010 102.88 1188 81.58 1008 26.11% 17.86%

pdc 125.46 2028 93.18 1755 34.64% 15.56%
frisc 87.64 1560 127.02 1600 -31.00% -2.50%

s38584.1 66.41 1276 47.02 924 41.24% 38.10%
s38417 81.54 1410 54.15 1128 50.58% 25.00%
clma 144.02 2760 124.14 2040 16.01% 35.29%

Average 19.23% 11.61%

For a given architecture, each CLB contains N BLEs, I inputs and N outputs. In the
input clustered netlist, the number of CLBs is n, and the number of BLEs is m, and m
≈ N∗n. From Table 1 to Table 4, we perform m1.33 ≈ (N∗n)1.33 fragment moves and 0
block moves. In this section, we fix the number of block moves to be n1.33, and set the
number of fragment moves to be (α∗m)1.33 ≈ (α∗N∗n)1.33, where α is between 0 and 1.

In Table 5, we show the impact of α on the amount of timing improvement
achievable. It is no surprise that when α increases, i.e., the number of fragment moves
increase, the timing improvement increases from 22% to 31%. And this is better than
the 25% we achieve in Table 4 when we perform fragment moves only. The results
illustrate that performing both block and fragment moves is better than only perform-
ing one type of moves. Our runtime is generally shorter than VPR due to the fact that
the number of block moves we perform is only 10% of VPR’s. If we reduce the num-
ber of block moves VPR performs to be the same as SCPlace, it yields about 5%
worse result (both timing and wirelength) and consumes 15% of standard VPR ‘s run-
time. When α = 0.25, SCPlace uses 33% of standard VPR ‘s runtime. SCPlace’s run-
time increases up to 63% as α increases to 1. Table 6 shows the same trend when the

size of the CLB is 10. The bottom line is that you could easily tradeoff runtime with
quality by changing the value of α.

6.4 Routed Results

In Table 7, we show the comparison of routed delay and track count between
SCPlace and T-Vpack+VPR. The given architecture has a CLB size of 4, and the
SCPlace run is from Table 5 when α = 0.50. The routed delay improvement is 19%
on average and the reduction in routed tracks is 12% on average. This is consistent
with the estimated delay/wirelength reduction after placement.

7 Conclusions

We introduce a novel simultaneous clustering and placement algorithm and incorpo-
rate a novel path counting-based net weighting scheme. The new algorithm produces
impressive results for both bounding box wire length optimization and timing optimi-
zation. When compared with the state-of-the-art separate FPGA design flow T-VPack
+ VPR, our algorithm improves up to 36% in wirelength and 31% in longest path de-
lay. Since our algorithm has a similar computational complexity, our approach is also
very scalable.

Acknowledgement

This research is partially supported by NSF Grant CCF-0096383.

References

[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Re-
search,” International Workshop on Field Programmable Logic and Application, pp. 213-
222, 1997

[2] V. Betz, “Architecture and CAD for Speed and Area Optimization of FPGAs,” Ph. D.
Dissertation, University of Toronto, 1998

[3] V. Betz, J. Rose and A. Marquardt, “Architecture and CAD for Deep-Submicron FPGAs,”
Kluwer Academic Publishers, February 1999

[4] E. Bozorgzadeh, S. Ogrenci and M. Sarrafzadeh, "Routability-Driven Packing for Cluster-
Based FPGAs," ASPDAC, Yokohama, Japan, 2001

[5] Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov, “Can Recursive Bisection
Alone Produce Routable Placements?” ACM/IEEE Design Automation Conference, pp.
477–482, 2000

[6] T. Chan, J. Cong, T. Kong and J. Shinnerl, "Multilevel Optimization for Large-scale Cir-
cuit Placement," Proc. IEEE International Conference on Computer Aided Design, San
Jose, California, pp. 171-176, November 2000

[7] C.-C. Chang, J. Cong, D. Pan, and X. Yuan, "Multilevel Global Placement with Conges-
tion Control," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 22, no. 4, pp. 395-409, July 2002

[8] C. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 690-695, 1994

[9] J. Cong and Y. Ding, "FlowMap: An Optimal Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs", IEEE Trans. on Computer-Aided
Design, vol. 13, no. 1, pp. 1-12, January 1994

[10] J. Cong, H. Li and C. Wu "Simultaneous Circuit Partitioning/Clustering with Retiming for
Performance Optimization," Proc. 36th ACM/IEEE Design Automation Conf., New Or-
leans, Louisiana, pp. 460-465, June 1999

[11] A. Dunlop and B. Kernighan, “A Procedure for Placement of Standard-Cell VLSI Cir-
cuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
4:92-98, January 1985

[12] H. Eisenmann and F.M. Johannes, “Generic Global Placement and Floorplanning,”
ACM/IEEE Design Automation Conference, pp. 269-274, 1998

[13] S-W Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell Placement,”
IEEE/ACM International Conference on Computer-Aided Design, pp 165-170, 2000

[14] S.S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by Simulated Annealing,” Sci-
ence, pp. 671-680, May 13, 1983

[15] J.M. Kleinhans, G. Sigl, F.M. Johannes and K.J. Antreich, “GORDIAN: VLSI Placement
by Quadratic Programming and Slicing Optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 10:356-365, 1991

[16] T. Kong, “A Novel Net Weighting Algorithm for Timing-driven Placement,” IEEE/ACM
International Conference on Computer-Aided Design, pp. 172-176, 2002

[17] A. Marquardt, V. Betz and J. Rose, "Using Cluster-Based Logic Blocks and Timing-
Driven Packing to Improve FPGA Speed and Density," ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, Monterey, CA, pp. 37-46, 1999

[18] A. Marquardt, V. Betz and J. Rose, ``Timing-Driven Placement for FPGAs,'' ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA, pp. 203 –
213, February 2000

[19] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.
Stephan, R. Brayton and A. Sangiovanni-Vincentelli, “SIS: A System for Sequential Cir-
cuit Synthesis,” Electronics Research Laboratory, Memorandum No. UCB/ERL M92/41,
1992

[20] G. Sigl, K. Doll and F.M. Johannes, “Analytical Placement: A Linear or a Quadratic Ob-
jective Function?” ACM/IEEE Design Automation Conference, pp. 427-432, 1991

[21] W. Swartz and C. Sechen, “Timing Driven Placement for Large Standard Cell Circuits,”
ACM/IEEE Design Automation Conference, pp. 211-215, 1995

[22] M. Wang, X. Yang and M. Sarrafzadeh, “Dragon2000: Standard-Cell Placement Tool For
Large Industry Circuits,” IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 260-263, 2000

[23] K. Zhong and S. Dutt, “Effective Partitioning-Driven Placement with Simultaneous Level
Processing and Global Net Views,” Proc. IEEE International Conference on Computer
Aided Design, San Jose, California, pp. 254-259, November 2000

[24] http://www.eecg.toronton.edu/~vaughn/challenge/challenge.html, “The FPGA Place-and-
Route Challenge”

