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Abstract. Mass-spring systems are of special interest for soft tissue
modeling in surgical simulation due to their ease of implementation and
real-time behavior. However, the parameter identification (masses, spring
constants, mesh topology) still remains a challenge. In previous work, we
proposed an approach based on the training of mass-spring systems ac-
cording to known reference models. Our initial focus was the determina-
tion of mesh topology in 2D. In this paper, we extend the method to 3D.
Furthermore, we introduce a new approach to simultaneously identify
mesh topology and spring stiffness values. Linear elastic FEM deforma-
tion computations are used as reference. Additionally, our results show
that uniform distributions of spring stiffness constants fails to simulate
linear elastic deformations.

1 Introduction

Real-time simulation of soft tissue deformation remains a major obstacle when
developing surgical simulator systems. One popular approach is based on the
mass-spring model (MSM), which consists of a mesh of mass points connected
by elastic links. The method requires the setting of system parameters describ-
ing deformation behavior. Parameters, such as mass distribution, coefficients of
spring transfer functions and overall connectivity have to be determined. In [1],
we have suggested an approach based on genetic optimization for the identifi-
cation of MSM parameters. Our initial focus has been on mesh topology. The
main idea is to compare the deformation behavior of a learning model with that
of a known reference system and to utilize genetic algorithms to optimize the
parameters of the learning model.

In this paper, we first present the extension of our previously described ap-
proach to 3D. Then, we introduce a new approach, which merges topology and
spring constant parameter estimation. We show the validity of this method by
the successful recovery of the topology of a reference MSM. Next, we introduce
Finite Element Models (FEM) as the reference model and obtain MSM param-
eters describing FEM deformation behavior. Several experiments support the
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validity of the acquired parameters. Finally we show, that linear elastic mate-
rial cannot be approximated with homogeneous MSM parameters, but requires
inhomogeneous parameter distributions.

2 Previous Work

The last ten years have seen a growing interest in research on the stiffness value
identification of mass-spring systems. Two main approaches have been proposed
so far. The first one focuses on the determination of mathematical relationships
in the computation of mesh properties of MSMs based on known values. In [3]
stiffness values in triangulated spring meshes were computed proportional to
triangle area and Young’s modulus. Different generic methods for particle-based
systems (referred to as generalized mass-spring systems) have been suggested
in [7]. One approach obtains stiffness values in rectangular structures accord-
ing to angles between diagonal springs. Another method computes the spring
constants based on the number of connections attached to a mass-point under
consideration. Nevertheless, a general, non-heuristic formulation does not yet
exist.

The second approach is based on optimization processes, which try to adapt
the behavior of a MSM. A few optimization-based approaches have been pro-
posed in the literature, for instance in [2] the use of simulated annealing for spring
constant identification is suggested. Neural networks are used for the simulation
of dynamic MSMs by [9]. Furthermore, methods based on genetic algorithms for
stiffness value determination were discussed in [4] and [6]. However, all the meth-
ods described above only work for predefined topologies such as rectangular or
tetrahedral structures. In this paper, we suggest a new solution, which simulta-
neously focuses on connections and elastic constants to be set in MSM systems.
Moreover, our method is based on the comparison of deformation behavior of a
MSM with a known, possibly more accurate reference system.

3 Topology Identification in 3D

In [1] we proposed an approach based on genetic optimization to identify the
topology of mass-spring systems. A MSM (the learning model) was trained by
means of a known model (the reference model) undergoing stretching and shear-
ing induced by external forces. A cost function measured the difference between
the behavior of the learning and the reference model, based on the distance be-
tween corresponding point positions in both models. In order to test the method,
an MSM was used as reference, since in this case the exact solution was known.
Our results for two-dimensional test cases have shown, that the method was able
to recover the topology of isotropic and anisotropic reference models

Our first extension is the application of the described approach in 3D. Due
to the increasing number of springs in this case, the genetic algorithm has to be
optimized in order to converge faster towards the optimal solution. Furthermore,
a reasonably limited neighborhood for possible spring connections has to be
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defined for 3D. Inspired by tightly-packed crystalline structures, we allow at
most 26 neighbors (Moore Neighborhood) for each node.

3.1 Genetic Algorithm Adaptation

Genetic algorithms (GAs) attempt to mimic natural evolution [8]. They utilize
the behaviour of a population of individuals - each one representing a potential
solution to a defined problem. The fitness of an individual is determined by a
cost function. The optimization principle consists of evolving the population by
means of genetic operators such as mutation and crossover. Mutation applies
random changes to the population with a certain probability pmut. Crossover
creates offsprings by selecting genes from a pair of individuals and combining
them into a new one, also with a predefined probability pcross. Although GAs do
not guarantee a convergence to the global optimum, the reached local optimum
may be considered as a good approximation of the exact solution.

Similar to the 2D case, an

Fig. 1. Comparison of three constant mutation val-
ues

individual is described by a
vector of binary values which
represents a potential topol-
ogy of the mass-spring model.
In our experiments we found
no significant influence of the
population size on the con-
vergence speed of the algo-
rithm as well as on the re-
sults. Therefore, a low value
was selected for the size to
reduce the computation time
(popsize = 5). While the
crossover operator improves convergence in the early stages of the process, its
influence becomes of secondary importance later, when the population is close
to the optimum. Therefore, the crossover probability is fixed to a high value
(pcross = 0.8). In contrast to this, the mutation value has an important effect
throughout the whole evolution. Figure 1 depicts the evolution of three trials
with different mutation probabilities. While a high value (pmut = 0.01) speeds
up the convergence at the beginning of the evolution, a lower one (pmut = 0.002)
gives better results in later stages. Due to this observation, we decided to use an
adaptive mutation probability which is inversely proportional to the generation
number g: pmut(g) = a

g + b. We were able to considerably improve convergence
speed with this adaptive mutation strategy. The coefficients a and b are currently
determined experimentally - in the case of 3D topology identification, the section
a = 0.2 and b = 0.001 has been found to provide best convergence properties.
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Fig. 2. Row 1: Loads used for training. Row 2: Deformations of reference MSM. Row
3: MSM optimized by genetic algorithm (generation = 4000, popsize = 5, pmut =
0.2
g

+ 0.001, pcross = 0.8).

3.2 Experimental Results

This section describes the results in the three-dimensional case with a reference
mesh consisting of 4x4x4 mass-points and 468 springs. In Figure 2, the first
row shows four out of six different load cases used in the training process. The
selection of these test cases, including stretching and shearing, was motivated by
suggestions made in [2]. The second row depicts the reference MSM deformed by
the loads, while row three illustrates the best topology obtained by the genetic
algorithm. Here, 5 of 468 springs are missing, however, the normalized difference
of point positions between the reference and the learning model is equal to zero.
Thus, we were able to very closely approximate the deformation behavior of the
reference model and recover almost all connections. Moreover, it proved to be
sufficient to use the applied six load cases to obtain the parameters describing
the deformation of the reference model.

4 Simultaneous Topology and Spring Constant
Identification

In this part we introduce a significant extension of our method. Our focus so far
was on the retrieval of mesh topologies. This is now extended by including the
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identification of individual spring constants into the approach. We achieve this
by representing springs in the optimization population as real-valued constants
instead of binary connections. Springs are only present, if their stiffness value is
greater than a predefined threshold. This approach allows us to determine topol-
ogy and stiffness values simultaneously. We again start to develop and validate
this method with two-dimensional references. Our first step is to use MSM for
comparison, however, we also introduce FEM systems as training references.

4.1 Genetic Algorithm

Binary encoding is no longer appropriate for the current method, since the elas-
ticity of springs is a real value. Therefore, a vector of real constants is used to
describe the stiffness values, while an interval is defined to limit the range of
possible elasticity values. Furthermore, the mutation operator has to be defined
differently. Instead of swapping bits, we add a random value x to the current
stiffness, where x is limited to an interval I. The value x is normally distributed
with zero mean and standard deviation σ. Since a constant σ will cause the
random steps to be too high, once the population is close to the optimum, we
propose to decrease σ during the optimization process. This can be achieved by
defining the deviation according to σ(g) = pmut(g) ∗ sizeof(I). The interval
size allows σ(g) to take on the largest possible value at the beginning of the
optimization. Finally, population size and crossover probability are again fixed
throughout the evolution.

4.2 MSM as Reference

We performed a comparison between two MSMs with 5x5 points and 72 springs.
The goal of this experiment was to test the capability of the method to recover a
single stiffness value of a reference MSM. Therefore, we adjusted all the springs
of the reference to the same stiffness value of 5. The interval I of the random
mutation value x was assigned to [0.0, 10.0]. For the same reasons described in
Section 3.1, the crossover probability was set to 0.8. Since these tests were done
in 2D, we increased the population size to 10 individuals. Our experiments have
shown, that greater values did not improve the results, but only increased com-
putation time. Also, we again used an adaptive mutation probability function.
The coefficients a = 2 and b = 0 provided the best results. The experiment
was performed with 4000 generations. We were able to recover the complete
topology of the reference model. Furthermore, the mean value of the retrieved
stiffness was equal to 5.01 with a standard deviation of 0.65. Thus, we were able
to simultaneously recover the connections and elasticity values of a reference
MSM.

So far we have trained our learning model based on known MSM configura-
tions. However, we would like to use more accurate references which are capable
of physically modeling the elastic behavior of real tissue based on continuum
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Fig. 3. Column Training Set: Input data and result after training process. Column
Test Set: Comparison between optimized MSM and additional FEM deformations not
used during training for evaluation. Row 1: Test loads used for training MSM and
comparison. Row 2: Linear elastic FEM deformations. Row 3: Optimized MSM with
both topology and stiffness values obtained. Row 4: Comparison between mean error
and smallest rest length of MSM.

mechanics. At the same time it is of primary importance, that the related mate-
rial parameters can be determined systematically based on actual experiments.
This extension will be presented in the next section.

4.3 FEM as Reference

Continuum mechanics based Finite Element Models have been used to accurately
simulate soft tissue deformation, however, their high computational demands re-
main an obstacle for real-time applications. Realistic deformation parameters can
be obtained by measurements on real organs. For instance in [5], in-vivo exper-
iments have been introduced to determine appropriate material parameters of
complex, non-linear constitutive equations. In order to approximate the behav-
ior of these models, our next step focuses on training a learning MSM based on
a reference FEM system. The reference mesh consists of quadrilateral elements,
where the vertices correspond to the mass-points in the MSM model. The defor-
mations are computed according to a linear elastic model with Young’s modulus
E = 1MPa and Poisson coefficient ν = 0.3. For the load cases several training
sets were examined including shearing and stretching deformations. Sets of four,
eight and twelve different load cases were evaluated. The best results were ob-
tained with the latter set. Similar to the previous experiments, the cost function
is based on the distance between the FEM vertices and the MSM mass-points.
Population size and crossover probability remain identical to those described in
the previous section. The coefficients of the mutation probability function were
slightly adapted to a = 5 and b = 0. The first trial indicated, that all spring con-
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Fig. 4. Comparison of stiffness value distribution obtained by three optimization pro-
cesses with the same input parameters.

stants were within the interval [0.0, 10.0], therefore, these limits were retained
for all experiments. We performed the same optimization steps to obtain the
MSM mesh parameters. In order to validate our results, we defined additional
load cases and compared the behavior of the previously learned MSM with the
corresponding FEM deformations. Figure 3 exemplifies the results of both ex-
periments. The column labelled Training Set illustrates the input data as well
as the resulting configuration of the training process. The first row depicts four
of the twelve test loads applied to the FEM. The second row shows the FEM de-
formations and the third row contains the learning MSM with the best stiffness
values after 3000 generations. In the column Test Set, the MSM solution is com-
pared to three elastic linear FEM deformations not included in the training set.
The last row shows an error metric for the deformation differences. The mean
error distance of the FEM and MSM points is set in relation to the smallest
spring rest length of the optimized MSM. As revealed by the error, the stiffness
values of the learning MSM seem to be equally well adjusted for both the train-
ing and test FEM cases. This experiment shows the capability of our method to
finding appropriate stiffness values, allowing us to approximate the deformation
behavior of a linear elastic FEM model.

4.4 Stiffness Value Distribution

After obtaining the spring constants from the FEM reference model, we exam-
ined the distribution of the stiffness values. Figure 4 shows the results of three
trials with the same input data. The plots show that a linear elastic material
cannot be approximated with one homogeneous stiffness parameter. Instead, the
figures seem to indicate that at least two major classes of stiffness values exist
(represented by the two peaks). One possible assumption is that one has to
differentiate between diagonal and straight springs. In order to investigate this
observation, we performed two additional experiments. The main idea behind
these trials is to limit the spring constants to belong to one or two homogeneous
classes. In other words, in the first experiment, only one global stiffness value
is optimized, while in the second, diagonal and straight springs were optimized
as two individual classes. The results of these experiments are summarized in
Table 1. It can be observed that the best results are still achieved with our previ-
ously performed unlimited optimization experiments with a cost function value
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Table 1. Comparison of limited optimizations for stiffness value estimation according
to classes.

Limitation Final cost function Stiffness values
Single, homogeneous stiffness 0.85 All springs 4.07

Two stiffness classes 0.73 Diagonal springs 3.35,
straight springs 4.76

Unrestricted stiffness values 0.58 Spring stiffnesses in interval
[0.0, 10.0]. Main classes of stiffness

values in [3.0, 4.0] and [6.0, 8.0]

of 0.58. Assigning only one homogeneous stiffness parameter to all springs gives
the worst results. This is also in line with the findings described in [3]. Defining
two classes of springs with differing constant values slightly improves the results,
however, optimal performance cannot be achieved. Furthermore, both retrieved
spring constants of the two-classes belong to the same cluster described by the
first peak of the distribution graph. This seems to indicate, that such simple
rules based on connection topology might not be sufficient to explain the ob-
served pattern. Besides, due to the small size of the meshes, it is not clear how
far boundary effect may explain the observed results. Therefore, larger meshes
will be investigated to further analyze the non-homogeneous stiffness distribu-
tion.

5 Conclusion and Future Work

We have introduced an extension of our previous work based on genetic algo-
rithms to identify the topology of 3D MSMs. Moreover, a successful simultaneous
topology and spring constant identification approach has been described. Our
method was able to recover topology and stiffness values of reference MSMs.
Moreover, we were able to approximate the behavior of FEM deformations with
an optimized MSM mesh. Finally we could show, that homogenous stiffness pa-
rameters are not appropriate for simulating linear elastic material.

In future work, we will further evaluate adaptive mutation functions in order
to improve the convergence behaviour of the genetic algorithm. We will examine
the stiffness value distribution more closely and try to find underlying patterns.
Finally, neighborhood selection and the approximation of more complex FEM
models will be investigated.
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