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ABSTRACT 
Logic duplication is an effective method for improving circuit 
performance. In this paper we present an algorithm named SPD 
that performs simultaneous placement and duplication to 
minimize the longest path delay. We introduce the notion of 
feasible region and super feasible region to improve the critical 
path monotonicity from a global perspective. We introduce a 
constrained gain graph to perform optimal incremental 
legalization under complex constraints. We also formulate a 
timing-constrained global redundancy removal problem and 
propose a heuristic solution. Our SPD algorithm outperforms the 
state-of-the-art FPGA placement flow (T-VPack + VPR) with an 
average reduction of up to 27% in longest path estimate delay and 
18% in routed delay. The increase in overall runtime is less than 
2% and the increase in area is less than 1%.   

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – placement and 
routing 

General Terms 
Algorithms, Design, Performance 

Keywords 
Logic duplication, legalization, redundancy removal, timing-
driven placement, FPGA 

1. INTRODUCTION 
A typical LUT-based FPGA architecture [2] contains a two-level 
physical hierarchy: Basic Logic Elements (BLE) and Cluster-
based Logic Blocks (CLB). As described in Figure 1, each BLE 
contains a K-input LUT and a flip-flop (FF), and the LUT and FF 
share the same output. As described in Figure 2, each CLB 
contains N BLEs, I inputs and N outputs. Each of the I inputs can 
drive all the BLEs, and each BLE drives an output. Here K, N, 
and I are parameters described by an architecture file. The 
interconnect delay between BLEs within the same CLB is usually 
much smaller than the delay between BLEs in different CLBs. 

K-Input 
LUT Inputs DFF 

Clock

Out

 
Figure 1. VPR’s Basic Logic Element (BLE) 
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Figure 2. VPR’s Cluster-Based Logic Block (CLB) 
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Figure 3. Impact of Duplication on Placement 

Logic duplication is a common technique for improving circuit 
performance by duplicating one or more logic cells while 
maintaining the logic equivalence of the circuit. Figure 3 
illustrates the impact of duplication on placement. The initial 
network (a) consists of five FFs and one LUT. We assume each 
CLB contains two BLEs, and the device is a 1 x 3 grid. We 
assume that the inter-cluster delay equals the Manhattan distance, 
and both the logic and intra-cluster delay are 0.1. The “optimal” 
clustering solution in (b), which consists of three CLBs and two 
logic levels, can be obtained from T-VPack [9] (which minimizes 
both the number of clusters and the number of levels). However, 
the optimal placement solution (c) on this optimal clustering has a 
longest path delay of 2.1, which cannot be improved by post-
placement duplication. Instead, if we perform duplication together 
with placement, we can obtain a solution (d) with a longest path 
delay of 1.2.  
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In the past, logic duplication for timing optimization has been 
studied in the following contexts. First, logic duplication has been 
applied before placement in the logic synthesis domain. Improved 
circuit performance can be achieved by replicating high fanout 
logic gates on the critical path to isolate the critical sinks from the 
non-critical ones [8][13]. Lillis et al. [8] perform gate replication 
to improve the delay and area of a circuit under certain timing 
requirements. The gate replication technique complements the 
popular gate sizing approach in the ASIC flow. Later on, 
Sarrafzadeh et al. [13] present an effective heuristic algorithm for 
the gate duplication problem under the load-dependent delay 
model. They show that both the global and local (fanout 
partitioning) logic duplication for delay optimization problems are 
NP-complete.  

Second, logic duplication has been applied after placement as a 
post processing step to further increase design performance for 
FPGAs. In [1], Lillis et al. propose a heuristic replication 
algorithm to straighten the locally non-monotone critical paths. A 
legalization engine based on the “ripple-move” approach in 
Mongrel [6] is used to legalize the placement incrementally. 
However, [1] cannot improve critical paths that are globally non-
monotone yet locally monotone. The average reduction over VPR 
obtained from [1] is 7.5%. The follow-up work [5] improves [1] 
by incorporating two new techniques: timing-driven fanin tree 
embedding and replication tree. First, they introduce an optimal 
algorithm to solve the fanin tree embedding problem under a 
general cost model. Second they propose a replication tree to 
introduce large sub-circuits to be solved by the embedding 
algorithm. The average reduction over VPR obtained from [5] is 
14.2%. 

However, limited work has been done to carry out logic 
duplication during placement. Neumann et al. [11] apply logic 
duplication in a recursive partitioning-based timing-driven 
placement flow. During each recursion, they perform timing 
analysis, net length estimation and weight calculation, bi-
partitioning and cell replication sequentially. Before cells are 
assigned to rows, the redundancies introduced by the replication 
are removed. This combined approach outperforms gate sizing by 
10% on average. 

In this paper we propose a novel algorithm to perform 
simultaneous logic duplication during placement for timing 
minimization. We introduce the notion of feasible region and 
super feasible region, which enable the optimization of non-
monotone paths from a global perspective. We present an optimal 
incremental legalization algorithm under complex constraints. We 
also formulate a timing-constrained global redundancy removal 
problem and propose a heuristic to solve it by solving the local 
redundancy removal problems optimally. Finally, we incorporate 
a path counting-based net weighting scheme in our approach. The 
resulting algorithm, named SPD, outperforms the current state-of-
the-art FPGA placement flow T-VPack + VPR with an average 
reduction of up to 27% in longest path estimate delay and 18% in 
routed delay. Meanwhile, our combined approach has the same 
runtime complexity as the existing VPR placement algorithm, and 
both the runtime and area increase are minimal. 

2. INITIAL ANALYSIS 
In the default FPGA architecutre used in this paper, each CLB 
consists of 4 BLEs and each BLE conists of one 4-input LUT and 

one FF. During the study of VPR’s placement result on this 
default architecture, we confirmed two observations mentioned in 
[1].  

Table 1. Percentage of Near-Critical Pins 
 Circuit 0%  5% 10% 15% 20% 

ex5p 0.13% 1.99% 6.54% 15.88% 30.68%
apex4 0.15% 3.04% 10.14% 22.66% 39.62%
misex3 0.11% 1.40% 4.47% 11.83% 22.74%
Tseng 0.28% 1.71% 4.17% 7.09% 9.45%
alu4 0.12% 1.50% 5.53% 14.38% 26.53%
dsip 0.05% 0.17% 0.98% 2.29% 4.83%
seq 0.09% 0.73% 3.64% 9.69% 19.57%

diffeq 0.17% 1.02% 3.00% 6.35% 10.96%
apex2 0.11% 0.84% 5.93% 15.29% 27.36%
s298 0.23% 3.60% 10.55% 19.43% 30.03%
des 0.05% 0.24% 0.77% 1.93% 5.85%

bigkey 0.04% 0.15% 0.27% 0.38% 1.17%
spla 0.06% 1.17% 4.08% 10.85% 20.19%

elliptic 0.07% 1.03% 3.81% 8.01% 12.75%
ex1010 0.04% 0.78% 2.54% 7.23% 17.70%

pdc 0.04% 0.46% 2.16% 5.98% 12.83%
frisc 0.10% 0.76% 2.21% 4.67% 8.24%

s38584.1 0.04% 0.36% 1.01% 2.05% 3.24%
s38417 0.03% 0.44% 1.00% 1.99% 4.94%

clma 0.02% 0.15% 0.51% 1.88% 4.96%
Average 0.10% 1.08% 3.67% 8.49% 15.68%  

First, the number of critical/near-critical pins is relatively small. 
Assuming the longest path delay is T, a pin t is critical if slack(t) = 
0; t is x% critical if slack(t)/T ≤ x%. From Table 1, we can see that 
on average the percentage of critical pins is 0.10%, the percentage 
of 5% critical pins is 1.1%, the percentage of 10% critical pins is 
3.7%, the percentage of 15% critical pins is 8.5%, and the 
percentage of 20% critical pins is 15.7%. It seems possible to 
perform a very small number of post-placement duplications to 
speed up the circuit by 5~10%. However, it may involve many 
nodes to achieve more than 10~15% speedup. 

Table 2. Detour Ratio 
 Circuit avg dr(p) min dr(p) max dr(p) 

ex5p 3.31 2.00 10.14
apex4 3.07 2.00 5.43
misex3 3.52 1.71 10.83
Tseng 2.14 1.50 2.90
alu4 3.50 2.03 10.29
dsip 1.00 1.00 1.00
seq 5.75 2.12 12.00

diffeq 3.79 3.50 4.09
apex2 4.30 1.68 9.86
s298 6.64 4.73 7.92
des 4.36 1.48 19.00

bigkey 1.01 1.00 1.04
spla 5.34 1.86 14.86

elliptic 4.22 2.10 10.25
ex1010 6.08 2.64 21.00

pdc 3.53 1.85 15.50
frisc 4.10 2.93 5.50

s38584.1 3.43 1.25 8.25
s38417 4.89 2.33 10.00

clma 15.92 10.79 18.36
Average 4.49 2.53 9.91

 
Second, the critical paths are highly non-monotone. For a path p 
consisting of m nodes, v1, v2, ..., vm, v1 is the starting point and vm 
is the ending point. The x coordinate of node vi is x(vi) and the y 
coordinate of node vi is y(vi). The Manhattan distance between 
any two nodes vi and vj is defined as dist(vi,vj) = |x(vi) – x(vj)| + 
|y(vi) – y(vj)|. For a node vi, the deviation of vi with respect to one 
of its input nodes vi-1 and one of its output nodes vi+1 is defined as 
dev(vi-1, vi, vi+1) = dist(vi-1, vi) + dist(vi, vi+1) – dist(vi-1, vi+1). The 



sub-path vi-1, vi, vi+1 is monotone if dev(vi-1, vi, vi+1) = 0. The 
Manhattan distance of path p is defined as dist(p) =  
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m
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ii vvdist . The minimum distance of path p is defined as 

min_dist(p) = dist(v1, vm). The path p is globally monotone if 
dist(p) - min_dist(p) = 0. The level of a path p is defined as 
level(p) = m. The unit_dist is defined as the distance between two 
adjacent CLBs. The detour ratio is defined as dr(p) = dist(p) / 
max(min_dist(p), level(p)*unit_dist). dist(p) is the actual 
Manhattan distance of p; assuming that p1 and pm are fixed, 
min_dist(p) is the ideal Manhattan distance of p when it is 
globally monotone; level(p)*unit_dist is the distance of p when it 
is placed almost ideally; the detour ratio describes how non-
monotone the path p actually is. The reason that we use the 
maximum of min_dist(p) and level(p)*unit_dist to compute the 
detour ratio is that sometimes node v1 and vm can be placed very 
close or even inside the same CLB. For the measurement of the 
average/minimum/maximum detour ratios in Table 2, we consider 
all the 5% critical paths from PI/FFs to PO/FFs. Both the average 
detour ratio of 4.49 and the minimum ratio of 2.53 in Table 2 
show that the near-critical paths are far from monotone. 

3. SIMULTANEOUS TIMING-DRIVEN 
PLACEMENT AND DUPLICATION 
3.1 Algorithm Overview 
Our algorithm uses a simulated annealing-based optimization 
engine [2][10] to minimize a weighted function of bounding-box 
wirelength and timing (weighted edge delays). At the end of each 
temperature, we perform logic duplication, legalization and 
redundancy removal iteratively. To enable the optimization of 
non-monotone paths from a global perspective, we introduce the 
notion of feasible region and super feasible region. To handle the 
complex constraints in commercial FPGA architectures, we 
introduce a constrained gain graph and perform optimal 
incremental legalization. To control the runtime of the duplication 
procedure, we limit the number of duplications for each 
temperature to a small number. Through experiments we find that 
good results can be achieved in a short runtime when this limit is 
logarithmic to the circuit size. In order to merge duplicated copies 
of the same node, we use a duplication graph representation and 
propose a heuristic to solve a global redundancy removal 
problem. For net weighting, we implement a path counting-based 
net weighting scheme. 

In this section, we will describe the key components of our SPD 
algorithm: logic duplication, incremental legalization under 
complex constraints, duplication graph and redundancy removal, 
and path counting-based net weighting scheme.  

3.2 Logic Duplication 
Our logic duplication algorithm can be performed either after a 
full placement or during the placement at the end of each iteration 
(e.g. in a simulated annealing-based placer or a quadratic 
programming-based placer). As shown in Figure 4, a timing 
analysis is first performed on the current placement. Then we 
iteratively select a candidate node on the critical paths, duplicate 
or move it to a new destination location/CLB, redistribute fanouts, 
and immediately legalize the destination CLB to resolve any 
possible physical constraints conflicts. If the delay after 

legalization increases, both the legalization and the duplication 
operations will be undone. The iteration stops until there are no 
more candidates or the limit on the number of duplications is 
reached.  

Duplication() { 
  Timing Analysis 
  While (!done) { 

Candidate selection 
Destination selection 
Node duplication 
Fanout partitioning  
Incremental legalization 
Undo when timing gets worse 

} 
} 

Figure 4. Overview of the Duplication Algorithm 

3.2.1 Criticality-Driven Candidate Selection 
Initially we put all the near-critical PO pins in a heap sorted by 
the slack, and then we iteratively select the most critical pin t from 
the heap to perform the speedup operation. The candidate node, 
the source node s, is duplicated and moved to a new location so as 
to straighten all the near-critical paths flowing through edge (s, t). 
When two sink pins have the same criticality, we use the deviation 
of their source nodes to break ties. After a source node s is 
duplicated and legalized, we scan the input pins of the clone and 
put the remaining timing-critical pins into the heap.  

3.2.2 Feasible Region and Super Feasible Region 
After a candidate node s is chosen, we find a destination 
location/CLB for it in order to minimize the critical path delay. 
We assume node s has k critical input nodes i1, i2 through ik. 

(x(i1), y(i1)) 

(xl(s), yb(s)) 

(x(s), y(s)) 

(x(t), y(t)) 

(xr(s), yt(s)) 

Feasible region 

(x(i3), y(i3)) 

(x(i2), y(i2)) 

 
Figure 5. Example of Feasible Region 

First we define a feasible region FR({ij}, s, t) for node s with 
respect to one of its input nodes ij and t, in which the clone can be 
freely placed without increasing the deviation of source node s 
with respect to ij and t. Such a feasible region is simply the 
minimum bounding box enclosing ij, s and t. 

Next we define a feasible region FR ({i1, i2, …, ik}, s, t) = ((xl(s), 
yb(s)), (xr(s), yt(s))), in which the clone can be freely placed 
without increasing the deviation of source node s with respect to 
any of its critical input nodes and output node t. Such a feasible 
region is the intersection of all FR ({ij}, s, t). If we search for the 
destination location inside of this feasible region, all the critical 
paths passing through edge (s, t) will be straightened. 



Now we describe how to calculate xl(s) and xr(s) efficiently. We 
first compute the minimum x coordinate of all the critical input 
nodes of s is min_x(s), and so on for max_x(s), min_y(s) and 
max_y(s). When x(t) is smaller than min_x(s), xl(s) = min(x(s), 
x(t)) and xr(s) = max(min_x(s),x(s)); when x(t) falls between 
min_x(s) and max_x(s), xl(s) = min(x(s), x(t)) and xr(s) = 
max(x(s), x(t)); otherwise, xl(s) = min(max_x(s),x(s)) and xr(s) = 
max(x(s), x(t)). yb(s) and yt(s) can be computed similarly. Figure 5 
is an example describing the computation of a feasible region. For 
the largest circuit in our benchmark set, clma, the average size of 
the feasible region is around 5% of the total placement area. 
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Figure 6. Example of Super Feasible Region 
One drawback of [1] is that it cannot handle paths that are 
globally non-monotone but locally monotone. As shown in Figure 
6, the path pi1→r→s→t is non-monotone, however, both sub path 
pi1→r→s and r→s→t are monotonous. When the delay model is 
linear to the Manhattan distance, such paths cannot be 
straightened by the approach in [1], nor by using feasible region 
alone.  To help resolve such global non-monotone problem, we 
define a notion called super feasible region. A fanin cone Cv 
rooted at v is a connected sub-network which consists of only v 
and its predecessors; a critical fanin cone Ccrit_v rooted at v is a 
connected sub-network which consists of only v and its timing-
critical predecessors. For the primary input set of Ccrit_s, we 
assume there are l critical primary inputs pi1, pi2, …, pil, the super 
feasible region is defined as FR({pi1, pi2, …, pil}, s, t). During the 
computation of min_x(s), max_x(s), min_y(s) and max_y(s), we 
use the x and y coordinates of primary input set pi1, pi2, …, pil, 
instead of the immediate input set i1, i2, …, ik. With the 
introduction of the super feasible region, we give priority to 
locations inside both regular and super feasible regions. Hence 
both nodes s and r will be moved as illustrated in Figure 6, and 
the whole path will be straightened perfectly. 

3.2.3 Destination Selection within the Feasible 
Region 
We iterate through each location inside the feasible region and 
choose the destination location (x, y) such that ∆cost(x,y) is 
minimal. The ∆cost(x, y) function at a location (x, y) is defined as 
∆cost(x, y) = -α*∆slack(t) + β*overflow_cost(x, y) + 
γ*g_path_cost(x, y). α, β and γ are predefined constants. The first 
term ∆slack(t) describes the timing improvement. ∆slack(t) is 
defined as the increase in slack at sink pin t when the clone is 
placed at location (x, y),. The second term overflow_cost(x, y) 
depicts the legality of the placement or the difficulty of the 
legalization. overflow_cost(x, y) is 0 when the destination location 
can accommodate the clone, otherwise is the difference between 
the actual usage and capacity. Priority is given to locations that 
can accommodate the copy of s without violating any physical 
constraints. The third term g_path_cost(x, y) characterizes the 

violation of the global monotonicity. g_path_cost(x, y) is 0 when 
the destination location is inside the super feasible region, 
otherwise is the minimum distance from (x, y) to the super feasible 
region. 

3.2.4 Timing-Driven Fanout Partitioning 
After a clone node is placed at a destination location, we perform 
timing-driven fanout partitioning to redistribute the fanouts to 
their corresponding inputs. For each fanout node t, we assign it to 
a copy of the source node such that the arrival time at t is 
minimal. This is similar to the approach described in [1]. 

3.3 Optimal Incremental Legalization under 
Complex Constraints 
We perform legalization immediately after each duplication 
operation. If the delay on the most critical path increases, we will 
undo both the legalization and the duplication. 

First, we describe a ripple-move-based legalization approach used 
in [6]. For each ripple move, we select a source location S with 
overflow and a destination location T with extra capacity, and find 
a maximum gain monotone path from S to T along which a 
sequence of cells are moved. To determine the maximum gain 
path and the cells to be moved, a global analysis based on the 
gains of individual cells is performed. Given the source S and the 
destination T, each cell can only be moved in at most two 
directions. The gain value associated with each cell move is the 
reduction in the cost function, and the gain value associated with 
each location and direction is the maximum gain value among all 
the cells moving in that direction. Then we can construct a gain 
graph in which each vertex corresponds to a location inside the 
rectangular region determined by S and T, and each weighted arch 
represents the maximum gain value in the direction of the arc. 
Since the gain graph is acyclic, the maximum gain path can be 
found by topological ordering. When the ripple move is 
performed on this maximum gain path, a cell is allowed to move 
more than once so that the final gain is equal to or better than the 
value determined by the maximum gain path. Figure 7 is an 
example of a gain graph. 
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Figure 7. Example of a Gain Graph 

However, real commercial architectures have complex constraints 
at the CLB level in addition to the capacity constraint, such as the 
input constraint, clock constraint, control signal constraint, etc. 
Since the gain graph does not consider such complex constraints 
at all, we introduce a new notion called constrained gain graph in 
this paper.  

To better illustrate this, we consider a simple architecture, in 
which each CLB contains 2 BLEs and each CLB has 6 inputs. 
Assume the source CLB at location (x(s), y(s)) has 3 BLEs, and 



sink location at (x(t), y(t)) has only 1 BLE. The incremental 
legalization engine tries to find a monotone path from (x(s), y(s)) 
to (x(t), y(t)) to maximize the reduction in certain cost functions. 
Also it needs to make sure that each involved CLB will obey the 
input constraint after the legalization. If we assume that x(t) > x(s) 
and y(t) > y(s), then each move along the monotone path is in the 
direction of either north or east. If we consider any internal CLB c 
inside the rectangle ((x(s), y(s)), (x(t), y(t))), there maybe at most 
two incoming candidate nodes from the west, two incoming 
candidate nodes from the south and two outgoing candidate 
nodes. Thus we build a 4 x 2 bipartite graph for c, two of the left 
side vertices are the incoming candidate BLEs from the west, two 
of the left side vertices are from the south, and both two right side 
vertices are the outgoing candidate BLEs inside c. After we move 
in an incoming BLE bi and move out a BLE bj, if CLB c is still in 
a legal configuration, we draw an edge from vertex i to vertex j, 
and the cost (weight) of the edge is 0. 
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Figure 8. Construction of a Constrained Gain Graph 

Figure 8 is a simple example of a constrained gain graph 
construction. For the purpose of illustration, we only draw the full 
connection of CLB Cx,y. All the edges within Cx,y describe the 
input constraints on the current CLB Cx,y, and they all have a cost 
of 0; each vertex i on the left hand side is connected to its 
corresponding node before movement, and the weight of the edge 
is the reduction in the cost function when i is moved from Cx-1,y or 
Cx,y-1 to Cx,y. Also we create one pseudo source node and one 
pseudo sink node. 

Once the constrained gain graph is constructed, the constrained 
legalization problem becomes a longest-path problem, which can 
be easily solved with a complexity of O(n). Our algorithm is 
optimal under any CLB level constraints. 

Our algorithm is optimal for certain cost functions such as 
bounding box wirelength, weighted source-sink distance, etc. 
However, the optimality of the maximum gain path does not hold 
for a general cost function. For example, the timing cost is the 

summation of weighted delays over all the edges, and the edge 
delay is determined by the locations of both the source and sink 
pin. If there is an edge between two cells on the maximum 
monotone gain path, then the timing cost reduction pre-computed 
for the sink node would be inaccurate since the source node is 
moved as well. As a result, the maximum gain path is not the 
“real” maximum gain path for timing optimization under a 
general timing model. However, if the delay model is linear to the 
Manhattan distance only, the maximum gain path obtained from 
the ripple move is still optimal. In this paper we minimize the 
criticality weighted source-sink Manhattan distance during the 
legalization.  

3.4 Duplication Graph and Redundancy 
Removal 
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Figure 9. Illustration of a Duplication Graph 

Since we perform duplication at the end of each temperature, we 
may use up the device capacity pretty quickly if redundancies are 
not removed. Before the logic duplication takes place at the end of 
each temperature, we need to merge duplicated copies to reduce 
area while maintaining the circuit performance. This is an 
essential step in our algorithm. 

In this paper, we introduce a data structure called the duplication 
graph, which is the original netlist with two modifications. First, 
to keep track of all the copies of the same node, we introduce the 
notion of choice node, whose fanin nodes are all logically 
equivalent.  Second, for each choice node c, we introduce a new 
net e. Assume c has k fanin nodes g1, g2, …, gk, and each of the 
fanin node has an output net e1, e2, …, ek. The source pin of net e 
is choice node c, and sink pins of net e include all the sink pins of 
e1, e2, …, ek. Figure 9 is an illustration of the duplication graph. 
Under choice node c1, g1’ is a copy of g1 and they are logically 
equivalent. Choice node c1 drives two gates g2 and g3, which 
fanout to primary outputs po1 and po2 respectively. During the 
logic duplication step, all the duplicated copies are added 
incrementally to the duplication graph.  

In a duplication graph N = (C, V, E), each node c ∈ C represents a 
choice node, each gate v ∈ V represents a logic gate, and each 
directed edge e = (c, v) ∈ E represents a wire connecting the 
output of choice node c to one input of a logic gate v. Each choice 
node c is a set in which each gate g ∈ c is a logic gate with equal 
functionalities. For each directed edge e = (c, v), the arrival time 
arr_t(v) at the sink pin is min(arr_t(g) + delay(g, v)) for every g ∈ 
c.  

We formulate a global redundancy removal problem under timing 
constraints. Under the given timing constraints, slack(e) ≥ 0 for 
every edge e ∈ E. We want to find a maximum set S, remove 
every v ∈ S and every edge e = (c, v) from N, such that in the new 
duplication graph N’ = (C, V’, E’), slack(e’) ≥ 0 for every edge e’ 
∈ E’ and c ≠ ∅ for every choice node c ∈ C.  



We also formulate a local redundancy removal problem under 
timing constraints. For a choice node c, we assume c has m fanin 
gates g1 through gm, and n fanout gates v1 through vn. Under the 
timing constraints, each fanout gate vi has a required arrival time 
req_t(vi). We want to find a maximum subset S of c and remove 
every g ∈ S from c, such that arr_t(vi) ≤ req_t(vi) for all the fanout 
gates of c. We build a m by n matrix, and define the value 
matrix(i, j) at row i column j as the following: if the arrival time of 
fanout node vj, arr_t(vj) ≤ req_t(vj) when vj is driven by gi, 
matrix(i, j) = 1; otherwise matrix(i, j) = 0. To solve the local 
redundancy removal problem, we need to select a minimum 
number of rows such that every column contains at least a 1. This 
is a unate covering or minimum set covering problem, which is 
NP-complete. As a result, both the local and global removal 
problems are NP-complete. Since we limit m to a small constant 
(e.g., 5) during the logic duplication, we solve the local 
redundancy removal problem optimally using the reduction 
techniques together with a branch and bound algorithm. 

We propose a heuristic to solve the global redundancy removal 
problem by solving the local redundancy removal problem in a 
reverse topological order. During the traversal of the duplication 
graph from PO to PI, we optimally perform local redundancy 
removal for each choice node with multiple fanins. After a local 
redundancy problem is solved, we perform duplication removal 
and fanout partitioning together. Then we propagate the remaining 
time during the incremental timing update. We do not need to 
perform a full timing analysis during the redundancy removal 
process. 

3.5 Path Counting-Based Net Weighting 
The net-based timing-driven placers (e.g. [10]) convert timing 
information into net weight and optimize a weighted function of 
all nets. The basic idea of net weighting is to assign higher 
weights to timing critical nets and lower weights to non-critical 
nets. The net weighting scheme is both efficient and flexible 
enough to handle complex constraints, but most existing methods 
do not take into account the path information.  

In this paper we implement a novel net weighting scheme [7], 
which accurately counts all paths (critical and non-critical) for 
certain types of discount functions such as D(x, y) = a-x/y. This 
scheme considers path sharing, and assigns a higher weight to 
edges shared by two or more critical paths. For more details about 
path counting, please refer to [7]. 

4. COMPLEXITY ANALYSIS 
The runtime of our SPD algorithm consists of two parts: 
placement engine and duplication/legalization engine. The 
complexity of our placement engine is exactly the same as VPR’s, 
which is O(n4/3). Now we analyze the complexity of the 
duplication/legalization engine. For each source node, the 
complexity of the feasible region computation is O(K). The 
maximum size of the feasible region is the size of the device, 
which is O(n). For each location in the feasible region, we need to 
recalculate the edge delay for all input pins of node s and the sink 
pin t, and that is an O(K) operation. Since the size of the feasible 
region is worst case O(n), the complexity of finding the optimal 
destination location is O(n). For legalization, assume the distance 
between source location and destination location is dx and dy 
respectively. The complexity for constructing the gain graph is 

O(dx*dy*N), and the complexity for the maximum gain path 
algorithm is  O(dx*dy). Since dx is bounded by the width of the 
device, dy is bounded by the height of the device, the legalization 
algorithm is a worst case O(n) operation. Also we perform static 
timing analysis during the duplication, which is an O(n) operation 
as well. Since we limit the number of duplications to a small 
number (logarithmic to the circuit size) and the number of 
annealing iterations to another constant (~100), the overall 
duplication/legalization has a complexity of O(nlogn). As a result, 
the overall SPD algorithm has a runtime complexity of O(n4/3). 

5. EXPERIMENTAL RESULTS 
We implemented our SPD algorithm under the framework of our 
previous work SCPlace [3]. For the purpose of comparison, we 
downloaded the VPR 4.3 source code, architecture file and the 
complete set of 20 MCNC benchmark circuits used by VPR from 
[14]. We modified the architecture file to specify the number of 
BLEs contained in a single CLB. We compare all of the 20 
MCNC circuits with the commonly used academic FPGA design 
flow [9]. We first run the script.algebraic in SIS [12], followed 
by Flowmap [4]. Then we run T-VPack [9] to generate an initial 
clustering solution. This initial clustering is then given to both 
VPR and SPD to perform placement. The default architecture we 
use assumes that each CLB contains 4 LUTs, and each LUT has 4 
inputs. Our SPD algorithm has several different modes: SPD-0, 
SPD-1 and SPD-m. SPD-0 has zero duplication, and it is 
essentially the same as VPR; SPD-1 performs logic duplication 
once after the placement is done; SPD-m performs simultaneous 
logic duplication and placement optimization. SPD w/ path 
counting utilizes the path counting-based net weighting scheme. 

5.1 Post-Placement Duplication Timing Result 
In Table 3, we show the impact of post-layout logic duplication 
on timing on the default architecture. Column 3 is the result of 
SPD-0, which is our implementation of VPR without any logic 
duplication. The result of SPD-0 is similar to that of VPR. In 
column 4, we perform duplication/legalization only once after 
detailed placement, and we achieve on average around 7% of 
timing improvement on the default architecture. 

In Table 4, we illustrate the performance of SPD-1 on a set of 
different architectures. When the CLB size is 1, the timing 
improvement obtained from duplication is 5%. When the size of 
the CLB (N) increases from 2 to 10, the timing improvement 
remains in a narrow range between 7 to 9%. The result shows that 
when the CLB size is greater than one, there is more room for 
duplication since the delay between BLEs within the same CLB is 
normally smaller than the average delay between different CLBs. 



Table 3. Timing Result of SPD-1 

 Circuit VPR  SPD-0 SPD-1 % 
ex5p 50.45  51.66  47.76  8.2%
apex4 47.44  48.30  46.40  4.1%
misex3 51.04  48.94  45.92  6.6%
Tseng 38.85  38.55  34.80  10.8%
alu4 53.16  54.85  52.45  4.6%
dsip 38.32  38.92  38.92  0.0%
seq 51.26  53.29  49.44  7.8%

diffeq 47.73  45.26  40.93  10.6%
apex2 56.36  58.75  55.05  6.7%
s298 87.36  82.70  75.26  9.9%
des 83.88  81.71  73.60  11.0%

bigkey 41.37  41.51  40.74  1.9%
spla 72.47  72.09  66.45  8.5%

elliptic 71.07  64.48  62.32  3.5%
ex1010 97.88  95.24  87.06  9.4%

pdc 113.15  95.89  87.51  9.6%
frisc 81.39  83.81  76.02  10.3%

s38584.1 64.37  53.98  52.16  3.5%
s38417 76.63  76.84  70.18  9.5%
clma 137.20  136.56  123.93  10.2%

Average    7.32%
  

Table 4. Performance of SPD-1 across Different Architectures 
 Circuit CLB=1  CLB=2 CLB=4 CLB=8 CLB=10 

ex5p 10.2% 5.1% 8.2% 4.1% 10.8%
apex4 5.3% 5.5% 4.1% 9.4% 7.6%
misex3 4.6% 5.6% 6.6% 7.9% 8.7%
Tseng 1.2% 5.9% 10.8% 3.9% 5.9%
alu4 2.0% 8.3% 4.6% 10.3% 6.7%
dsip 3.8% 4.4% 0.0% 5.7% 3.8%
seq 7.4% 8.3% 7.8% 6.8% 7.8%

diffeq 2.1% 12.3% 10.6% 9.6% 10.3%
apex2 2.1% 6.9% 6.7% 7.8% 8.9%
s298 0.0% 8.6% 9.9% 10.1% 8.7%
des 9.6% 6.2% 11.0% 7.4% 10.2%

bigkey 10.2% 1.2% 1.9% 3.5% 0.2%
spla 6.7% 7.7% 8.5% 11.2% 7.4%

elliptic 10.6% 6.7% 3.5% 11.2% 14.9%
ex1010 10.0% 8.5% 9.4% 10.3% 10.2%

pdc 5.9% 8.5% 9.6% 14.6% 9.5%
frisc 3.9% 7.5% 10.3% 8.9% 12.0%

s38584.1 2.3% 2.5% 3.5% 6.9% 0.8%
s38417 2.3% 11.0% 9.5% 11.3% 10.6%

clma 6.1% 9.3% 10.2% 10.3% 11.1%
Average 5.32% 7.01% 7.32% 8.56% 8.30%  

5.2 Simultaneous Placement and Logic 
Duplication Timing Result 
In Table 5, we compare SPD with VPR and analyze the impact of 
path counting [7] on timing. If we use path counting-based net 
weighting scheme in SPD-0, we can outperform VPR by 14% 
(column 4); if we perform duplication only in SPD-m, we can 
outperform VPR by 19% (column 6); if we integrate the path 
counting-based net weighting scheme with the duplication 
optimization, SPD-m w/ path counting significantly outperforms 
the original VPR result by 26%. 

Table 5. Timing Result of SPD-m 
         

Circuit 
 

VPR 
SPD-0 
w/ path 
counting 

 
% 

 
SPD-m 

 
% 

SPD-m 
w/ path 
counting 

 
% 

ex5p 50.45 44.95 12.24% 46.80  7.80% 42.31 19.24%
apex4 47.44 44.71 6.12% 43.86  8.16% 40.2 18.01%
misex3 51.04 44.15 15.61% 42.14  21.12% 37.85 34.85%
tseng 38.85 36.43 6.65% 28.71  35.32% 29.29 32.64%
alu4 53.16 45.46 16.95% 43.56  22.04% 43.44 22.38%
dsip 38.32 40.96 -6.45% 41.37  -7.37% 33.35 14.90%
seq 51.26 46.56 10.11% 43.56  17.68% 42.4 20.90%
diffeq 47.73 38.76 23.15% 36.53  30.66% 38.57 23.75%
apex2 56.36 50.97 10.58% 53.58  5.19% 45.32 24.36%
s298 87.36 90.76 -3.74% 80.56  8.44% 88.4 -1.18%
des 83.88 67.15 24.91% 71.48  17.35% 63.29 32.53%
bigkey 41.37 40.95 1.03% 38.18  8.36% 36.46 13.47%
spla 72.47 63.12 14.81% 63.72  13.73% 65.64 10.41%
elliptic 71.07 55.72 27.54% 59.89  18.67% 52.27 35.97%
ex1010 97.88 79.10 23.75% 87.82  11.46% 71.59 36.72%
pdc 113.15 76.95 47.04% 82.87  36.54% 69.68 62.39%
frisc 81.39 92.53 -12.0% 75.51  7.79% 79.33 2.60%
s38584.1 64.37 46.66 37.96% 46.72  37.78% 48.82 31.85%
s38417 76.63 70.15 9.24% 53.29  43.80% 55.2 38.82%
clma 137.20 116.8 17.52% 106.92  28.32% 99.39 38.04%
Average   14.15%  18.64%  25.63%

 

Table 6. Performance of SPD-m across Different Architectures 

 Circuit CLB=1  CLB=2 CLB=4 CLB=8 CLB=10 
ex5p 19.64% 6.72% 19.24% 22.22% 24.09%
apex4 2.45% 15.07% 18.01% 24.13% 30.05%
misex3 6.41% 6.30% 34.85% 21.63% 25.28%
Tseng 10.11% 12.27% 32.64% 7.65% 6.05%
alu4 18.12% 20.10% 22.38% 8.32% 31.23%
dsip 15.68% 10.34% 14.90% -5.64% -13.85%
seq 20.43% 15.60% 20.90% 19.88% 23.47%

diffeq 6.04% 16.38% 23.75% 44.52% 23.95%
apex2 16.83% 11.31% 24.36% 22.74% 30.26%
s298 20.12% 4.79% -1.18% 10.46% 35.06%
des 15.82% 18.90% 32.53% 29.15% 9.89%

bigkey 34.94% 13.25% 13.47% 31.80% -1.07%
spla 21.73% 39.47% 10.41% 26.21% 35.75%

elliptic 59.16% 30.58% 35.97% 21.94% 5.94%
ex1010 18.24% 23.97% 36.72% 43.87% 47.13%

pdc 18.71% 38.11% 62.39% 52.40% 51.83%
frisc 20.27% 17.67% 2.60% 1.40% 23.67%

s38584.1 1.73% 24.83% 31.85% 34.81% 39.07%
s38417 12.44% 55.93% 38.82% 62.79% 32.72%
clma 14.33% 33.31% 38.04% 55.09% 74.54%

Average 17.66% 20.75% 25.63% 26.77% 26.75%
 

In Table 6, we illustrate the performance of SPD-m w/ path 
counting on a set of different architectures. When the CLB size is 
1, the performance gap between SPD-m and T-Vpack + VPR is 
18%. When the size of the CLB (N) increases from 2 to 10, the 
timing gap between SPD-m and T-Vpack + VPR gradually 
increases from 21 to 27%. The result shows that even when the 
CLB size is relatively small (1 or 2), integrating duplication with 
placement has a great impact on circuit performance. 
 
 
 

 



Table 7. Timing Comparison between SPD and SCPlace 
         

Circuit 
 

SPD-m 
 

SPD-m 
w/ path 
counting 

 
SCPlace 

SCPlace 
w/ path 
counting 

SPD-m + 
SCPlace 
w/ path 
counting 

ex5p 7.80% 19.24% 18.14% 23.80% 21.76%
apex4 8.16% 18.01% 1.04% 14.49% 30.23%
misex3 21.12% 34.85% 24.49% 32.47% 36.02%
tseng 35.32% 32.64% 18.55% 10.65% 21.99%
alu4 22.04% 22.38% 13.46% 25.07% 23.34%
dsip -7.37% 14.90% 11.73% -4.49% -5.64%
seq 17.68% 20.90% 15.29% 19.51% 27.16%
diffeq 30.66% 23.75% 27.30% 16.01% 39.33%
apex2 5.19% 24.36% 8.07% 19.34% 29.39%
s298 8.44% -1.18% -1.17% 7.88% 16.08%
des 17.35% 32.53% 9.14% 28.18% 37.07%
bigkey 8.36% 13.47% -0.47% 0.03% 31.80%
spla 13.73% 10.41% 8.95% 24.35% 37.20%
elliptic 18.67% 35.97% -7.63% 46.58% 19.89%
ex1010 11.46% 36.72% 14.93% 30.81% 49.51%
pdc 36.54% 62.39% 42.45% 67.38% 62.86%
frisc 7.79% 2.60% 5.33% 7.47% 16.30%
s38584 37.78% 31.85% 41.67% 34.71% 30.41%
s38417 43.80% 38.82% 58.17% 53.61% 48.21%
clma 28.32% 38.04% 9.73% 34.52% 47.18%
Average 18.64% 25.63% 15.96% 24.62% 31.01%

 
5.3 Timing Comparison with SCPlace [3] 

Since SPD explores different clustering solutions via duplication 
during the placement, it is natural to compare with our recent 
work SCPlace [3], which performs simultaneous clustering and 
placement optimization. Without the path counting-based net 
weighting scheme, SPD-m outperforms SCPlace by a few 
percentages; with path counting, both SPD-m and SCPlace 
achieve similar improvement of around 26%; when all three 
techniques are combined, we outperform T-Vpack + VPR by 31%. 

5.4 Area and Runtime Comparison 
Table 8. Area and Runtime Comparison of SPD 

   SPD-0 SPD-1 SPD-m 
Circuit Area  Runtime Area  Runtime Area  Runtime 
ex5p 1274 65.344 1274 0.00% 65.31  -0.05% 1311 2.90% 62.81 -3.87%
apex4 1319 65.234 1320 0.08% 65.63  0.60% 1337 1.36% 72.30 10.83%
misex3 1529 86.516 1535 0.39% 86.67  0.18% 1534 0.33% 75.53 -12.70%
tseng 1473 87.516 1476 0.20% 87.00  -0.59% 1481 0.54% 95.08 8.64%
alu4 1630 81.953 1630 0.00% 81.89  -0.08% 1631 0.06% 79.78 -2.65%
dsip 2045 115.828 2045 0.00% 116.75  0.80% 2045 0.00% 116.86 0.89%
seq 2029 134.922 2030 0.05% 137.89  2.20% 2033 0.20% 127.06 -5.82%

diffeq 2036 130.391 2036 0.00% 131.02  0.48% 2039 0.15% 123.03 -5.64%
apex2 2159 149.281 2160 0.05% 152.36  2.06% 2165 0.28% 156.48 4.83%
s298 2558 146.406 2558 0.00% 148.33  1.31% 2559 0.04% 165.83 13.27%
des 2673 203.5 2673 0.00% 203.86  0.18% 2673 0.00% 206.41 1.43%

bigkey 3361 239.516 3361 0.00% 241.52  0.83% 3361 0.00% 242.44 1.22%
spla 3999 371.922 4004 0.13% 373.81  0.51% 4036 0.93% 385.83 3.74%

elliptic 4430 473.188 4476 1.04% 475.92  0.58% 4448 0.41% 484.30 2.35%
ex1010 4740 444.25 4740 0.00% 445.86  0.36% 4743 0.06% 438.41 -1.32%

pdc 5672 664.532 5674 0.04% 666.28  0.26% 5678 0.11% 638.47 -3.92%
frisc 6061 617.265 6061 0.00% 620.28  0.49% 6074 0.21% 665.47 7.81%

s38584.1 7375 819.859 7380 0.07% 822.74  0.35% 7375 0.00% 831.14 1.38%
s38417 8589 993.36 8591 0.02% 996.30  0.30% 8604 0.17% 1105.92 11.33%

clma 13673 2214.188 13674 0.01% 2208.86  -0.24% 13688 0.11% 2415.09 9.07%
Average       0.10%   0.53%   0.39%  2.04%

  

In Table 8, we show the area and runtime overhead of our SPD 
algorithm. Regardless of the number of iterations of logic 
duplication we perform, the area increase by both SPD-1 and 
SPD-m are very small, normally less than 1%. When we perform 
only post-placement logic duplication in SPD-1, the runtime 
increase is negligible; even when we perform multiple iterations 
of logic duplication in SPD-m, the average runtime increase 
remains very small at 2%. We expected more runtime increase for 
SPD-m, but it is not the case. Our analysis of the annealing 
process reveals that logic duplication helps the placement reach a 
local minimum faster, so SPD-m uses a smaller number of 
annealing iterations than does SPD-0 in general. 

5.5 Routed Results 
Table 9. Routed Delay and Track Count Comparison 

  VPR SPD-m % 
Circuit Routed 

delay 
#tracks Routed  

delay 
#tracks Routed  

delay 
#tracks 

ex5p 54.20 660 46.15 740.00 17.43% 12.12% 
apex4 50.86 660 51.72 720.00 -1.65% 9.09% 
misex3 52.76 638 44.50 638.00 18.56% 0.00% 
tseng 41.08 483 33.92 460.00 21.08% -4.76% 
alu4 57.02 624 47.12 648.00 21.02% 3.85% 
dsip 38.80 935 35.06 880.00 10.64% -5.88% 
seq 62.99 832 54.51 806.00 15.57% -3.13% 

diffeq 52.84 550 40.67 575.00 29.93% 4.55% 
apex2 67.08 783 52.54 999.00 27.68% 27.59% 
s298 90.56 754 82.76 841.00 9.42% 11.54% 
des 88.32 960 70.76 1088.00 24.82% 13.33% 

bigkey 42.60 495 39.59 660.00 7.61% 33.33% 
spla 85.37 1470 64.12 1610.00 33.15% 9.52% 

elliptic 75.27 1188 71.45 1332.00 5.35% 12.12% 
ex1010 111.63 1292 78.95 1634.00 41.40% 26.47% 

pdc 112.19 2255 89.84 2296.00 24.88% 1.82% 
frisc 84.06 1596 85.90 1764.00 -2.13% 10.53% 

s38584.1 61.39 1504 51.21 1316.00 19.90% -12.50% 
s38417 81.80 1650 64.91 1400.00 26.02% -15.15% 
clma 140.28 2898 125.73 3150.00 11.57% 8.70% 

Average    18.11% 7.16%  
In Table 9, we show the comparison of routed delay and track 
count between SPD-m and T-Vpack + VPR for the default 
architecture. The routed delay improvement is 18% on average 
but the number of routed tracks is 7% more on average. The 
routed delay improvement is less than the placement estimation 
improvement, but this is largely expected. The increase in the 
number of routed tracks is due to the increase in the number of 
nodes and nets introduced by logic duplication. 

6. CONCLUSIONS 
We introduce a novel simultaneous placement and duplication 
algorithm within our SCPlace [3] framework. By integrating 
novel techniques such as simultaneous logic duplication during 
placement, feasible region-based global path monotonicity 
optimization, advanced duplication heuristics, optimal 
legalization under complex constraints, duplication graph 
representation, redundancy removal and path counting-based net 
weighting, our new algorithm SPD produces excellent results for 
timing optimization. When compared with the state-of-the-art 



separate FPGA design flow T-VPack + VPR across different 
architectures, our algorithm improves circuit performance by up 
to 27% with less than 1% increase in area and less than 2% 
increase in runtime. Although we test our algorithm in the context 
of FPGAs, the basic algorithm applies directly to ASICs and other 
architectures as well. 
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