
Simultaneous Timing-Driven Placement and Duplication
Gang Chen

Magma Design Automation
12100 Wilshire Blvd., Ste 480
Los Angeles, CA 90025, USA

chg@magma-da.com

Jason Cong
Computer Science Department

University of California
Los Angeles, CA 90095, USA

cong@cs.ucla.edu
ABSTRACT
Logic duplication is an effective method for improving circuit
performance. In this paper we present an algorithm named SPD
that performs simultaneous placement and duplication to
minimize the longest path delay. We introduce the notion of
feasible region and super feasible region to improve the critical
path monotonicity from a global perspective. We introduce a
constrained gain graph to perform optimal incremental
legalization under complex constraints. We also formulate a
timing-constrained global redundancy removal problem and
propose a heuristic solution. Our SPD algorithm outperforms the
state-of-the-art FPGA placement flow (T-VPack + VPR) with an
average reduction of up to 27% in longest path estimate delay and
18% in routed delay. The increase in overall runtime is less than
2% and the increase in area is less than 1%.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – placement and
routing

General Terms
Algorithms, Design, Performance

Keywords
Logic duplication, legalization, redundancy removal, timing-
driven placement, FPGA

1. INTRODUCTION
A typical LUT-based FPGA architecture [2] contains a two-level
physical hierarchy: Basic Logic Elements (BLE) and Cluster-
based Logic Blocks (CLB). As described in Figure 1, each BLE
contains a K-input LUT and a flip-flop (FF), and the LUT and FF
share the same output. As described in Figure 2, each CLB
contains N BLEs, I inputs and N outputs. Each of the I inputs can
drive all the BLEs, and each BLE drives an output. Here K, N,
and I are parameters described by an architecture file. The
interconnect delay between BLEs within the same CLB is usually
much smaller than the delay between BLEs in different CLBs.

K-Input
LUT Inputs DFF

Clock

Out

Figure 1. VPR’s Basic Logic Element (BLE)

 BLE
 #1

 BLE
 #N

N
Outputs

I
Inputs

Clock

I

N

 BLE

N
BLEs

Figure 2. VPR’s Cluster-Based Logic Block (CLB)

(a) Initial Network

FF

LUT

FF

FF

FF

(b) Optimal Clustering Solution

(c) Optimal Placement Solution

FF

FF

LUT

FF

LUT

FF

(d) Optimal Duplication with
Placement

FF FF

LUT

FF

FF

FF

FF

FF

LUT

FF

FF

FF

FF FF

Figure 3. Impact of Duplication on Placement

Logic duplication is a common technique for improving circuit
performance by duplicating one or more logic cells while
maintaining the logic equivalence of the circuit. Figure 3
illustrates the impact of duplication on placement. The initial
network (a) consists of five FFs and one LUT. We assume each
CLB contains two BLEs, and the device is a 1 x 3 grid. We
assume that the inter-cluster delay equals the Manhattan distance,
and both the logic and intra-cluster delay are 0.1. The “optimal”
clustering solution in (b), which consists of three CLBs and two
logic levels, can be obtained from T-VPack [9] (which minimizes
both the number of clusters and the number of levels). However,
the optimal placement solution (c) on this optimal clustering has a
longest path delay of 2.1, which cannot be improved by post-
placement duplication. Instead, if we perform duplication together
with placement, we can obtain a solution (d) with a longest path
delay of 1.2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’05, February 20–22, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002...$5.00.

In the past, logic duplication for timing optimization has been
studied in the following contexts. First, logic duplication has been
applied before placement in the logic synthesis domain. Improved
circuit performance can be achieved by replicating high fanout
logic gates on the critical path to isolate the critical sinks from the
non-critical ones [8][13]. Lillis et al. [8] perform gate replication
to improve the delay and area of a circuit under certain timing
requirements. The gate replication technique complements the
popular gate sizing approach in the ASIC flow. Later on,
Sarrafzadeh et al. [13] present an effective heuristic algorithm for
the gate duplication problem under the load-dependent delay
model. They show that both the global and local (fanout
partitioning) logic duplication for delay optimization problems are
NP-complete.

Second, logic duplication has been applied after placement as a
post processing step to further increase design performance for
FPGAs. In [1], Lillis et al. propose a heuristic replication
algorithm to straighten the locally non-monotone critical paths. A
legalization engine based on the “ripple-move” approach in
Mongrel [6] is used to legalize the placement incrementally.
However, [1] cannot improve critical paths that are globally non-
monotone yet locally monotone. The average reduction over VPR
obtained from [1] is 7.5%. The follow-up work [5] improves [1]
by incorporating two new techniques: timing-driven fanin tree
embedding and replication tree. First, they introduce an optimal
algorithm to solve the fanin tree embedding problem under a
general cost model. Second they propose a replication tree to
introduce large sub-circuits to be solved by the embedding
algorithm. The average reduction over VPR obtained from [5] is
14.2%.

However, limited work has been done to carry out logic
duplication during placement. Neumann et al. [11] apply logic
duplication in a recursive partitioning-based timing-driven
placement flow. During each recursion, they perform timing
analysis, net length estimation and weight calculation, bi-
partitioning and cell replication sequentially. Before cells are
assigned to rows, the redundancies introduced by the replication
are removed. This combined approach outperforms gate sizing by
10% on average.

In this paper we propose a novel algorithm to perform
simultaneous logic duplication during placement for timing
minimization. We introduce the notion of feasible region and
super feasible region, which enable the optimization of non-
monotone paths from a global perspective. We present an optimal
incremental legalization algorithm under complex constraints. We
also formulate a timing-constrained global redundancy removal
problem and propose a heuristic to solve it by solving the local
redundancy removal problems optimally. Finally, we incorporate
a path counting-based net weighting scheme in our approach. The
resulting algorithm, named SPD, outperforms the current state-of-
the-art FPGA placement flow T-VPack + VPR with an average
reduction of up to 27% in longest path estimate delay and 18% in
routed delay. Meanwhile, our combined approach has the same
runtime complexity as the existing VPR placement algorithm, and
both the runtime and area increase are minimal.

2. INITIAL ANALYSIS
In the default FPGA architecutre used in this paper, each CLB
consists of 4 BLEs and each BLE conists of one 4-input LUT and

one FF. During the study of VPR’s placement result on this
default architecture, we confirmed two observations mentioned in
[1].

Table 1. Percentage of Near-Critical Pins
 Circuit 0% 5% 10% 15% 20%

ex5p 0.13% 1.99% 6.54% 15.88% 30.68%
apex4 0.15% 3.04% 10.14% 22.66% 39.62%
misex3 0.11% 1.40% 4.47% 11.83% 22.74%
Tseng 0.28% 1.71% 4.17% 7.09% 9.45%
alu4 0.12% 1.50% 5.53% 14.38% 26.53%
dsip 0.05% 0.17% 0.98% 2.29% 4.83%
seq 0.09% 0.73% 3.64% 9.69% 19.57%

diffeq 0.17% 1.02% 3.00% 6.35% 10.96%
apex2 0.11% 0.84% 5.93% 15.29% 27.36%
s298 0.23% 3.60% 10.55% 19.43% 30.03%
des 0.05% 0.24% 0.77% 1.93% 5.85%

bigkey 0.04% 0.15% 0.27% 0.38% 1.17%
spla 0.06% 1.17% 4.08% 10.85% 20.19%

elliptic 0.07% 1.03% 3.81% 8.01% 12.75%
ex1010 0.04% 0.78% 2.54% 7.23% 17.70%

pdc 0.04% 0.46% 2.16% 5.98% 12.83%
frisc 0.10% 0.76% 2.21% 4.67% 8.24%

s38584.1 0.04% 0.36% 1.01% 2.05% 3.24%
s38417 0.03% 0.44% 1.00% 1.99% 4.94%

clma 0.02% 0.15% 0.51% 1.88% 4.96%
Average 0.10% 1.08% 3.67% 8.49% 15.68%

First, the number of critical/near-critical pins is relatively small.
Assuming the longest path delay is T, a pin t is critical if slack(t) =
0; t is x% critical if slack(t)/T ≤ x%. From Table 1, we can see that
on average the percentage of critical pins is 0.10%, the percentage
of 5% critical pins is 1.1%, the percentage of 10% critical pins is
3.7%, the percentage of 15% critical pins is 8.5%, and the
percentage of 20% critical pins is 15.7%. It seems possible to
perform a very small number of post-placement duplications to
speed up the circuit by 5~10%. However, it may involve many
nodes to achieve more than 10~15% speedup.

Table 2. Detour Ratio
 Circuit avg dr(p) min dr(p) max dr(p)

ex5p 3.31 2.00 10.14
apex4 3.07 2.00 5.43
misex3 3.52 1.71 10.83
Tseng 2.14 1.50 2.90
alu4 3.50 2.03 10.29
dsip 1.00 1.00 1.00
seq 5.75 2.12 12.00

diffeq 3.79 3.50 4.09
apex2 4.30 1.68 9.86
s298 6.64 4.73 7.92
des 4.36 1.48 19.00

bigkey 1.01 1.00 1.04
spla 5.34 1.86 14.86

elliptic 4.22 2.10 10.25
ex1010 6.08 2.64 21.00

pdc 3.53 1.85 15.50
frisc 4.10 2.93 5.50

s38584.1 3.43 1.25 8.25
s38417 4.89 2.33 10.00

clma 15.92 10.79 18.36
Average 4.49 2.53 9.91

Second, the critical paths are highly non-monotone. For a path p
consisting of m nodes, v1, v2, ..., vm, v1 is the starting point and vm
is the ending point. The x coordinate of node vi is x(vi) and the y
coordinate of node vi is y(vi). The Manhattan distance between
any two nodes vi and vj is defined as dist(vi,vj) = |x(vi) – x(vj)| +
|y(vi) – y(vj)|. For a node vi, the deviation of vi with respect to one
of its input nodes vi-1 and one of its output nodes vi+1 is defined as
dev(vi-1, vi, vi+1) = dist(vi-1, vi) + dist(vi, vi+1) – dist(vi-1, vi+1). The

sub-path vi-1, vi, vi+1 is monotone if dev(vi-1, vi, vi+1) = 0. The
Manhattan distance of path p is defined as dist(p) =

∑
−

=
+

1

1
1),(

m

i
ii vvdist . The minimum distance of path p is defined as

min_dist(p) = dist(v1, vm). The path p is globally monotone if
dist(p) - min_dist(p) = 0. The level of a path p is defined as
level(p) = m. The unit_dist is defined as the distance between two
adjacent CLBs. The detour ratio is defined as dr(p) = dist(p) /
max(min_dist(p), level(p)*unit_dist). dist(p) is the actual
Manhattan distance of p; assuming that p1 and pm are fixed,
min_dist(p) is the ideal Manhattan distance of p when it is
globally monotone; level(p)*unit_dist is the distance of p when it
is placed almost ideally; the detour ratio describes how non-
monotone the path p actually is. The reason that we use the
maximum of min_dist(p) and level(p)*unit_dist to compute the
detour ratio is that sometimes node v1 and vm can be placed very
close or even inside the same CLB. For the measurement of the
average/minimum/maximum detour ratios in Table 2, we consider
all the 5% critical paths from PI/FFs to PO/FFs. Both the average
detour ratio of 4.49 and the minimum ratio of 2.53 in Table 2
show that the near-critical paths are far from monotone.

3. SIMULTANEOUS TIMING-DRIVEN
PLACEMENT AND DUPLICATION
3.1 Algorithm Overview
Our algorithm uses a simulated annealing-based optimization
engine [2][10] to minimize a weighted function of bounding-box
wirelength and timing (weighted edge delays). At the end of each
temperature, we perform logic duplication, legalization and
redundancy removal iteratively. To enable the optimization of
non-monotone paths from a global perspective, we introduce the
notion of feasible region and super feasible region. To handle the
complex constraints in commercial FPGA architectures, we
introduce a constrained gain graph and perform optimal
incremental legalization. To control the runtime of the duplication
procedure, we limit the number of duplications for each
temperature to a small number. Through experiments we find that
good results can be achieved in a short runtime when this limit is
logarithmic to the circuit size. In order to merge duplicated copies
of the same node, we use a duplication graph representation and
propose a heuristic to solve a global redundancy removal
problem. For net weighting, we implement a path counting-based
net weighting scheme.

In this section, we will describe the key components of our SPD
algorithm: logic duplication, incremental legalization under
complex constraints, duplication graph and redundancy removal,
and path counting-based net weighting scheme.

3.2 Logic Duplication
Our logic duplication algorithm can be performed either after a
full placement or during the placement at the end of each iteration
(e.g. in a simulated annealing-based placer or a quadratic
programming-based placer). As shown in Figure 4, a timing
analysis is first performed on the current placement. Then we
iteratively select a candidate node on the critical paths, duplicate
or move it to a new destination location/CLB, redistribute fanouts,
and immediately legalize the destination CLB to resolve any
possible physical constraints conflicts. If the delay after

legalization increases, both the legalization and the duplication
operations will be undone. The iteration stops until there are no
more candidates or the limit on the number of duplications is
reached.

Duplication() {
 Timing Analysis
 While (!done) {

Candidate selection
Destination selection
Node duplication
Fanout partitioning
Incremental legalization
Undo when timing gets worse

}
}

Figure 4. Overview of the Duplication Algorithm

3.2.1 Criticality-Driven Candidate Selection
Initially we put all the near-critical PO pins in a heap sorted by
the slack, and then we iteratively select the most critical pin t from
the heap to perform the speedup operation. The candidate node,
the source node s, is duplicated and moved to a new location so as
to straighten all the near-critical paths flowing through edge (s, t).
When two sink pins have the same criticality, we use the deviation
of their source nodes to break ties. After a source node s is
duplicated and legalized, we scan the input pins of the clone and
put the remaining timing-critical pins into the heap.

3.2.2 Feasible Region and Super Feasible Region
After a candidate node s is chosen, we find a destination
location/CLB for it in order to minimize the critical path delay.
We assume node s has k critical input nodes i1, i2 through ik.

(x(i1), y(i1))

(xl(s), yb(s))

(x(s), y(s))

(x(t), y(t))

(xr(s), yt(s))

Feasible region

(x(i3), y(i3))

(x(i2), y(i2))

Figure 5. Example of Feasible Region

First we define a feasible region FR({ij}, s, t) for node s with
respect to one of its input nodes ij and t, in which the clone can be
freely placed without increasing the deviation of source node s
with respect to ij and t. Such a feasible region is simply the
minimum bounding box enclosing ij, s and t.

Next we define a feasible region FR ({i1, i2, …, ik}, s, t) = ((xl(s),
yb(s)), (xr(s), yt(s))), in which the clone can be freely placed
without increasing the deviation of source node s with respect to
any of its critical input nodes and output node t. Such a feasible
region is the intersection of all FR ({ij}, s, t). If we search for the
destination location inside of this feasible region, all the critical
paths passing through edge (s, t) will be straightened.

Now we describe how to calculate xl(s) and xr(s) efficiently. We
first compute the minimum x coordinate of all the critical input
nodes of s is min_x(s), and so on for max_x(s), min_y(s) and
max_y(s). When x(t) is smaller than min_x(s), xl(s) = min(x(s),
x(t)) and xr(s) = max(min_x(s),x(s)); when x(t) falls between
min_x(s) and max_x(s), xl(s) = min(x(s), x(t)) and xr(s) =
max(x(s), x(t)); otherwise, xl(s) = min(max_x(s),x(s)) and xr(s) =
max(x(s), x(t)). yb(s) and yt(s) can be computed similarly. Figure 5
is an example describing the computation of a feasible region. For
the largest circuit in our benchmark set, clma, the average size of
the feasible region is around 5% of the total placement area.

(x(t), y(t))

(x(r), y(r)) (x(s), y(s))

(x(pi1), y(pi1))

Feasible region

Super Feasible region
(x’(r),
y’(r))

(x’(s),
y’(s))

Figure 6. Example of Super Feasible Region
One drawback of [1] is that it cannot handle paths that are
globally non-monotone but locally monotone. As shown in Figure
6, the path pi1→r→s→t is non-monotone, however, both sub path
pi1→r→s and r→s→t are monotonous. When the delay model is
linear to the Manhattan distance, such paths cannot be
straightened by the approach in [1], nor by using feasible region
alone. To help resolve such global non-monotone problem, we
define a notion called super feasible region. A fanin cone Cv
rooted at v is a connected sub-network which consists of only v
and its predecessors; a critical fanin cone Ccrit_v rooted at v is a
connected sub-network which consists of only v and its timing-
critical predecessors. For the primary input set of Ccrit_s, we
assume there are l critical primary inputs pi1, pi2, …, pil, the super
feasible region is defined as FR({pi1, pi2, …, pil}, s, t). During the
computation of min_x(s), max_x(s), min_y(s) and max_y(s), we
use the x and y coordinates of primary input set pi1, pi2, …, pil,
instead of the immediate input set i1, i2, …, ik. With the
introduction of the super feasible region, we give priority to
locations inside both regular and super feasible regions. Hence
both nodes s and r will be moved as illustrated in Figure 6, and
the whole path will be straightened perfectly.

3.2.3 Destination Selection within the Feasible
Region
We iterate through each location inside the feasible region and
choose the destination location (x, y) such that ∆cost(x,y) is
minimal. The ∆cost(x, y) function at a location (x, y) is defined as
∆cost(x, y) = -α*∆slack(t) + β*overflow_cost(x, y) +
γ*g_path_cost(x, y). α, β and γ are predefined constants. The first
term ∆slack(t) describes the timing improvement. ∆slack(t) is
defined as the increase in slack at sink pin t when the clone is
placed at location (x, y),. The second term overflow_cost(x, y)
depicts the legality of the placement or the difficulty of the
legalization. overflow_cost(x, y) is 0 when the destination location
can accommodate the clone, otherwise is the difference between
the actual usage and capacity. Priority is given to locations that
can accommodate the copy of s without violating any physical
constraints. The third term g_path_cost(x, y) characterizes the

violation of the global monotonicity. g_path_cost(x, y) is 0 when
the destination location is inside the super feasible region,
otherwise is the minimum distance from (x, y) to the super feasible
region.

3.2.4 Timing-Driven Fanout Partitioning
After a clone node is placed at a destination location, we perform
timing-driven fanout partitioning to redistribute the fanouts to
their corresponding inputs. For each fanout node t, we assign it to
a copy of the source node such that the arrival time at t is
minimal. This is similar to the approach described in [1].

3.3 Optimal Incremental Legalization under
Complex Constraints
We perform legalization immediately after each duplication
operation. If the delay on the most critical path increases, we will
undo both the legalization and the duplication.

First, we describe a ripple-move-based legalization approach used
in [6]. For each ripple move, we select a source location S with
overflow and a destination location T with extra capacity, and find
a maximum gain monotone path from S to T along which a
sequence of cells are moved. To determine the maximum gain
path and the cells to be moved, a global analysis based on the
gains of individual cells is performed. Given the source S and the
destination T, each cell can only be moved in at most two
directions. The gain value associated with each cell move is the
reduction in the cost function, and the gain value associated with
each location and direction is the maximum gain value among all
the cells moving in that direction. Then we can construct a gain
graph in which each vertex corresponds to a location inside the
rectangular region determined by S and T, and each weighted arch
represents the maximum gain value in the direction of the arc.
Since the gain graph is acyclic, the maximum gain path can be
found by topological ordering. When the ripple move is
performed on this maximum gain path, a cell is allowed to move
more than once so that the final gain is equal to or better than the
value determined by the maximum gain path. Figure 7 is an
example of a gain graph.

 Congested Block

Empty Block

Figure 7. Example of a Gain Graph

However, real commercial architectures have complex constraints
at the CLB level in addition to the capacity constraint, such as the
input constraint, clock constraint, control signal constraint, etc.
Since the gain graph does not consider such complex constraints
at all, we introduce a new notion called constrained gain graph in
this paper.

To better illustrate this, we consider a simple architecture, in
which each CLB contains 2 BLEs and each CLB has 6 inputs.
Assume the source CLB at location (x(s), y(s)) has 3 BLEs, and

sink location at (x(t), y(t)) has only 1 BLE. The incremental
legalization engine tries to find a monotone path from (x(s), y(s))
to (x(t), y(t)) to maximize the reduction in certain cost functions.
Also it needs to make sure that each involved CLB will obey the
input constraint after the legalization. If we assume that x(t) > x(s)
and y(t) > y(s), then each move along the monotone path is in the
direction of either north or east. If we consider any internal CLB c
inside the rectangle ((x(s), y(s)), (x(t), y(t))), there maybe at most
two incoming candidate nodes from the west, two incoming
candidate nodes from the south and two outgoing candidate
nodes. Thus we build a 4 x 2 bipartite graph for c, two of the left
side vertices are the incoming candidate BLEs from the west, two
of the left side vertices are from the south, and both two right side
vertices are the outgoing candidate BLEs inside c. After we move
in an incoming BLE bi and move out a BLE bj, if CLB c is still in
a legal configuration, we draw an edge from vertex i to vertex j,
and the cost (weight) of the edge is 0.

Cx,y Cx-1,y

Cx,y-1

Cx(s),y(s)

Cx(t),y(t)

Figure 8. Construction of a Constrained Gain Graph

Figure 8 is a simple example of a constrained gain graph
construction. For the purpose of illustration, we only draw the full
connection of CLB Cx,y. All the edges within Cx,y describe the
input constraints on the current CLB Cx,y, and they all have a cost
of 0; each vertex i on the left hand side is connected to its
corresponding node before movement, and the weight of the edge
is the reduction in the cost function when i is moved from Cx-1,y or
Cx,y-1 to Cx,y. Also we create one pseudo source node and one
pseudo sink node.

Once the constrained gain graph is constructed, the constrained
legalization problem becomes a longest-path problem, which can
be easily solved with a complexity of O(n). Our algorithm is
optimal under any CLB level constraints.

Our algorithm is optimal for certain cost functions such as
bounding box wirelength, weighted source-sink distance, etc.
However, the optimality of the maximum gain path does not hold
for a general cost function. For example, the timing cost is the

summation of weighted delays over all the edges, and the edge
delay is determined by the locations of both the source and sink
pin. If there is an edge between two cells on the maximum
monotone gain path, then the timing cost reduction pre-computed
for the sink node would be inaccurate since the source node is
moved as well. As a result, the maximum gain path is not the
“real” maximum gain path for timing optimization under a
general timing model. However, if the delay model is linear to the
Manhattan distance only, the maximum gain path obtained from
the ripple move is still optimal. In this paper we minimize the
criticality weighted source-sink Manhattan distance during the
legalization.

3.4 Duplication Graph and Redundancy
Removal

c 1
p i2

g 1

g 1
’

g 3

g 2

p i3

p i1

p i4

p o 1

p o 2

c 2

c 3

Figure 9. Illustration of a Duplication Graph

Since we perform duplication at the end of each temperature, we
may use up the device capacity pretty quickly if redundancies are
not removed. Before the logic duplication takes place at the end of
each temperature, we need to merge duplicated copies to reduce
area while maintaining the circuit performance. This is an
essential step in our algorithm.

In this paper, we introduce a data structure called the duplication
graph, which is the original netlist with two modifications. First,
to keep track of all the copies of the same node, we introduce the
notion of choice node, whose fanin nodes are all logically
equivalent. Second, for each choice node c, we introduce a new
net e. Assume c has k fanin nodes g1, g2, …, gk, and each of the
fanin node has an output net e1, e2, …, ek. The source pin of net e
is choice node c, and sink pins of net e include all the sink pins of
e1, e2, …, ek. Figure 9 is an illustration of the duplication graph.
Under choice node c1, g1’ is a copy of g1 and they are logically
equivalent. Choice node c1 drives two gates g2 and g3, which
fanout to primary outputs po1 and po2 respectively. During the
logic duplication step, all the duplicated copies are added
incrementally to the duplication graph.

In a duplication graph N = (C, V, E), each node c ∈ C represents a
choice node, each gate v ∈ V represents a logic gate, and each
directed edge e = (c, v) ∈ E represents a wire connecting the
output of choice node c to one input of a logic gate v. Each choice
node c is a set in which each gate g ∈ c is a logic gate with equal
functionalities. For each directed edge e = (c, v), the arrival time
arr_t(v) at the sink pin is min(arr_t(g) + delay(g, v)) for every g ∈
c.

We formulate a global redundancy removal problem under timing
constraints. Under the given timing constraints, slack(e) ≥ 0 for
every edge e ∈ E. We want to find a maximum set S, remove
every v ∈ S and every edge e = (c, v) from N, such that in the new
duplication graph N’ = (C, V’, E’), slack(e’) ≥ 0 for every edge e’
∈ E’ and c ≠ ∅ for every choice node c ∈ C.

We also formulate a local redundancy removal problem under
timing constraints. For a choice node c, we assume c has m fanin
gates g1 through gm, and n fanout gates v1 through vn. Under the
timing constraints, each fanout gate vi has a required arrival time
req_t(vi). We want to find a maximum subset S of c and remove
every g ∈ S from c, such that arr_t(vi) ≤ req_t(vi) for all the fanout
gates of c. We build a m by n matrix, and define the value
matrix(i, j) at row i column j as the following: if the arrival time of
fanout node vj, arr_t(vj) ≤ req_t(vj) when vj is driven by gi,
matrix(i, j) = 1; otherwise matrix(i, j) = 0. To solve the local
redundancy removal problem, we need to select a minimum
number of rows such that every column contains at least a 1. This
is a unate covering or minimum set covering problem, which is
NP-complete. As a result, both the local and global removal
problems are NP-complete. Since we limit m to a small constant
(e.g., 5) during the logic duplication, we solve the local
redundancy removal problem optimally using the reduction
techniques together with a branch and bound algorithm.

We propose a heuristic to solve the global redundancy removal
problem by solving the local redundancy removal problem in a
reverse topological order. During the traversal of the duplication
graph from PO to PI, we optimally perform local redundancy
removal for each choice node with multiple fanins. After a local
redundancy problem is solved, we perform duplication removal
and fanout partitioning together. Then we propagate the remaining
time during the incremental timing update. We do not need to
perform a full timing analysis during the redundancy removal
process.

3.5 Path Counting-Based Net Weighting
The net-based timing-driven placers (e.g. [10]) convert timing
information into net weight and optimize a weighted function of
all nets. The basic idea of net weighting is to assign higher
weights to timing critical nets and lower weights to non-critical
nets. The net weighting scheme is both efficient and flexible
enough to handle complex constraints, but most existing methods
do not take into account the path information.

In this paper we implement a novel net weighting scheme [7],
which accurately counts all paths (critical and non-critical) for
certain types of discount functions such as D(x, y) = a-x/y. This
scheme considers path sharing, and assigns a higher weight to
edges shared by two or more critical paths. For more details about
path counting, please refer to [7].

4. COMPLEXITY ANALYSIS
The runtime of our SPD algorithm consists of two parts:
placement engine and duplication/legalization engine. The
complexity of our placement engine is exactly the same as VPR’s,
which is O(n4/3). Now we analyze the complexity of the
duplication/legalization engine. For each source node, the
complexity of the feasible region computation is O(K). The
maximum size of the feasible region is the size of the device,
which is O(n). For each location in the feasible region, we need to
recalculate the edge delay for all input pins of node s and the sink
pin t, and that is an O(K) operation. Since the size of the feasible
region is worst case O(n), the complexity of finding the optimal
destination location is O(n). For legalization, assume the distance
between source location and destination location is dx and dy
respectively. The complexity for constructing the gain graph is

O(dx*dy*N), and the complexity for the maximum gain path
algorithm is O(dx*dy). Since dx is bounded by the width of the
device, dy is bounded by the height of the device, the legalization
algorithm is a worst case O(n) operation. Also we perform static
timing analysis during the duplication, which is an O(n) operation
as well. Since we limit the number of duplications to a small
number (logarithmic to the circuit size) and the number of
annealing iterations to another constant (~100), the overall
duplication/legalization has a complexity of O(nlogn). As a result,
the overall SPD algorithm has a runtime complexity of O(n4/3).

5. EXPERIMENTAL RESULTS
We implemented our SPD algorithm under the framework of our
previous work SCPlace [3]. For the purpose of comparison, we
downloaded the VPR 4.3 source code, architecture file and the
complete set of 20 MCNC benchmark circuits used by VPR from
[14]. We modified the architecture file to specify the number of
BLEs contained in a single CLB. We compare all of the 20
MCNC circuits with the commonly used academic FPGA design
flow [9]. We first run the script.algebraic in SIS [12], followed
by Flowmap [4]. Then we run T-VPack [9] to generate an initial
clustering solution. This initial clustering is then given to both
VPR and SPD to perform placement. The default architecture we
use assumes that each CLB contains 4 LUTs, and each LUT has 4
inputs. Our SPD algorithm has several different modes: SPD-0,
SPD-1 and SPD-m. SPD-0 has zero duplication, and it is
essentially the same as VPR; SPD-1 performs logic duplication
once after the placement is done; SPD-m performs simultaneous
logic duplication and placement optimization. SPD w/ path
counting utilizes the path counting-based net weighting scheme.

5.1 Post-Placement Duplication Timing Result
In Table 3, we show the impact of post-layout logic duplication
on timing on the default architecture. Column 3 is the result of
SPD-0, which is our implementation of VPR without any logic
duplication. The result of SPD-0 is similar to that of VPR. In
column 4, we perform duplication/legalization only once after
detailed placement, and we achieve on average around 7% of
timing improvement on the default architecture.

In Table 4, we illustrate the performance of SPD-1 on a set of
different architectures. When the CLB size is 1, the timing
improvement obtained from duplication is 5%. When the size of
the CLB (N) increases from 2 to 10, the timing improvement
remains in a narrow range between 7 to 9%. The result shows that
when the CLB size is greater than one, there is more room for
duplication since the delay between BLEs within the same CLB is
normally smaller than the average delay between different CLBs.

Table 3. Timing Result of SPD-1

 Circuit VPR SPD-0 SPD-1 %
ex5p 50.45 51.66 47.76 8.2%
apex4 47.44 48.30 46.40 4.1%
misex3 51.04 48.94 45.92 6.6%
Tseng 38.85 38.55 34.80 10.8%
alu4 53.16 54.85 52.45 4.6%
dsip 38.32 38.92 38.92 0.0%
seq 51.26 53.29 49.44 7.8%

diffeq 47.73 45.26 40.93 10.6%
apex2 56.36 58.75 55.05 6.7%
s298 87.36 82.70 75.26 9.9%
des 83.88 81.71 73.60 11.0%

bigkey 41.37 41.51 40.74 1.9%
spla 72.47 72.09 66.45 8.5%

elliptic 71.07 64.48 62.32 3.5%
ex1010 97.88 95.24 87.06 9.4%

pdc 113.15 95.89 87.51 9.6%
frisc 81.39 83.81 76.02 10.3%

s38584.1 64.37 53.98 52.16 3.5%
s38417 76.63 76.84 70.18 9.5%
clma 137.20 136.56 123.93 10.2%

Average 7.32%

Table 4. Performance of SPD-1 across Different Architectures
 Circuit CLB=1 CLB=2 CLB=4 CLB=8 CLB=10

ex5p 10.2% 5.1% 8.2% 4.1% 10.8%
apex4 5.3% 5.5% 4.1% 9.4% 7.6%
misex3 4.6% 5.6% 6.6% 7.9% 8.7%
Tseng 1.2% 5.9% 10.8% 3.9% 5.9%
alu4 2.0% 8.3% 4.6% 10.3% 6.7%
dsip 3.8% 4.4% 0.0% 5.7% 3.8%
seq 7.4% 8.3% 7.8% 6.8% 7.8%

diffeq 2.1% 12.3% 10.6% 9.6% 10.3%
apex2 2.1% 6.9% 6.7% 7.8% 8.9%
s298 0.0% 8.6% 9.9% 10.1% 8.7%
des 9.6% 6.2% 11.0% 7.4% 10.2%

bigkey 10.2% 1.2% 1.9% 3.5% 0.2%
spla 6.7% 7.7% 8.5% 11.2% 7.4%

elliptic 10.6% 6.7% 3.5% 11.2% 14.9%
ex1010 10.0% 8.5% 9.4% 10.3% 10.2%

pdc 5.9% 8.5% 9.6% 14.6% 9.5%
frisc 3.9% 7.5% 10.3% 8.9% 12.0%

s38584.1 2.3% 2.5% 3.5% 6.9% 0.8%
s38417 2.3% 11.0% 9.5% 11.3% 10.6%

clma 6.1% 9.3% 10.2% 10.3% 11.1%
Average 5.32% 7.01% 7.32% 8.56% 8.30%

5.2 Simultaneous Placement and Logic
Duplication Timing Result
In Table 5, we compare SPD with VPR and analyze the impact of
path counting [7] on timing. If we use path counting-based net
weighting scheme in SPD-0, we can outperform VPR by 14%
(column 4); if we perform duplication only in SPD-m, we can
outperform VPR by 19% (column 6); if we integrate the path
counting-based net weighting scheme with the duplication
optimization, SPD-m w/ path counting significantly outperforms
the original VPR result by 26%.

Table 5. Timing Result of SPD-m

Circuit

VPR
SPD-0
w/ path
counting

%

SPD-m

%

SPD-m
w/ path
counting

%

ex5p 50.45 44.95 12.24% 46.80 7.80% 42.31 19.24%
apex4 47.44 44.71 6.12% 43.86 8.16% 40.2 18.01%
misex3 51.04 44.15 15.61% 42.14 21.12% 37.85 34.85%
tseng 38.85 36.43 6.65% 28.71 35.32% 29.29 32.64%
alu4 53.16 45.46 16.95% 43.56 22.04% 43.44 22.38%
dsip 38.32 40.96 -6.45% 41.37 -7.37% 33.35 14.90%
seq 51.26 46.56 10.11% 43.56 17.68% 42.4 20.90%
diffeq 47.73 38.76 23.15% 36.53 30.66% 38.57 23.75%
apex2 56.36 50.97 10.58% 53.58 5.19% 45.32 24.36%
s298 87.36 90.76 -3.74% 80.56 8.44% 88.4 -1.18%
des 83.88 67.15 24.91% 71.48 17.35% 63.29 32.53%
bigkey 41.37 40.95 1.03% 38.18 8.36% 36.46 13.47%
spla 72.47 63.12 14.81% 63.72 13.73% 65.64 10.41%
elliptic 71.07 55.72 27.54% 59.89 18.67% 52.27 35.97%
ex1010 97.88 79.10 23.75% 87.82 11.46% 71.59 36.72%
pdc 113.15 76.95 47.04% 82.87 36.54% 69.68 62.39%
frisc 81.39 92.53 -12.0% 75.51 7.79% 79.33 2.60%
s38584.1 64.37 46.66 37.96% 46.72 37.78% 48.82 31.85%
s38417 76.63 70.15 9.24% 53.29 43.80% 55.2 38.82%
clma 137.20 116.8 17.52% 106.92 28.32% 99.39 38.04%
Average 14.15% 18.64% 25.63%

Table 6. Performance of SPD-m across Different Architectures

 Circuit CLB=1 CLB=2 CLB=4 CLB=8 CLB=10
ex5p 19.64% 6.72% 19.24% 22.22% 24.09%
apex4 2.45% 15.07% 18.01% 24.13% 30.05%
misex3 6.41% 6.30% 34.85% 21.63% 25.28%
Tseng 10.11% 12.27% 32.64% 7.65% 6.05%
alu4 18.12% 20.10% 22.38% 8.32% 31.23%
dsip 15.68% 10.34% 14.90% -5.64% -13.85%
seq 20.43% 15.60% 20.90% 19.88% 23.47%

diffeq 6.04% 16.38% 23.75% 44.52% 23.95%
apex2 16.83% 11.31% 24.36% 22.74% 30.26%
s298 20.12% 4.79% -1.18% 10.46% 35.06%
des 15.82% 18.90% 32.53% 29.15% 9.89%

bigkey 34.94% 13.25% 13.47% 31.80% -1.07%
spla 21.73% 39.47% 10.41% 26.21% 35.75%

elliptic 59.16% 30.58% 35.97% 21.94% 5.94%
ex1010 18.24% 23.97% 36.72% 43.87% 47.13%

pdc 18.71% 38.11% 62.39% 52.40% 51.83%
frisc 20.27% 17.67% 2.60% 1.40% 23.67%

s38584.1 1.73% 24.83% 31.85% 34.81% 39.07%
s38417 12.44% 55.93% 38.82% 62.79% 32.72%
clma 14.33% 33.31% 38.04% 55.09% 74.54%

Average 17.66% 20.75% 25.63% 26.77% 26.75%

In Table 6, we illustrate the performance of SPD-m w/ path
counting on a set of different architectures. When the CLB size is
1, the performance gap between SPD-m and T-Vpack + VPR is
18%. When the size of the CLB (N) increases from 2 to 10, the
timing gap between SPD-m and T-Vpack + VPR gradually
increases from 21 to 27%. The result shows that even when the
CLB size is relatively small (1 or 2), integrating duplication with
placement has a great impact on circuit performance.

Table 7. Timing Comparison between SPD and SCPlace

Circuit

SPD-m

SPD-m
w/ path
counting

SCPlace

SCPlace
w/ path
counting

SPD-m +
SCPlace
w/ path
counting

ex5p 7.80% 19.24% 18.14% 23.80% 21.76%
apex4 8.16% 18.01% 1.04% 14.49% 30.23%
misex3 21.12% 34.85% 24.49% 32.47% 36.02%
tseng 35.32% 32.64% 18.55% 10.65% 21.99%
alu4 22.04% 22.38% 13.46% 25.07% 23.34%
dsip -7.37% 14.90% 11.73% -4.49% -5.64%
seq 17.68% 20.90% 15.29% 19.51% 27.16%
diffeq 30.66% 23.75% 27.30% 16.01% 39.33%
apex2 5.19% 24.36% 8.07% 19.34% 29.39%
s298 8.44% -1.18% -1.17% 7.88% 16.08%
des 17.35% 32.53% 9.14% 28.18% 37.07%
bigkey 8.36% 13.47% -0.47% 0.03% 31.80%
spla 13.73% 10.41% 8.95% 24.35% 37.20%
elliptic 18.67% 35.97% -7.63% 46.58% 19.89%
ex1010 11.46% 36.72% 14.93% 30.81% 49.51%
pdc 36.54% 62.39% 42.45% 67.38% 62.86%
frisc 7.79% 2.60% 5.33% 7.47% 16.30%
s38584 37.78% 31.85% 41.67% 34.71% 30.41%
s38417 43.80% 38.82% 58.17% 53.61% 48.21%
clma 28.32% 38.04% 9.73% 34.52% 47.18%
Average 18.64% 25.63% 15.96% 24.62% 31.01%

5.3 Timing Comparison with SCPlace [3]

Since SPD explores different clustering solutions via duplication
during the placement, it is natural to compare with our recent
work SCPlace [3], which performs simultaneous clustering and
placement optimization. Without the path counting-based net
weighting scheme, SPD-m outperforms SCPlace by a few
percentages; with path counting, both SPD-m and SCPlace
achieve similar improvement of around 26%; when all three
techniques are combined, we outperform T-Vpack + VPR by 31%.

5.4 Area and Runtime Comparison
Table 8. Area and Runtime Comparison of SPD

 SPD-0 SPD-1 SPD-m
Circuit Area Runtime Area Runtime Area Runtime
ex5p 1274 65.344 1274 0.00% 65.31 -0.05% 1311 2.90% 62.81 -3.87%
apex4 1319 65.234 1320 0.08% 65.63 0.60% 1337 1.36% 72.30 10.83%
misex3 1529 86.516 1535 0.39% 86.67 0.18% 1534 0.33% 75.53 -12.70%
tseng 1473 87.516 1476 0.20% 87.00 -0.59% 1481 0.54% 95.08 8.64%
alu4 1630 81.953 1630 0.00% 81.89 -0.08% 1631 0.06% 79.78 -2.65%
dsip 2045 115.828 2045 0.00% 116.75 0.80% 2045 0.00% 116.86 0.89%
seq 2029 134.922 2030 0.05% 137.89 2.20% 2033 0.20% 127.06 -5.82%

diffeq 2036 130.391 2036 0.00% 131.02 0.48% 2039 0.15% 123.03 -5.64%
apex2 2159 149.281 2160 0.05% 152.36 2.06% 2165 0.28% 156.48 4.83%
s298 2558 146.406 2558 0.00% 148.33 1.31% 2559 0.04% 165.83 13.27%
des 2673 203.5 2673 0.00% 203.86 0.18% 2673 0.00% 206.41 1.43%

bigkey 3361 239.516 3361 0.00% 241.52 0.83% 3361 0.00% 242.44 1.22%
spla 3999 371.922 4004 0.13% 373.81 0.51% 4036 0.93% 385.83 3.74%

elliptic 4430 473.188 4476 1.04% 475.92 0.58% 4448 0.41% 484.30 2.35%
ex1010 4740 444.25 4740 0.00% 445.86 0.36% 4743 0.06% 438.41 -1.32%

pdc 5672 664.532 5674 0.04% 666.28 0.26% 5678 0.11% 638.47 -3.92%
frisc 6061 617.265 6061 0.00% 620.28 0.49% 6074 0.21% 665.47 7.81%

s38584.1 7375 819.859 7380 0.07% 822.74 0.35% 7375 0.00% 831.14 1.38%
s38417 8589 993.36 8591 0.02% 996.30 0.30% 8604 0.17% 1105.92 11.33%

clma 13673 2214.188 13674 0.01% 2208.86 -0.24% 13688 0.11% 2415.09 9.07%
Average 0.10% 0.53% 0.39% 2.04%

In Table 8, we show the area and runtime overhead of our SPD
algorithm. Regardless of the number of iterations of logic
duplication we perform, the area increase by both SPD-1 and
SPD-m are very small, normally less than 1%. When we perform
only post-placement logic duplication in SPD-1, the runtime
increase is negligible; even when we perform multiple iterations
of logic duplication in SPD-m, the average runtime increase
remains very small at 2%. We expected more runtime increase for
SPD-m, but it is not the case. Our analysis of the annealing
process reveals that logic duplication helps the placement reach a
local minimum faster, so SPD-m uses a smaller number of
annealing iterations than does SPD-0 in general.

5.5 Routed Results
Table 9. Routed Delay and Track Count Comparison

 VPR SPD-m %
Circuit Routed

delay
#tracks Routed

delay
#tracks Routed

delay
#tracks

ex5p 54.20 660 46.15 740.00 17.43% 12.12%
apex4 50.86 660 51.72 720.00 -1.65% 9.09%
misex3 52.76 638 44.50 638.00 18.56% 0.00%
tseng 41.08 483 33.92 460.00 21.08% -4.76%
alu4 57.02 624 47.12 648.00 21.02% 3.85%
dsip 38.80 935 35.06 880.00 10.64% -5.88%
seq 62.99 832 54.51 806.00 15.57% -3.13%

diffeq 52.84 550 40.67 575.00 29.93% 4.55%
apex2 67.08 783 52.54 999.00 27.68% 27.59%
s298 90.56 754 82.76 841.00 9.42% 11.54%
des 88.32 960 70.76 1088.00 24.82% 13.33%

bigkey 42.60 495 39.59 660.00 7.61% 33.33%
spla 85.37 1470 64.12 1610.00 33.15% 9.52%

elliptic 75.27 1188 71.45 1332.00 5.35% 12.12%
ex1010 111.63 1292 78.95 1634.00 41.40% 26.47%

pdc 112.19 2255 89.84 2296.00 24.88% 1.82%
frisc 84.06 1596 85.90 1764.00 -2.13% 10.53%

s38584.1 61.39 1504 51.21 1316.00 19.90% -12.50%
s38417 81.80 1650 64.91 1400.00 26.02% -15.15%
clma 140.28 2898 125.73 3150.00 11.57% 8.70%

Average 18.11% 7.16%
In Table 9, we show the comparison of routed delay and track
count between SPD-m and T-Vpack + VPR for the default
architecture. The routed delay improvement is 18% on average
but the number of routed tracks is 7% more on average. The
routed delay improvement is less than the placement estimation
improvement, but this is largely expected. The increase in the
number of routed tracks is due to the increase in the number of
nodes and nets introduced by logic duplication.

6. CONCLUSIONS
We introduce a novel simultaneous placement and duplication
algorithm within our SCPlace [3] framework. By integrating
novel techniques such as simultaneous logic duplication during
placement, feasible region-based global path monotonicity
optimization, advanced duplication heuristics, optimal
legalization under complex constraints, duplication graph
representation, redundancy removal and path counting-based net
weighting, our new algorithm SPD produces excellent results for
timing optimization. When compared with the state-of-the-art

separate FPGA design flow T-VPack + VPR across different
architectures, our algorithm improves circuit performance by up
to 27% with less than 1% increase in area and less than 2%
increase in runtime. Although we test our algorithm in the context
of FPGAs, the basic algorithm applies directly to ASICs and other
architectures as well.

7. ACKNOWLEDGMENTS
This research is partially supported by NSF Grant CCF-0096383
and a grant from Magma Design Automation under the California
MICRO Program.

8. REFERENCES
[1] G. Beraudo and J. Lillis, “Timing Optimization of PFGA

Placements by Logic Replication,” ACM/IEEE Design
Automation Conference, pp. 196-201, 2003.

[2] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research,” International Workshop
on Field Programmable Logic and Application, pp. 213-222,
1997.

[3] G. Chen and J. Cong, "Simultaneous Timing Driven
Clustering and Placement for FPGAs," Proc. International
Conference on Field Programmable Logic and Its
Applications, Antwerp, Belgium, pp. 158-167, August 2004.

[4] J. Cong and Y. Ding, "FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs," IEEE Trans. on Computer-Aided
Design, vol. 13, no. 1, pp. 1-12, January 1994.

[5] M. Hrkic, J. Lillis and G. Beraudo, "An Approach to
Placement-Coupled Logic Replication," 2004 ACM/IEEE
Design Automation Conference, San Diego, California, pp.
711-716, Jun 2004.

[6] S-W Hur and J. Lillis, “Mongrel: Hybrid Techniques for
Standard Cell Placement,” IEEE/ACM International
Conference on Computer-Aided Design, pp 165-170, 2000.

[7] T. Kong, “A Novel Net Weighting Algorithm for Timing-
driven Placement,” IEEE/ACM International Conference on
Computer-Aided Design, pp. 172-176, 2002.

[8] J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Algorithms for
Optimal Introduction of Redundant Logic for Timing and
Area Optimization,” Proc. IEEE International Symposium
on Circuits and Systems, pp. 196-201, 1996.

[9] A. Marquardt, V. Betz and J. Rose, "Using Cluster-Based
Logic Blocks and Timing-Driven Packing to Improve FPGA
Speed and Density," ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, Monterey, CA, pp. 37-
46, 1999.

[10] A. Marquardt, V. Betz and J. Rose, ``Timing-Driven
Placement for FPGAs,'' ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey,
CA, pp. 203 – 213, February 2000.

[11] Neumann, D. Stoffel, H. Hartje, W. Kunz, “Cell Replication
and Redundancy Elimination During Placement for Cycle
Time Optimization,” IEEE/ACM International Conference
on Computer-Aided Design, pp. 25-30, 1999.

[12] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. Stephan, R. Brayton and A.
Sangiovanni-Vincentelli, “SIS: A System for Sequential
Circuit Synthesis,” Electronics Research Laboratory,
Memorandum No. UCB/ERL M92/41, 1992.

[13] A. Srivastava, R. Kastner and M. Sarrafzadeh, “Timing
Driven Gate Duplication: Complexity Issues and
Algorithms,” IEEE/ACM International Conference on
Computer-Aided Design, pp. 447-450, 2000.

[14] http://www.eecg.toronton.edu/~vaughn/challenge/challenge.
html, “The FPGA Place-and-Route Challenge”.

