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Abstract

Measurement of spin precession is central to extreme sensing in physics,1,2 geophysics,3 

chemistry,4 nanotechnology5 and neuroscience,6 and underlies powerful magnetic resonance 

spectroscopies.7 Because there is no spin-angle operator, any measurement of spin precession is 

necessarily indirect, e.g., inferred from spin projectors Fα at different times. Such projectors do 

not commute, and thus quantum measurement back-action (QMBA) necessarily enters the spin 

measurement record, introducing errors and limiting sensitivity. Here we show how to reduce this 

disturbance below  the classical limit for N spins, by directing the QMBA almost 

entirely into an unmeasured spin component. This generates a planar squeezed state8 which, 

because spins obey non-Heisenberg uncertainty relations,9,10 allows simultaneous precise 

knowledge of spin angle and amplitude. We use high-dynamic-range optical quantum non-

demolition measurements11–13 applied to a precessing magnetic spin ensemble, to demonstrate 

spin tracking with steady-state angular sensitivity 2.9 dB beyond the standard quantum limit, 

simultaneous with amplitude sensitivity 7.0 dB beyond Poisson statistics.14 This method for the 

first time surpasses classical limits in non-commuting observables, and enables orders-of-

magnitude sensitivity boosts for state-of-the-art sensing15–18 and spectroscopy.19,20

Spin-based magnetometers monitor precession of the collective spin F of a magnetically-

sensitive atomic ensemble,1,3,21 while atomic clocks2 and other atomic sensors22 use 

pseudo-spin systems with equivalent quantum descriptions: all are described by the SU(2) 

Lie algebra. Many optical interferometers are also SU(2) systems.23 These SU(2) systems 

obey different uncertainty relations than do position/momentum or harmonic oscillator 

systems, with dramatic consequences for their quantum sensitivity limits. The classical 
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quantity to be measured manifests as precession rate dψ/dt about a known axis, which we 

take to be x. This signal is not directly observable, because there is no quantum mechanical 

operator for spin angle ψ. Rather, it must be estimated, e.g. from Fz = |Fρ| cos ψ, where |Fρ| 

is the spin amplitude in the y–z plane, itself an observable to be measured. While some 

theoretical models assume Fρ to be precisely known a priori, this assumption cannot be 

applied to most systems of interest – relaxation necessarily adds noise not knowable a priori.

24 We thus require a multi-component measurement: of amplitude and angle, or equivalently 

Fy and Fz, in both cases requiring tracking of non-commuting observables.

Similarly, magnetic resonance techniques20 employ simultaneous amplitude and angle 

tracking to correlate spin relaxation rate, which indicates the physical environment,19 with 

precession frequency, which indicates the chemical shift or, in imaging, the spin location.7 

In these applications, joint angle-amplitude dynamics contain the important signal.

For simple harmonic oscillator systems, it is well known that QMBA couples angle and 

amplitude, or equivalently the quadratures X and P, as required to preserve the Heisenberg 

uncertainty relation δXδP ≥ 1/2 (we take ħ = 1 throughout). This limits angle tracking to the 

standard quantum limit25 (SQL), with uncertainty δψ = N−1/2, where here N is the mean 

number of excitations. In contrast, uncertainty principles do not prevent tracking spin 

systems beyond the SQL. As the spin components Fy and Fz precess about the x axis, they 

are governed by the Robertson (not Heisenberg) uncertainty relation9

(1)

In normal sensor operation, 〈Fx〉 is set to zero, to allow large polarization in the Fy−Fz plane. 

Because it is a constant of the motion, 〈Fx〉 remains zero for all time, and Eq. (1) places no 

limit on how precisely Fy and Fz can be simultaneously known or tracked. Arithmetic 

uncertainty relations10 then set the relevant limit, var(Fy) + var(Fz) ~ N2/3, far below var(Fz) 

~ N, the SQL. Because N is typically ~ 106 in cold atom systems and ~ 1012 in atomic 

vapors, this N1/3 advantage extends the quantum limits by orders of magnitude. Spin states 

with two sub-classical spin uncertainties have been studied theoretically as planar squeezed 

states.8

Our discussion thus far indicates only the absence of uncertainty-principle barriers to 

precision spin tracking. We now outline a proof, given in Methods, that continuous quantum 

non-demolition (QND) measurement achieves this goal. The state evolution is illustrated in 

Fig. 1 a) and summarized here: Fz is coupled to an optical “meter” variable Sz via the QND 

interaction Heff = gFzSz, where g is a coupling constant. The interaction with NL photons 

imprints a signal proportional to Fz on the meter, which when measured reduces var(Fz) by 

an amount Δm ~ g2NLvar2(Fz). This same interaction rotates F about Fz by a random angle θ 
≡ gSz , which increases var(Fy) by Δd ~ g2NLvar(Fx), much smaller than Δm, given that 

var(Fz) ≫ 1. Combining these effects, there is a net reduction of var(Fz) + var(Fy), the total 

variance in the plane of precession. Precessing and under continuous measurement, Fz and 

Fy alternate roles as the measured and disturbed variable, and each experiences a net 
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uncertainty reduction. When NL reaches 1/(g2N), the measurement benefit Δm ~ N is of 

order the initial variance, while the in-plane back-action Δd ~ 1 is still negligible. Probing 

with this NL also induces a negligible loss of coherence, so that the sensitivity to both 

angular and radial perturbations improves beyond classical limits. It is important to note that 

the QMBA is not eliminated in this method, rather it is directed almost entirely to the Fx 

variable, which is never measured and acts as a depository for quantum uncertainty. A 

similar approach has been proposed for harmonic oscillators using auxiliary negative-mass 

oscillators to create uncertainty depositories.26,27

Realizing this in-principle advantage requires control of measurement dynamics28 and 

incoherent effects,29 as well as low-noise non-destructive detection with high dynamic 

range.30 We use an ensemble of N = 1.9 × 106 cold 87Rb atoms held in an optical dipole 

trap. The atoms are initially prepared in the Fy-polarized state by optical pumping and, due 

to an applied B-field in the x direction, precess coherently in the Fy−Fz plane with Larmor 

period TL ≈ 38 µs. The “meter” variable is the polarisation of ~ 1 µs, off-resonance optical 

pulses, which experience Faraday rotation by an angle φ = gFz on the Poincare sphere as 

they propagate through the atomic cloud. We probe the atoms with V-polarized optical 

pulses, interspersed with Hpolarized compensation pulses to dynamically decouple the spin 

alignment,12,13 i.e., to produce the effective hamiltonian Heff = gFzSz without tensor light 

shifts. Earlier experiments have demonstrated sub-projection noise Faraday rotation 

measurements of either angular13 or amplitude14 variables. To measure both, we use high 

dynamic-range, shot-noise-limited optoelectronics30 and nonlinear signal reconstruction to 

achieve sub-projection-noise readout sensitivity for rotation up to φ ≈ 100 mrad. See 

Methods.

A representative sequence of measured Faraday rotation angles φ(tk) for QND measurements 

spread over 1 ms is shown in Fig. 1 b), and is well described by a free induction decay 

model that we use to estimate Fz and Fy at a time te

(2)

where tr ≡ t − te. The coupling constant g is found by an independent calibration, while the 

Larmor frequency ωL, the coherence time T2, and the offset φ0 are found by fitting to the 

measured φ(tk) over the the range te − Δt ≤ tk ≤ te + Δt, where Δt = 270 µs (see Methods).

With these parameters fixed, we then use Eq. (2) to obtain a predictive estimate 

 at time te using the measurements {φ(tk)}te−Δt≤tk<te from an interval Δt 

immediately before te; and to obtain a confirming estimate  using 

{φ(tk)}te<tk≤te+Δt from the interval Δt after te. Because the classical parameters g, ωL, T2 and 

φ0, are fixed beforehand, these are two linear, least-squares estimates of the vector F 
obtained from disjoint data sets. Estimating F for several values of te gives a predictive 

trajectory and a confirming one. We gather statistics over 453 repetitions of the experiment. 

Empirically, we find Δt = 270 µs minimizes the total conditional variance Tr(ΓF2|F1) (see 
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Methods), reflecting a trade-off of photon shot noise versus scattering-induced decoherence 

and magnetic-field technical noise.

Fig. 2 a) shows the resulting mean predictive trajectory 〈F1〉, which spirals slowly toward 

the origin due to residual magnetic field gradient, and the discrepancy between the 

trajectories, F2−F1. The scatter of this discrepancy rapidly decreases with increasing te , as 

more probe pulses become available for estimating F1, and reaches a steady state after about 

250 µs of probing, at which point the number of pulses used for estimation is limited by Δt. 

With the optimum Δt = 270 µs, Np = 90 and the total number of photons used to estimate F 
is NL = Np . nL = 2.47 × 108.

To quantify the measurement uncertainty, we compute the vector conditional covariance 

 where Γv matrix for vector v, and Γuv indicates the cross-

covariance matrix for u and v. Defining the polar coordinate system (Fy, Fz) = ρ(−sin ψ, cos 

ψ), we identify the radial and azimuthal variances, var(Fρ) ≡ ρT̂ΓF2|F1ρ ̂and var(Fψ) ≡ 
ψT̂ΓF2|F1ψ,̂ respectively, where ρ ̂≡ (−sin ψ, cos ψ)T and ψ̂ ≡ (− cos ψ, − sin ψ)T are radial 

and azimuthal unit vectors.

As shown in Fig. 2 c), var(Fψ) drops below the SQL of 〈Fρ〉/2 after ≈ 150 µs of probing, and 

remains below it to the limit of the experiment. No read out noise has been subtracted. 

Considering the steady-state region te ≥ 270 µs, var(Fψ) is on average 2.9 dB below the 

SQL, and var(Fρ) is on average 7.0 dB below the Poissonian variance N, to give a precision 

surpassing classical limits in both dynamical variables. For any given value of te, var(Fρ) and 

var(Fψ) have standard errors of ≈ 0.3 dB, implying high statistical significance even without 

combining results for different te.

We have shown how quantum measurement back-action can be almost completely evaded in 

spin-based sensors and spectroscopies, allowing simultaneous tracking of spin angle and 

amplitude beyond classical limits, using the physics of planar squeezed states.8 Our method 

is very close to practical application in the highest-performance atomic sensors: Tracking of 

atomic spin precession by non-destructive optical measurement is already used in the 

highest-sensitivity magnetic field measurements1 and is also being developed for optical 

lattice clocks.15 The method is compatible with multi-pass17 and cavity build-up methods,

18 that greatly reduce incoherent scattering, the limiting factor in our experiment. Together, 

these advances promise orders-of-magnitude sensitivity improvement in extreme sensing, in 

applications ranging from studies of macromolecular dynamics4 and geophysics,3 to non-

invasive measurements of single-neurons6 and brain dynamics.16

Methods

A Faraday rotation probing of atomic spins

The effective atom-light interaction is given by the hamiltonian

(3)
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which describes a quantum non-demolition measurement of the collective atomic spin Fz, 

where the operators  (with α = x, y, z) describe the collective atomic spin, 

with  the spin orientation of individual atom spins. The optical polarization of the probe 

pulses is described by the Stokes operators  with Pauli matrices 

σk. The coupling constant g depends on the detuning from the resonance, the atomic 

structure and the geometry of the atomic ensemble and probe beam and is independently 

measured.31–34,50

An input Sx-polarized optical pulse interacting with the atoms experiences a rotation by an 

angle φ = gFz because of the interaction given by eq. (3). The transformation produced by 

the measurement on Sy is

(4)

In our experiment we measure Sx at the input by picking off a fraction of the optical pulse 

and sending it to a reference detector, and  using a fast home-built balanced polarimeter.35 

Both signals are recorded on a digital oscilloscope.

From the record of Sx and  , we calculate φ̂, the estimator for φ:

(5)

We note that due to shot noise Sy/Sx is normally distributed with zero mean and variance 

1/(2Sx) ~ 5×10−7. The term containing tan φ thus describes a distortion of the signal at the ~ 

10−6 level, which is negligible in the experiment.

B Quantum limits for spin variances

Different classical limits provide benchmarks for the radial and azimuthal components of a 

spin precessing in the Fy−Fz plane. In general, these benchmarks describe the minimal noise 

of quantum states describing uncorrelated particles. For our system of N spin-1 atoms, the 

lowest noise uncorrelated state is the coherent spin state defined as a pure product state in 

which each atom is fully polarized in the same direction. If this direction is ŷ cos θ − ẑ sin 

θ, then the azimuthal component Fθ = − Fy sin θ + Fz cos θ has variance

(6)
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Any state that surpasses this limit implies entanglement among the atoms, and/or 

entanglement of the internal components of the individual atoms.36,37

For the radial component Fρ = Fy cos θ + Fz sin θ, the classical limit comes from the fact 

that accumulation of independent atoms into the ensemble is limited by Poisson statistics, 

var(N) = 〈N〉, so that for F = 1,

(7)

Noise below this level can be produced by a strong interaction among the atoms during 

accumulation,38–41 or as here by precise non-destructive measurement.34,42–47

C Operator-level description of back-action evading measurement of two non-commuting 

spin observables

We consider a spin variable F, defined by commutation relations [Fx, Fy] = iFz and cyclic 

permutations, precessing about the Fx axis and subjected to brief, non-destructive 

measurements of the Fz variable. We assume the precession during the measurement is 

negligible. In the measurement, the spin is coupled to the polarization of a probe pulse, 

described by the Stokes operators S with [Sx, Sy] = iSz and cyclic permutations. The probe 

initial state is a coherent state polarized along Sx, so that 

. The system and meter 

are coupled by the quantum nondemolition hamiltonian

(8)

which acts for unit time. The transformation produced is

(9)

(10)

(11)

(12)
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(13)

(14)

Where primes indicate the output variables.

We assume a spin state in the Fy-Fz plane, i.e. with 〈Fx〉 = 0, and with zero initial cross-

correlation, i.e. cov(Fx , Fy) = cov(Fx , Fz) = 0. Due to the zero mean of Sz , which is also 

independent of F, the transformation preserves these statistics in the primed variables, for 

example

(15)

We can compute the statistics of the output variables using

(16)

and similar expansions for 〈cos2 gSz〉 and 〈sin2 gSz〉. The mean of Fy changes due to the 

back-action as

(17)

while the means of Fx and Fz are unchanged.

The variance of Fx is coupled to the variance of Fy , due to the rotation about Fz by a random 

angle gSz :

(18)
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and similarly

(19)

after noting that, to order g3, 〈cos2 gSz〉 = 〈cos gSz〉2.

After the coupling, a projective measurement of  provides information about Fz , with 

readout variance

(20)

The approximation comes from a linearization of Eq. (10), which as discussed in Sec. A 

introduces an error at the 10−6 level, negligible in this scenario.

The resulting Fz variance, including both the prior and posterior information, is then48,49

(21)

expanding in g this becomes

(22)

Collecting Eqs. (18), (19) and (22), defining 

 and dropping terms of 

order O(g)4 we find

(23)

(24)
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(25)

(26)

Considering an initial coherent spin state and choosing |〈Sx〉| = g−2N−1, where N is the 

number of spins, we note that Δvar(Fz) ~ N, implying a reduction in the uncertainty of Fz 

comparable to its initial uncertainty. Due to the  term, the increase in var(Fx) is ~ N, 

comparable to its initial value. The other changes are ~ 1, negligible relative to the initial 

values. In this way we see that uncertainty is moved from Fz to Fx with negligible effect on 

Fy.

Larmor precession then noiselessly rotates uncertainty from Fy into Fz , uncertainty that is 

moved into Fx by the next measurement. This procedure reduces the uncertainty of both Fy 

and Fz with negligible in uence from measurement back-action.

D Implementation in an atomic ensemble

1 Experimental set up—The experimental set up is described in detail in references .

31,50 The trap consists of a single beam laser at 1064 nm with 6.3 W of optical power, 

focused to a beam waist of 26 µm using an 80 mm lens. The trap is loaded with laser-cooled 

atoms from a magneto optical trap (MOT). After sub-doppler cooling in the final stage of the 

loading sequence, the trapped atoms have a temperature ~ 12 µK. The resulting atomic 

ensemble has an approximately Lorentzian distribution along the trap axis (which we label 

the z-axis) with a FWHM of w = 4 mm, and a gaussian distribution in the radial direction 

with of ω = 33 ± 3µm.

2 State preparation—The initial atomic state is prepared via optical pumping with 

circularly polarized light resonant with the F = 1 → F′ = 1 transition propagating along the 

y-axis. During the optical pumping stage the atoms are also illuminated with repumping 

light resonant with the F = 2 → F = 2′ transition using the six MOT beams, preventing 

accumulation of atoms in the F = 2 hyperfine level, and a small magnetic field is applied 

along the x-axis, with Bx = 37.6 mG, to coherently rotate the atomic spins in the y–z plane. 

We use a stroboscopic pumping strategy, chopping the optical pumping light into a series of 

τpump = 1.5 µs duration pulses applied synchronously with the precessing atoms for total of 

200 µs, to prepare the atoms in an Fy-polarized state with high efficiency (~ 98%), resulting 

in a input polarized atomic ensemble with 〈Fy〉 ≃ N (see Extended Data Fig. 1). The pulse 

duration τpump ≪ TL is chosen to optimize the optical pumping efficiency.

3 Probing—We probe the atoms via off-resonant paramagnetic Faraday-rotation using τ 
= 0.6 µs duration pulses of linearly polarized light with a detuning of 700 MHz to the red of 

the 87Rb D2 line. The probe pulses are V-polarized, with on average NL = 2.74 × 106 
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photons, and sent through the atomic cloud at 3 µs intervals. Between the probe pulses, we 

send H-polarized compensation pulses with on average  photons through 

the atomic cloud. As described in detail in references,48,51,52 the compensation pulses 

serve to cancel effects due to the tensor light shift, but do not otherwise contribute to the 

measurement. During the probing sequence, a magnetic field along the x direction drives a 

coherent rotation of the atoms in the y − z plane with TL = 38 µs period. This ensures that 

the time taken to complete a single-pulse measurement is small compared to the Larmor 

precession period, i.e. τ ≪ TL.

We correct for slow drifts in the polarimeter signal by subtracting a baseline 

 from each pulse, estimated by repeating the measurement without atoms 

in the trap.

4 Statistics of probing inhomogeneously-coupled atoms—We consider the 

statistics of Faraday rotation measurements on an ensemble of N atoms, described by 

individual spin operators fi. To define the SQL, we consider an ensemble in a coherent spin 

state, with the individual spins are independent and fully polarized in the Fy–Fz plane. We 

take N to be Poisson-distributed. When the spatial structure of the probe beam is taken into 

account, the Faraday rotation is described by the input-output relation for the Stokes 

component Sy

(27)

where g(xi) is the coupling strength for the ith atom, proportional to the intensity at the 

location xi of the atom.  is has zero mean and variance . We consider first the 

case in which the spin is orthogonal to the measured Fz direction, i.e. a measurement of the 

azimuthal component. Here the uncertainty in g(xi) and in N make a negligible contribution, 

and the rotation angle  has the statistics

(28)

(29)

where φ0 is the polarization angle of the input light, subject to shot-noise fluctuations and 

assumed independent of Fz , and the angle brackets indicate an average over the number and 

positions of the atoms.
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Next we consider the case in which the spin is along the measured Fz direction, i.e., a 

measurement of the radial component. In this case, the uncertainty in fz is zero, and the 

variation in g and in N determines the measured variation

(30)

(31)

We note that v2 includes the variation of both the atom number and the coupling strength, 

and as such is lower-bounded by the Poisson statistics of N: v2 ≥ 〈g2(x)〉 = µ2.

For known 〈fz〉 and var(fz), measurements of 〈φ〉 and var(φ) versus N give the calibration 

factors µ1 and µ2 as described in Sections D5 and D6, respectively. To preserve the SQL 

 and similar, in the analysis leading to Fig. 2 we infer mean values as

(32)

and covariances, including cov(A, A) = var(A), as

(33)

where F(a,b) and φ(a,b) are corresponding spin and angle variables. We note that because the 

contribution of var(φ0) is not subtracted, this overestimates the spin variances.

5 Measurement of calibration factor µ1—We calibrate the measured rotation angle φ 
with a dispersive atom number measurements using absorption imaging, as shown in 

Extended Data Fig. 2. For the absorption imaging, atoms are transferred into the f = 2 

hyperfine ground state by a 100 µs pulse of laser light tuned to the 5S1/2(f = 1) → 5P3/2(f′ = 

2) transition. The dipole trap is switched off to avoid spatially dependent light shifts. An 

image is taken with a 100 µs pulse of circularly polarized light resonant to the 5S1/2(f = 2) 

→ 5P3/2(f′ = 3) transition. We calculate the resonant interaction cross-section and take into 

account the finite observable optical depth. The statistical error in the absorption imaging is 

< 3%, including imaging noise and shot-to-shot trap loading variation.

6 Measurement of calibration factor µ2—To measure µ2 we prepare a Fy-polarized 

state by optical pumping, and then probe stroboscopically with Np = 36 pulses of NL = 3.15 

× 107 photons each in the presence of a B-field of ≈ 71.5 mG along y , producing a Larmor 
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precession of an angle π during the 10 µs pulse repetition period. In this way, the measured 

variable is always ±Fz , evading back-action effects.

If φn is the measured Faraday rotation angle for pulse n, and  is the corresponding input 

angle, we can define the pulse-train-averaged rotation signal as

(34)

with variance

(35)

where  with zero mean and variance var(φ0) = (NpNL)−1, and Fz,n is the 

value of Fz at the time of the nth probe pulse.

During the measurement, off-resonant scattering of probe photons produces both a reduction 

in the number of probed atoms and introduces noise into F. We note that this is a single-

atom process that preserves the independence of the atomic spins. We compute the resulting 

evolution of the state using the covariance matrix methods reported in,48 and specifically 

described for this case in Section D7, giving

(36)

where 1/2 = var(fz) is the variance of the initial state, α = 0.86 describes the net noise 

reduction due to scattering.

Including the readout noise var(φ0) and a generic technical noise a2N2 in the preparation of 

the coherent spin state, we have the observable variance

(37)

in which the N scaling distinguishes the atomic quantum noise from other contributions. 

Experimental result shown in Extended Data Fig. 3 give µ2 = (1.5 ± 0.2) × 10−14.

7 Calculation of the noise contribution α—As reported in Colangelo et al.48 the 

full system is described by a state vector  and covariance 
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matrix Γ = 〈V ∧ V + (V ∧ V)T〉/2 − 〈V〉 ∧ 〈V〉, where  is the measured photon imbalance 

after the n-th pulse. The QND interaction leads to a transformation of the covariance matrix

(38)

where M is equal to the identity matrix apart from the elements M1,1 = −1 due to the 

precession by an angle π about the magnetic field, and Mn+1,1 = gSx, where Sx = NL/2 and 

NL is the number of photons per pulse and g is the coupling constant for uniform coupling.

Off-resonant scattering of photons introduces decoherence, noise and loss in the atomic 

state. During the spin-noise measurement, a fraction ξ = 1 − exp(−ηNL) = 0.01 of atoms 

scatter a photon during a single probe pulse, where η = 3 × 10−10 is the scattering rate per 

photon measured in an independent experiment, while a fraction χ = 1 − ξ remain in the 

coherent spin state. The scattered atoms are either lost from the F = 1 manifold, or return to 

F = 1 with probability p = 0.7 and random polarization. This has the effect of losing atomic 

polarization at each measurement. We calculate the effective measured polarization in terms 

of the initial atom number. We assume that the fraction p of scattered atoms the return to F = 

1 have a random polarization and that the scattering rate η is independent of the atomic state.

After each pulse, the atomic part of the covariance matrix transforms according to

(39)

where  is the identity matrix. This follows from Eq.(A.6) of48 assuming Γ∧ = NΓλ. We note 

that we have

(40)

which, assuming that N(0) = N, gives

(41)

Including these terms, we get a linear transformation of the covariance matrix after the n-th 

pulse

(42)

where D is a zero matrix apart from the element  and N(n) is the identity matrix 

apart from the element 
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We sum N individual polarimeter signals  to find the net Stokes operator 

 This has a variance

(43)

with the projector P = diag(0, 1, −1, 1, −1, … , −1). When evaluated analytically using χ = 

0.99, this gives

(44)

where β ≈ 0.1081. Noting that , where  is the total 

input Stokes operator, dividing Eq. (44) by  and comparing against Eq. (37), we 

find that α = 8β ≈ 0.86.

E Data analysis

1 Fitting procedure—As described in the main text, we follow a two-step fit procedure 

in our data analysis: we first fit Eq. 2 to the joint data set {φ(tk)} of the first and second 

measurements, to estimate the classical parameters g, ωL, T2 and φ0 near the measurement 

time te; then second, with the classical parameters fixed, we obtain a predictive estimate F1 

using measurements {φ(tk)}te−Δt≤tk<te from the interval Δt immediately before te; and a 

confirming estimate F2 using {φ(tk)}te<tk≤te+Δt from the interval Δt after te.

2 Measurement phase—We note that, as shown in Fig. 2, the observed squeezing is 

independent of the choice of te provided that sufficient measurements are available in the 

interval Δt prior to te, indicating that the observed squeezing is not dependent on the choice 

of a particular phase of the spin oscillation.

3 Fit gain—Since the classical parameters g, ωL, T2 and φ0 are fixed beforehand, the 

predictive and confirming fits to estimate Fy and Fz are linear, least-squares fits to disjoint 

data sets. We note that our condition for (conditional) spin squeezing is whether the 

conditional variance Tr(ΓF2|F1) is below classical limits - i.e., whether the estimate F1 can be 

used to precisely predict the estimate F2. This definition of squeezing is quite robust as 

regards the choice of estimators for Fy and Fz: they only need to have the right gain, i.e., the 

slope of the curve relating the mean estimate to the true value. The error propagation 

formula can then be used to find the variance of the true values in terms of the variance of 

the estimators.

We check that the least-squares fits give the correct gain by comparing the estimated F1,2 

with the results of two independent fits using all free parameters in Eq. (2). Results, shown 
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in Extended Data Fig. 4, show the gains are equal to within a ~ 10−3 fractional error, 

implying a similarly small ~ 10−3 fractional error in the inferred variances and conditional 

variances, with negligible effect on the squeezing results.

4 Weights—For the first fit to estimate the classical parameters, our data are weighted 

using an empirical function based on two observations: 1) the polarimeter signal shows 

increased technical noise in the optical variable at larger imbalance, i.e. when measuring a 

large instantaneous spin-projection along the z-axis; and 2) points closer in time to te should 

be given greater weight (minimizing errors introduced by small changes in ωL and T2 during 

the measurement). This motivates using the weight function

(45)

where  and h(φk) = 1 + r |φk|. This ensures that we 

accurately estimated the classical parameters g, ωL, T2 and φ0 at the measurement time te.

We numerically optimize W(φ(tk)) varying the parameters A, w and r and minimizing the 

resulting Tr(ΓF2|F1) from the predictive and confirming fits. We find an optimum with the 

parameters A = 15, w = 11 and r = 6, and note that the fit procedure gives similar results 

with variations of up to 30% in each of these parameters.

For the predictive and confirming fits, which are linear in Fy and Fz, all the points are 

weighted equally.

5 Optimal measurement length—The optimal measurement length Δt results from a 

trade off between the photon shot noise, the decoherences induced by the probing and the 

technical noise induced by the magnetic field. Longer measurements reduces the photon shot 

noise, while increasing the atomic decoherences and making the model eq. (2) less accurate. 

We empirically find the optimal Δt by minimizing the total variance Tr(ΓF2|F1) for 

measurements with different length, as shown in Extended Data Fig. 5.

6 Conditional Covariance—Estimating F for several values of te gives a predictive 

trajectory and a confirming one. Estimations are repeated on 453 repetitions of the 

experiment to gather statistics. Assuming gaussian statistics, to quantify the measurement 

uncertainty, we compute the conditional covariance matrix

(46)

which quantifies the error in the best linear prediction of F2 based on F1.53 Here Γv 

indicates the covariance matrix for vector v, and Γuv indicates the cross-covariance matrix 

for vectors u and v. The difference between the best linear prediction of F using F1 and the 
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confirming estimate F2 is visualized using the vector 

where  Standard errors in the estimated conditional covariance matrix are 

calculated from the statistics of {ℱ}.54

Data Availability

The datasets generated and analysed during the current study are available from the 

corresponding author on reasonable request. The data shown in Fig. 2 and all the data used 

to generate plots of Extended Data are included as Source Data.

Extended Data

Extended Data Fig. 1. 
Optical pumping efficiency. We prepare an input atomic state with 〈Fy〉 ≃ N via stroboscopic 

optical pumping in the presence of a small magnetic field along the x-axis. Data is fit with 

an exponential growing curve ∼ a(1 − e−t/τ) (solid line) and we obtain a = 0.979 ± 0.004 and 

τ = 0.26 ± 0.02. Orange dashed line: Optical pumping efficiency of 98%. ±1 s.e.m. error 

bars are smaller than the points for most of the data.
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Extended Data Fig. 2. 
Calibration of average Faraday rotation signal. We calibrate the rotation angle φ against 

input atom number N, measured via absorption imaging. Solid line, the fit curve φ = a0 + 

µ1N, with we obtain µ1 = (7.07 ± 0.04) × 10−8 and a0 = (3.9 ± 0.3) × 10−3. Error bars 

indicate ±1 s.e.m.
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Extended Data Fig. 3. 
Calibration of quantum noise limited Faraday rotation probing of atomic spins. We plot the 

measured variance var(φ) as a function of the number of atoms N in an input coherent spins 

state with 〈F〉 = {0, N, 0}. Solid curve: a fit using the polynomial var(φ) = a0 + a1N + a2N2. 

The linear term a1 = αµ2N/2 corresponds to the atomic quantum noise from atoms in the 

input coherent spin state. We estimate a0 = (11.7 ± 0.7) × 10−10, a1 = (6.5 ± 0.8) × 10−15, 

and a2 = (2.8 ± 12) × 10−22, consistent with negligible technical noise in the atomic state 

preparation. Dashed line: var(φ) = a0 + a1N. Error bars indicate ±1 standard error in the 

variance for 206 repetitions.
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Extended Data Fig. 4. 
Fit gain. We compare the estimated Fz and Fy from a fit using Eq. (2); first, with the classical 

parameters g, ωL, T2 and φ0, fixed (labeled ) for measurements 1 and 2; and second, 

free to vary as independent parameters (labeled ). In blue (green) Fz (Fy) of the first 

measurement, in red (orange) Fz (Fy) of the second measurement. A linear fit γx + δ to 

points of plots a-d gives γa = 0.9981(8), γb = 1.0026(8), γc = 0.9923(4), γd = 1.0007(5) and 

δa = 0.003(1), δb = 0.0001(9), δc = 0.0004(3), δd = −0.0023(3), where the subscripts refer to 

the values shown in plots a-d. A grey line y = x is plotted on both the figures.
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Extended Data Fig. 5. 
Tracking precision as function of Δt. An optimum is found at Δt = 270 µs. Error bars 

indicate ±1 standard error in the variance for 453 repetitions.
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Fig. 1. Simultaneous, precise tracking of spin angle and amplitude.
a) Bloch-sphere representation of the atomic state evolution. Ellipsoids show uncertainty 

volumes (not to scale) as the state evolves anti-clockwise from an initial, Fy-polarized state 

with isotropic uncertainty. An x-oriented magnetic field B drives a coherent spin precession 

in the Fy–Fz plane. Quasi-continuous measurement of Fz produces a reduction in Fz and Fy 

variances, with a corresponding increase in var(Fx). b) Observed Faraday rotation angle φ ∝ 
Fz versus time. Each circle shows the rotation angle from one V-polarized pulse. A magnetic 

field of 37.6 mG produces the observed oscillation, while dephasing due to residual 

magnetic gradients and off-resonant scattering of probe photons cause the decay of 

coherence. Blue circles show a single, representative trace, overlaid on 453 repetitions of the 

experiment shown as orange dots. The time zero corresponds to the first probe pulse; the end 

of optical pumping is 58 µs earlier. c) Experimental geometry: 1.9 × 106 cold 87Rb atoms are 

confined in a weakly-focused single beam optical dipole trap (ODT). Transverse optical 

pumping is used to produce Fy polarisation. On-axis, 0.6 µs pulses with mean photon 

number 2.74 × 106 experience Faraday rotation by an angle φ ∝ Fz. A polarimeter consisting 

of waveplates, a polarising beamsplitter, high-quantum-efficiency photodiodes, and charge-

sensitive amplifiers measures the output Stokes component Sy. A reference detector before 

the atoms measures input Stokes component S0 = |Sx|. The rotation angle is computed as φ = 

arcsin(Sy/Sx).
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Fig. 2. Experimental results.
a) Measured trajectories in the Fy–Fz phase space at different estimation times te. For each of 

the 453 traces shown in Fig. 1 b), the function of Eq. (2) is fit to the data to find predictive 

and confirming estimates F1, F2, respectively, for (Fy , Fz) at time te. Fits for F1 and F2 use 

disjoint sets of data covering the ranges te − Δt ≤ tk < te and te < tk ≤ te + Δt, respectively. A 

single fit is a tightly-wound spiral shown as a thin blue line and the thick arrow shows the 

trajectory from t = 0 to t = te = 30 µs. For clarity, we show results for te values spaced by 40 

µs, slightly more than one Larmor period. Each point shows 〈F1〉 + 100ℱ, where 〈F1〉 is the 

mean over the 453 repetitions, and  is the error of the best linear 

prediction (see SI). The factor 100 provides magnification for visualization purposes. 

Orange ellipses, with radial and azimuthal radii of 2σ, where , show the 

relevant classical limits: Poisson (radial, CL = N) and SQL (azimuthal, CL = 〈Fρ〉/2). b) Fits 

to estimate (Fy, Fz) for te = 400 µs and a measurement time Δt = 270 µs. Blue (red) shows 

fits based on prior (posterior) data. Shaded regions show fit residuals ×10. c) Evolution of 

tracking precision for different te. Blue circles and green squares show radial and azimuthal 

components of ΓF2|F1. Error bars show the ±1 standard error in the variance for 453 

repetitions. Dashed blue and solid green curves show Poisson and SQL variances. These 

decrease during probing due to loss of coherence and loss of atoms. No readout noise has 

been subtracted.
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