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Abstract

We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells
infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected
epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and
24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian
diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and
trachoma (infectious blindness). Disease arises by adverse host inflammatory reactions that induce tissue damage &
scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable
as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation,
making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional
response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro
model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune
dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring
through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between
invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell
interaction.
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Introduction

Bacterial pathogens subvert host eukaryotic cellular pathways

for survival and replication; in turn, infected host cells respond to

the invading pathogen through cascading changes in gene

expression. Deciphering these complex temporal and spatial

dynamics to identify novel bacterial virulence factors or host

response pathways is crucial for improved diagnostics and

therapeutics. Microarrays have been the predominant methodol-

ogy for determining gene expression profiles [1], revealing a

diversity of bacterial pathogenic mechanisms [2] and commonal-

ities of the complex global host response to infection [3]. However,

microarrays are inadequate for profiling both prokaryotic and

eukaryotic RNA from infected cells, as they are limited to what

can be printed and detected on the array. Technical limitations

such as high background signals and cross-hybridization also limits

their dynamic range [4]. Consequently, array analyses of host-

pathogen interactions have typically examined either the pathogen

or the host, but usually not both simultaneously.

The few studies that examine both bacterial and host cell

transcriptional responses separate the prokaryotic and eukaryotic

messenger RNA (mRNA) prior to microarray profiling (for

example [5–7]). Sufficient prokaryotic mRNA for hybridization

can be difficult to obtain unless axenic culture or selective

amplification [8] is used or, in the case of intracellular bacteria, in

vitro infections are established with high multiplicities of infection

(MOI). High MOIs may not represent natural infection levels,

distorting expression profiles. The early events following invasion

are often poorly characterized, as the small number of organisms

yields insufficient transcripts for microarray detection. Further-

more, standard microarrays are restricted to existing genome

annotation [1] and cannot detect novel RNA moieties that are not

printed on the array. Tiling arrays overcome this limitation and

have been successfully applied to bacteria, revealing antisense

RNA expression and other non-coding RNA (ncRNA) transcripts

[9–13]. However, the large size of eukaryotic genomes makes tiling

arrays [14] prohibitively expensive for host gene expression

studies. Tag-based sequencing methods [15] alleviate these
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problems to some extent, allowing individual transcripts to be

digitally counted with a broad dynamic range. Nevertheless, as

these approaches only sample a small region of a transcript, they

cannot capture the full diversity of RNA classes and isoforms.

RNA-Seq, or deep sequencing of cDNA libraries by next-

generation sequencing, circumvents many of the problems

associated with microarray profiling or tag-based sequencing.

RNA-Seq can comprehensively and systematically define the

transcriptome of an organism with minimal bias [1,16–18], across

different experimental conditions or cell types [17,18] without

probe design or cross-hybridization problems. RNA-Seq data are

consistent with microarray results [19–24] but are more sensitive,

with essentially an infinite dynamic range. RNA-Seq is annotation-

independent [18], allowing novel transcript discovery without

being reliant on array design or preexisting annotation. Unlike tag

sequencing, RNA-Seq can distinguish different mRNA isoforms

and ncRNA, and can identify splice junctions and transcript

boundaries [25,26].

Despite these advantages, RNA-Seq profiling of both prokary-

otic and eukaryotic gene expression from bacteria-infected cells is

technically challenging. Total RNA extracted from infected cells is

a heterogeneous mixture of many host and bacterial RNA

moieties. Ribosomal RNA (rRNA) is the most abundant,

representing up to 98% of total RNA [27]; however several

RNA classes are now recognized, encompassing diverse sizes with

many functions that remain to be elucidated [28]. Bacterial

mRNA is typically a minor fraction of an infected cell, even under

optimized in vitro conditions, and especially in early infection

periods where bacterial numbers can be low. In contrast to

eukaryotic mRNA, prokaryotic mRNA are often polycistronic and

typically lack a polyadenylated tail, which precludes hybridization

capture, cDNA synthesis or amplification using poly(T) oligomers.

Thus, any analysis strategy that examines the polyadenylated

eukaryotic fraction alone will not recover the full diversity of RNA

in an infected cell, missing bacterial mRNA, bacterial ncRNA and

eukaryotic ncRNA.

Members of the genus Chlamydia are obligate intracellular

bacteria that cause the most common human sexually transmit-

ted bacterial infections and a range of mammalian diseases with

inflammatory etiologies. Infection is frequently asymptomatic and

is an outcome of a complex dialogue between the host and

Chlamydia [29]. In humans, disease sequelae results from long-

term infections or re-infections that induce tissue damage and

scarring [30].

Chlamydia has a unique biphasic developmental cycle that

alternates between distinct forms. The infectious elementary body

(EB) enters the host cell and sequesters within a modified

membrane-bound inclusion where it decondenses into the non-

infectious replicating form, the reticulate body (RB). From within

this unique compartment, chlamydiae exploit the host cell by

hijacking host organelles and metabolites [29]. Following replica-

tion, RBs differentiate back into infectious EBs, which are

dispersed following cell lysis. Interconversion occurs asynchro-

nously; by later infection times, chlamydial inclusions contain a

variety of EBs, RBs and intermediate forms at various develop-

mental stages. A reversible stress-response state, characterized by

morphologically aberrant, non-infectious forms, can be induced in

vitro by addition of stressors such as cytokines, antibiotics or by

nutrient restriction (reviewed by [31]).

Chlamydia remains intractable to classic genetic manipulation,

as replication outside of a mammalian cell is not yet possible and,

despite advances in chlamydial transformation [32–34], routine

genetic manipulation has not yet been achieved. With these

limitations, genomic-scale approaches have been invaluable

(reviewed by [35]). A series of elegant microarray profiling

experiments outlined the chlamydial transcriptional landscape

over the course of in vitro infection [36–38], and in response to

various perturbations [37,39–42]. These analyses show substan-

tial chlamydial gene expression by 6–8 hpi, continuing through

to a maximum by 24 hpi [36,38] when most genes are expressed

[36,38].

The critical early (1 to 3 hpi) and immediate-early (,1 hpi)

periods of C. trachomatis infection have not been comprehensively

characterized by these high throughput approaches, with only one

study examining the 1 hpi period [36]. As only a small number of

infecting organisms are present, the limitations inherent to

microarrays prevent accurate early transcript detection. Belland

et al [36] found twenty-nine C. trachomatis D genes detectably

expressed at 1 hpi in HeLa 229 cells, but only by using an MOI of

100. RNA-Seq on purified EBs and RBs of C. trachomatis [43] and

C. pneumoniae [44] allowed transcriptional start site mapping and

the identification of novel chlamydial ncRNAs at mid- and late

periods in the developmental cycle, but not earlier than 24 hpi.

The host cell transcriptional response to Chlamydia infection has

been studied using a variety of host cell types, patient tissues,

chlamydial strains and times post infection using arrayed subsets of

human genes [45–54]. The varying genes and the different

methodologies and strains used limits their comparative utility.

Generally, up-regulation of host genes involved in cytokine

expression, inflammation, signal transduction and innate immu-

nity, and down-regulation of genes involved in metabolism and

cell cycle regulation was observed. The earliest time of C.

trachomatis infection was 2 hpi [49,54], with few differentially

expressed host genes (,20); the early host response to C. trachomatis

infection was subsequently described as ‘‘quiescent’’ [54]. RNA-

Seq has not been applied to Chlamydia-infected host cells.

In this study, we employed simultaneous depletion of both

Chlamydia and human rRNA by affinity-based counter selection

[55] to enrich prokaryotic and eukaryotic RNA from infected cells.

Deep sequencing of these enriched fractions captured both

chlamydial and human transcriptomes from infected cells at the

immediate-early and mid- periods of in vitro infection, providing

proof-of-principle of the simultaneous RNA-Seq approach. In

addition, this validated data provides novel insights into chlamyd-

ial biology and the host epithelial cell response in vitro.

Results and Discussion

We synchronously infected HEp-2 cell monolayers with C.

trachomatis serovar E EBs (MOI,1). Replicate infections and

mock-infected controls were established. Infections and controls

were harvested at 1 and 24 hours post infection (hpi), encompass-

ing infection, (1 hpi), differentiation and replication (24 hpi). Total

RNA was extracted and split into two fractions. Both were

subjected to simultaneous rRNA depletion; one fraction was

optionally subjected to poly(A) subtraction to further increase the

yield of bacterial mRNA (Figure 1). Depleted fractions were

combined and RNA-Seq libraries constructed. Reads from deep

sequencing were mapped to the human genome (release hg19) and

the C. trachomatis serovar E genome (Figure 1), yielding

,1.1 billion uniquely mapped Illumina HiSeq2000 sequence

reads (Table 1). Reciprocal mapping demonstrated that no reads

mapped to the other genome. Normalized RPKM (reads per

kilobase per million mapped reads) [17] values were determined

(Table S1) and the distribution plotted (Figure 2). To validate

RNA-Seq expression, we examined fifteen immediate-early

Chlamydia genes with a range of RPKMs by quantitative reverse

transcriptase PCR (qRT-PCR). A strong correlation was found

RNA-Seq Profiling of Bacteria-Infected Cells
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between normalized sequence coverage depth and qRT-PCR

transcript abundance at 1 hpi (R2=0.89; Figure S2), demon-

strating that even with low numbers of infecting organisms, RNA-

Seq on the infected cell detects real immediate-early chlamydial

gene expression.

Simultaneous transcriptional profiling by RNA-Seq
The technical potential of performing RNA-Seq on bacterial

pathogens and their host cells simultaneously, as realized here, was

recently assessed in a thought experiment [56]. One million non-

rRNA bacterial reads and 100 million non-rRNA host cell reads

were estimated to be required, although no data was presented in

support [56]. These estimates do not account for different

pathogens, MOI or changes in pathogen numbers over the course

of infection. With the exception of Chlamydia reads at 1 hpi

(Table 1), we exceed these estimates for both Chlamydia and the

host cell. Obtaining as many sequence reads as possible is

obviously desirable, however a limiting number of available

organisms per cell restricts sequence yields at 1 hpi.

In this study, limiting numbers of Chlamydia at 1 hpi arises

primarily because replication has not commenced post-invasion

and also because we use an MOI of 1. Natural chlamydial

infections are likely to occur at a much lower MOI. However using

an MOI of less than 1 in in vitro infections will lead to fewer

infected cells; these uninfected cells will alter the expression profile

obtained, which is a summation of transcripts over the total cells

sampled. To alleviate this summation effect in future, we are

applying our simultaneous RNA-Seq method to single cells

infected with Chlamydia. Using higher MOIs to inflate the

pathogen transcript count will also distort expression profiles and

moves the already simplified in vitro infection model further away

from natural infections. We chose an MOI of 1 to ensure the

maximum numbers of cells were infected while minimizing

pathogen transcript inflation. With these limitations in mind, we

find that applying a stringent cutoff to Chlamydia sequence reads

from synchronized infections yields substantial insight into early

chlamydial transcription.

Chlamydial transcription at 1hpi
We first examined chlamydial gene expression at the immedi-

ate-early infection time (1 hpi). At this point of infection prior to

bacterial replication, we reasoned there would be few chlamydial

transcripts. More sequencing was performed (relative to 24 hpi) to

increase chlamydial transcript recovery. Poly(A) depletion on a

portion of each sample was also employed (Figure 1). As

expected, a low number of Chlamydia-specific transcripts were

found at 1 hpi (total of 131,892 reads), representing a small

percentage of total mapped reads (0.02%; Table 1).

Figure 1. The simultaneous RNA-Seq pipeline. (a) Laboratory pipeline for simultaneous depletion of rRNA from prokaryotic and eukaryotic RNA
mixtures. The enriched mRNA is used to create RNA-Seq libraries. (b) Bioinformatics pipeline for sequential mapping and analysis of simultaneous
RNA-Seq data.
doi:10.1371/journal.pone.0080597.g001

RNA-Seq Profiling of Bacteria-Infected Cells
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Chlamydia at early stages of infection contain mRNA carried

over from the previous developmental cycle [57]. These carryover

transcripts may not result in early protein synthesis, and may

degrade early in the developmental cycle [57]. To examine

carryover versus new transcripts at 1 hpi, we selected 11

immediate-early genes identified by RNA-Seq, including known

early and carryover genes and performed qRT-PCR over a course

of infection, including the infecting EB seed population (Fig-

ure S3). As described by Belland (2003) [36], a decrease in copy

number over time is assumed to indicate carry-over transcripts,

while an increase indicates new expression. Seven genes showed a

decrease in copy number at 1hpi, suggesting these are carryover

genes. Four genes increase at 1hpi, and likely represent new

transcription [36]. The known early and carry-over genes exhibit

the expected pattern of increased and decreased transcription

respectively (Figure S3). Thus, the set of immediate-early genes

that we identify includes both new and carry-over transcripts.

Using a standard cutoff of RPKM$0.1 and a minimum of 10

mapped sequence reads [18], we detect expression of 399634

chlamydial genes at 1 hpi (Table 2; Table S2). This represents

approximately 44% of genes in the chlamydial genome. Micro-

array studies detected only 29 genes (3.2% of chlamydial genes) at

Figure 2. Distribution of RNA-Seq data. (a) Chlamydia 1 hpi versus 24 hpi. Chlamydial genes above the cutoff of RPKM$0.1 and a minimum of
10 mapped reads are highlighted in blue and red at 1 and 24 hpi respectively; and host cells at (b) 1hpi relative to mock and (c) 24 hpi relative to
mock. Significantly differentially expressed host cell transcripts (FDR#0.05 and LFC$2.0) between the mock and infected conditions are plotted in
red (up-regulated) and blue (down-regulated). Pearson’s correlation (R2) between replicates is indicated for each.
doi:10.1371/journal.pone.0080597.g002

Table 1. Summary of chlamydial and human unique mapped reads at (a) 1 hpi and (b) 24 hpi.

(a) Mapped Reads

Condition (1 hpi) Chlamydia (%) Human (%) Total Unique Mapped Reads

Mock-infected 0 0.00 88,361,892 100.00 88,361,892

Chlamydia-infected replicate 1 11,436 0.01 80,639,860 99.99 80,651,296

Chlamydia-infected replicate 2 36,602 0.02 166,631,650 99.98 166,668,252

Chlamydia-infected replicate 3 83,854 0.02 352,554,875 99.98 352,638,729

Chlamydia-infected replicate 4 nd 114,708,905 99.98 114,709,004.98

Total (infected) 131,892 0.02 714,535,284 99.98 714,667,176

Total (mock + infected) 131,892 802,897,716 803,029,608

(b)

Condition (24 hpi) Chlamydia (%) Human (%) Total Unique Mapped Reads

Mock-infected 0 0.00 102,957,300 102,957,300

Chlamydia-infected replicate 1 3,343,180 24.72 10,180,999 75.28 13,524,179

Chlamydia-infected replicate 2 7,887,664 27.14 21,175,585 72.86 29,063,249

Chlamydia-infected replicate 3 7,297,404 32.31 15,290,960 67.69 22,588,364

Chlamydia-infected replicate 4 nd 143,854,131 100 143,854,131

Total (infected) 18,528,248 28.4 190,501,675 71.6 208,875,075

Total (mock + infected) 18,528,248 483,960,650 520,862,298

Total (1 hpi +24 hpi) 18,660,140 1,096,356,691 1,114,861,983

doi:10.1371/journal.pone.0080597.t001

RNA-Seq Profiling of Bacteria-Infected Cells
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1 hpi using a hundred-fold higher MOI [36], highlighting the

sensitivity and dynamic range of RNA-Seq. 24/29 microarray-

detected genes are found at this cutoff. We next examined highly

expressed genes at 1 hpi. Highly expressed genes are defined by an

RPKM$1.0 and a minimum of 50 mapped reads (Table 2;

Table S2). With this stringent cutoff, 153612 chlamydial genes

(17.0% of all chlamydial genes) are highly expressed at 1hpi, again

contrasting with the previous finding of 29 genes by microarray

[36]. 20/29 microarray-detected genes are found at this cutoff.

The genes expressed at 1 hpi by microarray [36] but not found in

our RNA-Seq data at either cutoff are hypothetical genes or have

putative metabolic functions (Table S3). Their absence in our

data may arise from chlamydial strain or host cell variation, or

other experimental differences such as the high MOI (,100) used

in the original study [36]. We focus on the highly expressed subset

from this point forward.

We find immediate-early expression of the chlamydial general

secretory (Sec) pathway (SecD, E, F, G and Y). Fifty-one proteins

that form the proteinaceous components of the 30S and 50S

ribosomal subunits are highly transcribed at 1 hpi and 24 hpi

(Table S2). This supplies the core components of the chlamydial

ribosome, supporting previous observations of early chlamydial

protein synthesis [58,59]. Fifty-six highly expressed genes are

found at 1 hpi alone (Figure S1; Table S2). Known early genes

are within this subset, including the proposed master regulator euo

[60,61] and the secreted inclusion proteins incD, E, F and G
[36,62]. Many are novel at this immediate-early time. Twenty-five

of the unique 1 hpi highly expressed genes are hypothetical genes

(Table S2). Thirteen of these have not previously identified as

immediate-early genes, representing uncharacterized biological

functionality within this phase of infection. Gene Ontology (GO)

analysis of the remaining non-hypothetical genes reveals primarily

metabolic and catabolic functions including biosynthetic process,

transmembrane transport and carbohydrate metabolic process, consistent

with an auxotrophic bacterium establishing an infection within a

host cell (Table S4).

Acquisition of host cell nutrients is critical for chlamydial

survival; many of the up-regulated immediate-early genes are

directly relevant to this need. These include npt1 (CT065; ADP/

ATP translocase) and npt2 (CT495; nucleoside phosphate trans-

porter), which enable parasitism of host energy and nucleotides

[36,63]. In addition, we identify numerous transferases, transport-

ers, permeases, proteases and other factors putatively involved in

the interconversion or translocation of host metabolites (Ta-

ble S2), consistent with the GO term enrichment analysis.

Several chlamydial genes predicted to encode riboflavin

biosynthetic enzymes (ribBA, ribC and ribH) are highly expressed

at 1 hpi (Table S2). Riboflavin biosynthesis is linked to iron

acquisition in several bacterial pathogens [64,65], where riboflavin

is an electron donor for the crucial reduction step of Fe3+ to Fe2+.

Iron is essential for chlamydial growth (reviewed by [31]), but how

iron is acquired from the host cell is unclear. Typical strategies of

iron acquisition do not apply as siderophore biosynthetic enzymes

or host iron-binding receptors are not present, although a

chlamydial metal ATP-binding-cassette (ABC) permease system

(ytgABCD) is implicated in iron transport and regulation [66,67].

ribBA encodes an bifunctional enzyme with GTP cyclohydrolase

and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBP)

synthase activities. These catalyze the initial rate limiting steps of

the two riboflavin biosynthesis pathways [68,69]. Bifunctional

ribBA is found in Helicobacter pylori; the bifunctionality enables a

rapid co-regulated riboflavin biosynthetic response to iron-induced

stress [65]. Immediate-early expression of a bifunctional ribBA and

other riboflavin biosynthetic enzymes may be part of a chlamydial

strategy to rapidly obtain soluble iron from the host cell.

Chlamydial transcription at 24 hpi
In contrast to the low number of Chlamydia-specific reads at 1

hpi, over 18 million reads were uniquely mapped at 24 hpi

(Table 1). Chlamydia sequence reads at 24 hpi represent a higher

proportion of total mapped reads (28.4% versus 0.02% at 1 hpi;

Table 1). This is consistent with peak chlamydial gene expression

in the in vitro developmental cycle and highlights why this

timepoint has been well defined by previous microarray studies.

Using RPKM$0.1 and a minimum of 10 mapped reads, 80965

of 898 genes were detectably expressed by 24 hpi, representing

90.2% of the genome (Table 2; Table S2). As noted by Belland

et al [36], transcription of this number of chlamydial genes by this

stage of the in vitro lifecycle highlights the degree of optimization of

the reduced Chlamydia genome.

Using RPKM$1.0 and a minimum of 50 mapped reads,

22061 genes are highly expressed by 24 hpi (24.5%; Table 2;

Table S2). 109 are also highly expressed at 1 hpi (Figure S2;

Table S3). 112 highly expressed genes are found only at 24 hpi

(Fig S1; Table S2), including 34 hypothetical genes with no

known function. Together with genes expressed only at 1 hpi, this

confirms the broad pattern of temporal gene expression observed

by earlier microarray analyses [36–38]. Applying simultaneous

RNA-Seq to more infection timepoints should improve our

understanding of these temporal gene expression profiles. The

later timepoints of in vitro chlamydial infection such as 24 hpi are

better characterized, as the large amount of chlamydial transcripts

at these times falls well within the limits of microarray analysis.

Nevertheless, ahpC (CT603; thioredoxin peroxidase), trxA (CT539;

thioredoxin) and a predicted ferredoxin (CT312), all with putative

antioxidant properties, are expressed at 24 hpi but have not been

previously described. Host cells quickly produce reactive oxygen

species (ROS) on chlamydial infection [70]. Increased expression

of these genes by 24 hpi may be an expedient chlamydial response

to ROS bursts and oxidative stress.

Table 2. Number of chlamydial genes expressed at 1 and 24 hpi, by cutoff and by replicate (R).

Standard gene expression cutoff ‘‘Highly expressed’’ gene cutoff

.0.1 RPKM (10 reads minimum) .1 RPKM (50 reads minimum)

R1 R2 R3 Avg (std dev) R1 R2 R3 Avg (std dev)

1 hpi 205* 365 432 399 (34) 37* 141 165 153 (12)

24 hpi 815 802 811 809 (5) 219 221 219 220 (1)

*Excluded (insufficient reads).
doi:10.1371/journal.pone.0080597.t002

RNA-Seq Profiling of Bacteria-Infected Cells
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The effect of in vitro chlamydial infection on host cell
transcription
Host cell transcription responding to infection was examined by

differential expression (DE) analysis of unique mapped reads from

infected HEp-2 cells and a time-matched mock-infected HEp-2

control (Table 1). Using a false discovery rate (FDR) cutoff of

#0.05 and log fold change (LFC) cutoff of $2.0, we identify 622

DE host transcripts at 1 hpi and 87 at 24 hpi (Table S5). 82 genes

are differentially expressed at both times, with 4 genes differen-

tially expressed at 24 hpi alone (Figure S1), suggesting that the

establishment of infection has a greater effect on host cell

transcription. To validate RNA-Seq expression levels of host

genes, we selected twenty-four host genes (twelve each at 1 hpi and

24 hpi) with a range of RPKM values. A strong correlation was

found between RNA-Seq normalized sequence coverage depth

and qRT-PCR transcript abundance at both 1 and 24 hpi

(R2=0.61; Figure S4). Overrepresented Gene Ontology (GO)

terms for all DE host genes with annotation reveals a wide variety

of functions, including inflammatory response, immune response and anti-
apoptosis (Table S3), consistent with Chlamydia-induced immuno-

pathologic processes.

The early host cell response to infection is not ‘‘quiescent’’ [54].

Some of the host cell responses observed may be elicited by

chlamydiae to promote survival and replication. However, the host

response measured here by comparing mock-infected cell lysates to

infected cell lysates, includes both specific reactions to Chlamydia

and non-specific cellular reactions to a phagocytosed foreign body.

The key events of chlamydial uptake and endosomal trafficking,

amongst others, may not be discernable from non-specific cellular

responses in this experimental design. RNA-Seq experiments using

opsonized latex beads and UV-killed EBs are in progress and

should permit differentiation of non-specific responses. With these

caveats, we still observe a diverse and dramatic host transcriptional

response to chlamydial infection that has not been previously

described. This encompasses many cellular pathways and func-

tions, including growth factors, altered intercellular junctions and

adhesion, disruptions to Wnt and Notch signaling, extensive

cytoskeletal remodeling, lipid trafficking, transcriptional regulation

and non-coding RNA (Text S1).

Chlamydial disease is an adverse outcome of host inflammation

(reviewed by [71]). Repeated stimulation, from either long-term

infection or successive re-infections, leads to tissue damage and

scarring. There is evidence that Chlamydia exploits immune and

inflammatory pathways for survival [30,72,73]. Under the cellular

paradigm of chlamydial pathogenesis [74], infected epithelial cells

are the first responders to chlamydial infection, initiating and

promoting the immune response [30,72,73,75]. Subverting or

dampening this response may contribute to the adverse conse-

quences of infection. We identify numerous host cell transcrip-

tional responses to infection, including putative modulation of

innate responses through cytokines, chemokines, immune signal-

ing molecules such as sphingosine 1-phosphate, semaphorins,

damage-associated molecular patterns (DAMPs), and the inflam-

masome, all of which can be interpreted in the context of immune

dampening (Text S1). We again note that these transcriptional

responses are derived from a highly simplified in vitro model of

chlamydial infection within epithelial cell monolayers. While this in
vitro model is widely used in the study of chlamydial biology,

natural infection is more complex and dynamic, with many

different cell types in tissues and the immune system interacting

with infected cells. Nevertheless, with this global perspective of the

in vitro host cell transcriptional response to infection, we identify a

subset of differentially expressed genes that may provide novel

insight into chlamydial scarring (Table S5).

Many extracellular matrix components are differentially
expressed on chlamydial infection
The extracellular matrix (ECM) is the dynamic interdependent

network of proteins, proteoglycans and glycoproteins that

enmeshes epithelial cells and tissues [76]. The ECM has a major

role in cellular adhesion, patterning and architecture, and

‘‘outside-in’’ signal transduction [76]. In our RNA-Seq data,

many host ECM moieties are differentially expressed, supporting a

dramatic and rapid remodeling of the extracellular milieu in

response to chlamydial infection, including mucins (Text S1),

metalloproteinases, numerous collagens and several fibrosis-

associated moieties.

Epithelial cells, PMNs and other immune cells produce

molecules that remodel the ECM, notably the zinc-dependent

matrix metalloproteinases (MMPs) [77–79]. MMPs influence cell

behavior by releasing growth factors and biologically active

peptides from the ECM and by regulating inflammatory mediators

[80]. The behavior of these molecules is linked to chlamydial

scarring. MMP-9 (gelatinase B) is implicated in infected murine

oviduct fibrosis [81]. Increased activity of MMP-9 was found in

human endothelial cells infected with C. pneumoniae [82] and in the

conjunctiva of trachoma patients [46]. MMP-2 (gelatinase A) and

MMP-9 were identified in infected human fallopian tube organ

cultures [83]. MMP2 and MMP9 activity induce tenascin-C

expression, which in turn induces further MMP expression,

creating a positive feedback loop of MMP/tenascin-C activity

that could contribute to chlamydial scarring (see below). We

observe up-regulation of MMP-2 at both 1 and 24 hpi. MMP-9
expression is not detected and may be specifically secreted by

PMNs or other immune cells rather than epithelial cells. Testican-

1/SPOCK1 (sparc/osteonectin, cwcv and kazal-like domains

proteoglycan 1), a highly conserved chimeric proteoglycan that

regulates MMP-2, is also up-regulated at 1 hpi [84]. Conversely

MMP-28 (epilysin), expressed in normal tissues [85] and thought to

participate in tissue homeostasis, is down-regulated in infected cells

at 1hpi. Membrane-bound MMP-24 is down-regulated at 1hpi.

In addition to these MMP expression patterns, we find

differential expression of other proteinases that are previously

unreported in the context of chlamydial infection. Six members of

the ADAM (A Disintegrin And Metalloproteinase) and ADAMTS

(A Disintegrin And Metalloproteinase with ThromboSpondin

motifs) [86,87] families of proteinases exhibit differential expres-

sion at both 1 and 24 hpi. The membrane-bound ADAM proteins

activate zymogens such as TNF-a, and participate in cell adhesion

via integrin interaction [86,87]. ADAM proteins also participate in

activation of the conserved Notch signaling pathways (see Text S1)

[88]. ADAMTS are secreted proteins that modulate the ECM by

cleavage of procollagen and proteoglycans [86]; these fragments

may act as ligands for further inflammatory signaling. ADAM33
and ADAMTSL4 are down-regulated at 1 hpi, whereas ADAM12,

ADAM19, ADAMTS3 and ADAMTS6 are up-regulated at both 1

and 24 hpi.

Collagens are a major component of ECM scaffolding,

conferring tensile strength and viscoelasticity [89]; collagens also

interact with integrins and other signaling receptors [90].

Immunohistochemical examination of conjunctiva from patients

with active trachoma previously showed new (type V) and

increased (type I, III and IV) collagen deposition [91]. Remark-

ably, eight members of the collagen superfamily are differentially

expressed in our data, indicating that collagen deposition processes

are initiated very early in infection rather than as a late

consequence of disease progression. COL3A1, COL4A1, COL4A2,

COL5A1, COL5A3, and COL16A1 are all up-regulated at 1 hpi

only; COL25A1 is up-regulated at both 1 and 24hpi. COL15A1 is
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down-regulated at 1 hpi. Collagens are subdivided based upon

their supramolecular assemblies: COL3A1, COL5A1 and COL5A3
are fibril-forming; COL4A1 and COL4A2 are network-forming;

COL15A1 is a multiplexin, containing multiple triple-helix

domains (collagenous domains) interrupted by non-collagenous

domains; COL16A1 is fibril-associated; and COL25A1 is mem-

brane-associated [89]. The type IV collagens, including COL4A1

and COL4A2, are part of the basement membrane, an ECM layer

that coats the basal aspect of epithelial cells [89].

Several other basement membrane components [92] are

differentially expressed early in infection, notably subunits of the

laminin heterotrimer (LAMA4 and LAMC3), and nidogen (NID1)

which crosslinks collagen IV and laminin. LAMA4 and NID1 are

strongly up-regulated at 1hpi, whereas LAMC3 is down-regulated.

LAMA4 is also strongly up-regulated at 24 hpi. Fibulin-5 (FBLN5)

and hemicentin (HMCN1), both secreted glycoproteins that

interact and crosslink with other members of the ECM [93] are

strongly up-regulated. These dramatic early expression changes of

numerous ECM moieties may underlie chlamydial disease

outcomes through fibrotic scar formation.

Hypothesis – mechanisms for chlamydia-induced fibrotic
scarring
Long-term chlamydial infection (or re-infection) that is untreat-

ed or undetected will produce disease sequelae arising from

collagenous scar formation on mucosal surfaces. For trachoma,

scarring of the conjunctiva causes the eyelid to roll inwards by scar

contraction (entropion). The eyelashes subsequently abrade the

cornea (trichiasis), resulting in corneal opacity and blindness [94].

In genital infections of women, pelvic inflammatory disease and

ascending infection precede scar formation in fallopian tubes,

leading to tubal infertility, hydrosalpinx or ectopic pregnancy [30].

The molecular processes that lead to these adverse outcomes are

largely unknown. Combined with the transcriptional changes in

ECM components described above, we identify possible positive

feedback mechanisms for chlamydiae-induced fibrotic scarring

that center upon tenascin C, gremlin1 and TGF-b.

Two members of the tenascin ECM glycoprotein family are

notably differentially expressed upon chlamydial infection relative

to mock-infected cells: tenascin-C (TNC) is up-regulated, whereas
tenascin-X (TNXB) is down-regulated. Upregulation of TNC on

chlamydial infection at both 1 and 24 hpi was confirmed by qRT-

PCR (Figure 3). TNC is a pleiotropic protein with multiple

binding domains, including EGF and fibronectin repeats that are

subject to alternative splicing. It has numerous potential glycosyl-

ation sites, creating the potential for many isoforms [95,96]. TNC

has a hexameric protein organization that may enable extensive

cross-linking. It promiscuously interacts with many ECM archi-

tectural molecules and receptors, and thus participates in both

structural and signaling processes [95,96].

TNC is not found in healthy tissues but is transiently expressed

on cellular injury, and mediates global fibrotic processes as part of

tissue repair [96]. After repair is complete, TNC expression

normally decreases. However, abnormal persistent TNC expres-

sion is correlated with excessive matrix deposition that leads to

collagenous scar formation in several fibrotic diseases [96] – this

suggests an equivalent role in chlamydial scarring. Production of a

tenascin protein has been previously observed by immunohisto-

chemical studies of conjunctival biopsies taken from patients with

trachomatous conjunctivitis [97]. Higher expression is also found

in chronic cardiac conditions, and is a reliable indicator of poor

patient prognosis [95,96]. Abnormal TNC expression also drives

matrix degradation in arthritic diseases, and fibrosis in response to

infections, including lung damage from tuberculosis and HPV

lesions in cervical epithelia [95,96]. Moreover, TNC is associated

with inflammatory processes, including TLR4 induction of pro-

inflammatory cytokines, re-epithelialization, and tissue remodeling

[95,96,98]. During acute inflammatory events, TNC expression is

concentrated in regions of increased immune cell infiltration, and

is particularly associated with PMN infiltration [96]. PMN

recruitment is a well-known feature of the immune response to

chlamydial infection [71].

TNC expression is linked to TGF-b-mediated fibrosis and

induces TGF-b expression [95,96,99,100]. A central role for TGF-

b in chlamydial disease outcomes has been previously discussed

(reviewed by [101]). Increased expression of TNC on chlamydial

infection may create a positive feedback loop that ultimately results

in increasing amounts of collagen and other ECM components

being deposited. We find strongly increased expression of TGF-b2

at 1 hpi; increased expression of multiple collagen family members

was noted above. A central role for TGF-b-mediated fibrosis is

further supported by potential microRNA-mediated alterations of

TGF-b expression in trachoma patients [102]. Another positive

feedback loop has been posited for the interaction between TNC

and MMPs induced by inflammation (see above) [96]. Fragments

of collagen and other ECM components produced by MMPs will

further stimulate inflammation [80]. In addition, Wnt signaling

pathways intersect with TGF-b-mediated fibrosis [103]; we

observe differential expression of several components of Wnt

signaling (Text S1).

Thus, we find transcriptional evidence of several paracrine

responses to early chlamydial infection that intersect with TNC

and TGF-b, and which may induce scarring through uncontrolled

positive feedback loops. As an aside, persistent TNC expression has

also been linked to atherosclerosis, where it contributes to both

plaque formation and rupture [95,98]. In this study, we used a

genital serovar of C. trachomatis, however, C. pneumoniae is

controversially linked to several chronic conditions with inflam-

matory etiologies, including atherosclerosis. Chlamydial dysregu-

lation of TNC and other positive feedback loop participants may

provide an insight into the correlation of C. pneumoniae with

atherosclerosis and other multifactorial inflammatory diseases.

Building on this theme of dysregulated cellular processes

contributing to fibrosis, at both 1 and 24 hpi we also observe

strongly increased expression of gremlin (GREM1), an antagonist

of bone morphogenetic protein (BMP) receptors [104]. Upregu-

lation of GREM1 at both 1 and 24 hpi was confirmed by qRT-

PCR (Figure 3). BMPs are members of the TGF-b receptor

superfamily and are key participants in tissue remodeling [105].

GREM1 is a cysteine knot-secreted protein that is implicated in

the prevention of epithelial regeneration and participates in the

epithelial-to-mesenchymal transition that converts epithelial cells

to fibrotic myofibroblasts [104]. Transient overexpression of

GREM1 in rat lungs induces epithelial injury and reversible

pulmonary fibrosis [106]. GREM1 overexpression has been

identified as a direct inducer of fibrosis in diseases with fibrotic

etiologies, including asbestosis, pulmonary sarcoidosis, idiopathic

pulmonary fibrosis, glomerulonephritis, cirrhosis, and hepatic

fibrosis [104,107]. In addition, GREM1 overexpression will elicit

TGF-b-induced fibrosis in the lung; in turn, TGF-b itself induces

GREM1 production [107]. This suggests another positive

feedback loop, again centered on TGF-b and its ligands, that

may influence chlamydial scarring sequelae.

In summary, validated RNA-Seq analyses of Chlamydia-infected

epithelial cells demonstrate remarkable early increased expression

of host genes directly associated with fibrosis and collagenous

scarring. Combined with increased expression of fibril- and

network-forming collagens and other ECM constituents, this is
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relevant to the long term scarring sequelae of chlamydial disease.

From these findings, we hypothesize that dysregulated early

persistent expression of at least TNC, GREM1, TGF-b2 and

various proteases in infected epithelial cells mediates Chlamydia-

induced tissue damage.

We further hypothesize that in susceptible individuals, these

dysregulated genes establish a series of interlocked positive

feedback loops that disrupt the homeostasis of multiple pathways,

ultimately resulting in increased deposition of collagen and other

ECM constituents (Figure 4). Ongoing inflammatory stimulation

by lengthy infection or re-infection and recruitment of immune

cells that participate in the fibrotic response, such as collagen-

depositing fibroblasts, could exacerbate scarring through positive

feedback loop reinforcement. As not all individuals develop

scarring sequelae, host factors are likely to influence disease

outcomes [30,71]. We postulate that these susceptibility differ-

ences may be mediated by host genetic variation that influences

the impact of these feedback loops by increased degree and/or

period of aberrant expression, increasing collagen deposition

rates and propensity for scarring. These hypotheses are currently

being tested in both in vitro and in vivo systems that better capture

the complexity of natural chlamydial infection.

Conclusions

We developed and applied the simultaneous RNA-Seq method,

using Chlamydia-infected cells as proof of principle. Despite a low

MOI and substantial amounts of eukaryotic RNA, our method

readily distinguishes chlamydial and host expression, yielding a

detailed view of both host and pathogen transcription particularly

in the poorly characterized early stages of infection. A substantial

transcriptional program is rapidly initiated by Chlamydia following

adherence and uptake, including carry-over transcripts from the

infecting EBs and new transcription. In addition to the core

components of the chlamydial ribosome, the Sec pathway and

numerous novel hypothetical genes, we identify early expression of

a bifunctional riboflavin biosynthetic enzyme that may mediate

soluble iron acquisition from the host cell.

The epithelial host cell response to chlamydial infection in vitro is

rapid and dramatic. A central paradox of chlamydial infection is

that the immune response contributes to disease pathology. We

find transcriptional evidence, within the constraints of a simplified

model of infection, for attempted immune dampening through

alterations in antimicrobial peptide and mucin expression, by

mitigation of innate immunity and potential interference with

signaling pathways, and by possible differential recruitment or

repulsion of immune cell subsets. We identified and validated

abnormal early transcription of host factors linked to scarring in

numerous other fibrotic conditions. Chlamydia-induced aberrant

expression of these factors may induce positive feedback loops that

amplify tissue damage. Continuing reinforcement of these

feedback loops may also provide an explanation for disease

severity from long-term infection or re-infection.

Remarkably, transcription of these putative immune dampening

and tissue damaging factors are evident as early as 1 hpi. Thus,

depending on host factors influencing immune dampening or the

severity of the fibrotic response, we speculate that the initial

infection insult could be sufficient to commit a host into the

responses that ultimately result in scarring. Subtle alterations of

such a multidimensional equilibrium between the host cell and the

invader may permit pathogen clearance on the one hand, or

enable ongoing cryptic infection (or reinfection) with the resulting

scarring sequelae. Genotypic variability of both infected individ-

uals and chlamydial strains are likely to be major factors governing

these equilibrium states.

We have focused on Chlamydia-infected cancerous epithelial

cells in vitro. Natural chlamydial infection in vivo occurs with fewer

organisms and fewer infected cells in a complex and dynamic

host environment, often with other bacterial species in close

proximity. With appropriate sequencing depth, simultaneous

transcriptional profiling by RNA-Seq could be used to examine

Chlamydia and infected primary host cells from ex vivo human

tissue or in vivo animal models, and ideally, single infected cells.

Beyond Chlamydia, this approach is applicable to any bacteria (or

bacterial community) that interact with eukaryotic cells, encom-

passing parasitic, commensal or mutualistic lifestyles. Using

simultaneous RNA-Seq to compare experimental or environ-

Figure 3. Confirmation of differential expression for selected pro-fibrotic genes over time. (a) Gremlin1 and (b) tenascin-C in Chlamydia-
infected cells at 1 and 24 hpi, compared to mock-infected cells. Values are based on fold changes calculated from absolute quantitation of each gene
of interest, normalized to human ATP synthase 6. Asterisks indicate statistically significant differences as calculated by Student’s t test (***: p,0.0001;
**: p,0.002). Error bars represent standard deviation over a minimum of 2 biological replicates.
doi:10.1371/journal.pone.0080597.g003
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mental conditions, such as different wild-type or recombinant

pathogens infecting the same cell type, or the same strain

infecting a variety of cell lines or knockouts will give significant

insight into bacterial virulence factors and the dynamic host

response.

Methods

Preparation of C. trachomatis EBs and mock lysates
Monolayers of HEp-2 cells were infected with C. trachomatis

serovar E in SPG as previously described [108]. Additional

monolayers were mock-infected with SPG only. The infection

was allowed to proceed 48 hours prior to EB harvest, as

previously described [108]. C. trachomatis EBs and mock-infected

cell lysates were subsequently used to infect fresh HEp-2

monolayers.

Infection time course
HEp-2 cells (American Type Culture Collection, ATCC No.

CCL-23) were grown as monolayers in 66100 mm TC dishes

until 90% confluent. Monolayers were infected with C. trachomatis

serovar E in 3.5 mL SPG buffer for an MOI,1 as previously

described [108], using centrifugation to synchronize infections.

Infections and subsequent culture were performed in the absence

of cycloheximide or DEAE dextran. A matching number of

HEp-2 monolayers were also mock-infected using uninfected cell

lysates. Each treatment was incubated at 25uC for 2 h and

subsequently washed twice with SPG to remove dead or non-

viable EBs. 10 mL fresh medium (DMEM+10% FBS, 25 mg/ml

gentamycin, 1.25 mg/ml Fungizone) was added and cell mono-

layers incubated at 37uC with 5% CO2. Three infected and

mock-infected dishes per timepoint were harvested post-infection

by scraping and resuspending in 150 mL sterile PBS. Resus-

pended samples were stored at 280uC.

RNA purification
Total RNA was purified from frozen HEp-2/C. trachomatis

lysates using the MasterPure RNA Purification kit (Epicentre, Cat.

No. MCR85102). Carryover DNA was treated twice with Turbo

DNA-free DNase (Ambion, Cat. No. AM1907), according to the

manufacturer’s protocol for rigorous sample treatment. Total

genomic DNA removal was verified by qPCR.

Figure 4. A proposed model of chlamydial-induced fibrosis and chronic scarring through the induction of multiple positive
feedback loops. Infection of epithelial cells by Chlamydia leads to production of proinflammatory cytokines and chemokines that lead to
recruitment and activation of immune cells. Recruited immune cells and infected epithelial cells secrete pro-fibrotic matrix metalloproteases (MMPs)
that act upon the extracellular matrix (ECM), including collagens. The breakdown products of these proteases are also pro-inflammatory. Infected
epithelial cells express the pro-fibrotic molecules TGF-b, Gremlin1 and Tenascin-C; expression of each amplifies the other, creating a series of nested
positive feedback loops that increase the deposition of collagens and other ECM components, which in turn further induce immune cell recruitment
and activation.
doi:10.1371/journal.pone.0080597.g004
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Simultaneous Eukaryotic and Prokaryotic Ribosomal RNA
depletion
Human and Gram-negative bacterial ribosomal RNA were

depleted from each sample using Ribo-Zero rRNA Removal

(Human/Mouse/Rat and Gram-negative) kits. An equivalent

volume of the Ribo-Zero beads from each kit was combined,

allowing removal of both human and bacterial rRNA simulta-

neously. The remainder of the protocol was followed as per the

manufacturers instructions. After rRNA reduction, each sample

was optionally split and one half subjected to poly-A depletion by

the Poly(A)Purist Mag purification kit (Ambion) to further enrich

bacterial transcripts. Briefly, poly(A) tailed mRNAs were bound to

magnetic beads and removed from solution using a magnet.

Poly(A)-depleted and rRNA-depleted eluates were further purified

using Zymo-Spin IC columns (Zymo Research) before being

combined for library construction. 1 mL of each final RNA eluate

was assayed with a RNA Nano chip on an Agilent BioAnalyzer

(Agilent Technologies) prior to RNA-Seq library construction and

sequencing.

Quantitative PCR
Complete DNA removal was verified by Taqman (Applied

Biosystems) assays for human beta-actin, ATP synthase 6, and 18S

rRNA genes. Each assay was performed on an ABI 7900HT

instrument according to the manufacturer’s instructions (Applied

Biosystems). Primers and probes were selected for C. trachomatis

genes and human genes using PrimerExpress (Applied Biosystems).

Assays were performed on an ABI 7900HT instrument according

to the manufacturer’s instructions for gene expression assays

(Applied Biosystems). C. trachomatis and human gene expression

values were normalized against 16S or 18S rRNA copy number as

appropriate. Primer and probe sequences are listed in Table S6.

Sequencing
Illumina mRNA-Seq libraries were prepared from rRNA-

depleted samples using the TruSeq RNA Sample Prep kit

(Illumina, San Diego, CA) per the manufacturer’s protocol with

IGS-specific optimizations. Adapters containing 6 nucleotide

indexes were ligated to the double-stranded cDNA. The DNA

was purified with AMPure XT beads (Beckman Coulter

Genomics, Danvers, MA) between enzymatic reactions and size

selection steps (,250 to 300 bp). Libraries were initially sequenced

using the Illumina MiSeq sequencer for quality control. MiSeq

sequencing results were used to estimate sequencing depth from

HiSeq2000 sequencing. Libraries were subsequently sequenced

using the 100 bp paired-end protocol on an Illumina HiSeq2000

sequencer. Raw data was processed using Illumina’s RTA and

CASAVA pipeline software, which includes image analysis, base

calling, sequence quality scoring, and index demultiplexing.

FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

) and in-house pipelines were used for sequence assessment and

quality control. These pipelines report numerous quality metrics

and perform a Megablast-based contamination screen. By default,

our quality control pipeline assesses basecall quality and truncates

reads where the median Phred-like quality score falls below Q20.

Bioinformatic analyses
Sequence reads were first mapped to the C. trachomatis D

(NC_000117.1) reference genome using Bowtie v 0.12.7 [109]

(maximum number of mismatches = 2; number of alignments

permitted per read = 1). The remaining sequence reads were

aligned to the human (hg19) reference genome using TopHat

version 1.3.2 [110] (maximum number of mismatches = 2;

segment length = 30; maximum multi-hits per read = 25;

maximum intron length = 50000). Reciprocal mappings were

also performed to check that Chlamydia reads did not map to the

human genome (and vice versa). Mapped RNA-Seq reads were

visualized using the Integrative Genomics Viewer [111]. For

human reads, the number of reads mapped to each gene was

counted by HTSeq (http://www-huber.embl.de/users/anders/

HTSeq/) against gene annotation file for build GRCh37/hg19

from Ensembl (http://www.ensembl.org). Read count was used to

represent gene expression level. Data normalization and differen-

tial expression (DE) analysis were done using the methods

implemented in DESeq R package [112]. Briefly, read counts of

samples were normalized for sequencing depth and distortion

caused by highly differentially expressed genes. A negative

binomial (NB) model was used to test the significance of

differential expression between two conditions. A cutoff FDR

(False Discovery Rate) of less than 0.05 and a log fold change.2.0

was used to select significant DE genes. For C. trachomatis reads,

RPKMs of features for each sample were divided by their 75th

percentile and log2 transformed. GO enrichment analysis for

human DE genes was performed using the goseq R package [113],

normalizing for gene length bias. A cutoff of FDR less than 0.1 was

used to select significantly enriched GO categories.

For both human and C. trachomatis genes, Gene Ontology

annotations and associated data were extracted and arranged into

a tab-delimited file corresponding to the GO annotation file (GAF)

2.0 format (http://www.geneontology.org/GO.format.gaf-2_0.

shtml#fields). An in-house custom GO ontology was used for C.

trachomatis. For human, the current GO ontology and generic slim,

a subset of the ontology that contains selected high-level terms,

were downloaded from http://www.geneontology.org (April

2012). The Perl module map2slim, which maps a gene association

file containing annotations to the full GO to terms in a slim, was

downloaded, installed and run with the ‘‘-c’’ and ‘‘-t’’ options to

generate a count of the number of distinct gene products that

either are directly associated to a given slim term or would be

associated to a child of this term in the full ontology (http://

search.cpan.org/,cmungall/go-perl/scripts/map2slim). Any GO

slim terms with zero associations were removed from the resulting

table.

Supporting Information

Figure S1 Gene distributions between timepoints. (a) Unique

and shared chlamydial genes highly expressed (RPKM$1.0 and a

minimum of 50 mapped reads) at 1hpi and 24hpi. (b) Unique and

shared differentially expressed (FDR#0.05 and LFC$2.0) human

genes at 1 and 24 hpi.

(PDF)

Figure S2 Expression levels of selected Chlamydia genes com-

pared to matching RPKM values. Total RNA was prepared from

biological duplicate infections (MOI=1) at 1 hpi. Quantitative

RT-PCR assays were performed on 15 Chlamydia genes. Taqman

assays were designed for genes CT81, CT500, CT229, CT875,

CT734, CT446, CT577, CT18, CT864, CT665, CT834, CT391,

CT216, CT705, and CT416. Chlamydial gene expression is

plotted against the RPKM for each gene. qRT-PCR data is

expressed as 1/log2 Ct and normalized to 16S rRNA.

(PDF)

Figure S3 Expression of 11 C. trachomatis E genes from 0 to 16

hpi as detected by qRT- PCR. Infections were performed using C.

trachomatis (MOI= 1) harvested at 1, 2, 4, 8, and 16 hpi and

assayed using gene-specific Taqman primer/probe assays. RNA
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prepared from purified EBs was used as t = 0. All data are

representative of three biological replicates and have been

normalized against C. trachomatis 16S rRNA transcript abundance.

Expression levels are represented as 1/Log Ct. Green arrows

indicate increased expression from t = 0 to t = 1 hpi; red arrows

indicate decreased expression over the same time.

(PDF)

Figure S4 Quantitative real-time PCR (qRT-PCR) verification

of genes detected by simultaneous RNA-Seq. (a) Selected human

genes. RPKM values were calculated from human-mapped RNA-

Seq reads, and compared to qRT-PCR data for 13 genes. Black

circles represent genes examined at 1 hpi (CCL20, cxcl3, Elf3,

ERRFI1, ETS1, IL1A, IL8, Lamb3, serpine1, tnc, TNNC1 &

TRPV3). Red circles represent genes examined at 24 hpi (BIRC3,

CCL20, cxcl3, ELF3, ETS1, IL1A, IL8, Lamb3, serpine1, tnc,

tnnc1 & TRPV3). (b) Human gene target relative expression at 1

and 24 hpi. Infected treatments at 1 hpi (dark grey) and 24 hpi

(light grey) were normalized relative to mock-infected treatments

and expressed as fold change from the mock-infected state.

Taqman assays were designed to the following human genes:

ccl20, cxcl3, elf3, ERRFI1, ETS1, IL1A, IL18, LAMB3, serpine1,

tnc, tnnc1, and TRPV3.

(PDF)

Table S1 RPKM metrics for Chlamydia and host cell gene

expression at 1 and 24 hpi.

(PDF)

Table S2 Expression of chlamydial genes at various cutoffs. (a)

Chlamydial genes at 1 hpi above 0.1 RPKM & 10 mapped reads,

ordered by RPKM. (b) Chlamydial genes at 1 hpi above 1 RPKM

& 50 mapped reads, ordered by RPKM. (c) Highly expressed

chlamydial genes found only at 1 hpi, ordered by RPKM. (d)

Chlamydial genes at 24 hpi above 0.1 RPKM & 10 mapped reads,

ordered by RPKM. (e) Chlamydial genes at 24 hpi above 1

RPKM & 50 mapped reads, ordered by RPKM. (f) Highly

expressed chlamydial genes found at both 1 hpi and 24 hpi,

ordered by RPKM. (g) Highly expressed chlamydial genes found

only at 24 hpi, ordered by RPKM. Temporal gene expression is

noted, if known, from Belland et al (2003) and Nicholson et al

(2003).

(PDF)

Table S3 Annotation of previously detected chlamydial genes

and Gene Ontology enrichment. (a) Genes detected as expressed

at 1 hpi by Belland et al (2003) but not present in hRNA-Seq

(RPKM.0.1 and 10 mapped reads) (b) Genes detected as

expressed at 1 hpi by Belland et al (2003) but not present in

hRNA-Seq at 1 hpi (RPKM.1.0 and 50 mapped reads (c) GO-

term enrichment for differentially expressed (versus mock infected)

host non-hypothetical genes at 1 hpi (d) GO-term enrichment for

differentially expressed (versus mock infected) host non-hypothet-

ical genes at 24 hpi.

(PDF)

Table S4 GO-term enrichment for Chlamydia non-hypothetical

genes at 1 hpi.

(PDF)

Table S5 Differentially expressed host cell genes at 1 and 24 hpi.

(a) Human DE genes at 1 hpi (relative to mock). FDR,0.05 and

LFC.2.0. (b) Human DE genes at 24 hpi (relative to mock).

FDR,0.05 and LFC.2.0. Sorted by gene description.

(PDF)

Table S6 Primer and probe sets used in this study. (a) Custom

Taqman primers and probes used for Chlamydia qRT-PCR assays.

(b) Predesigned Taqman primer and probe sets used for human

qRT-PCR assays.

(PDF)

Text S1

(PDF)
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