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Summary

Joint models of longitudinal and survival outcomes have been used with increasing frequency in 

clinical investigations. Correct specification of fixed and random effects is essential for practical 

data analysis. Simultaneous selection of variables in both longitudinal and survival components 

functions as a necessary safeguard against model misspecification. However, variable selection in 

such models has not been studied. No existing computational tools, to the best of our knowledge, 

have been made available to practitioners. In this paper, we describe a penalized likelihood 

method with adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions 

for simultaneous selection of fixed and random effects in joint models. To perform selection in 

variance components of random effects, we reparameterize the variance components using a 

Cholesky decomposition; in doing so, a penalty function of group shrinkage is introduced. To 

reduce the estimation bias resulted from penalization, we propose a two-stage selection procedure 

in which the magnitude of the bias is ameliorated in the second stage. The penalized likelihood is 

approximated by Gaussian quadrature and optimized by an EM algorithm. Simulation study 

showed excellent selection results in the first stage and small estimation biases in the second stage. 

To illustrate, we analyzed a longitudinally observed clinical marker and patient survival in a 

cohort of patients with heart failure.
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1. Introduction

Longitudinal and survival data often arise together in clinical investigations. In a given 

subject, longitudinally measured clinical markers and patient survival are usually governed 

by the same latent disease process, and thus are correlated. Separate modeling for the 

longitudinal and survival outcomes could result in biases in parameter estimation (Faucett 

and Thomas, 1996). Joint models are therefore recommended to alleviate biases and to 

ensure valid inference concerning the correlation structure between the two outcomes. In the 

past two decades, joint models have been studied extensively: Wulfsohn and Tsiatis (1997) 

proposed a general framework in which the survival component was depicted by a 

proportional hazard model, and the longitudinal component was accommodated by a linear-

growth-curve model. This basic structure was later extended by Xu and Zeger (2001) to a 

variety of data situations. Other noteworthy method developments and significant data 

applications were presented by De Gruttola and Tu (1994), Nathoo and Dean (2008) and 

Albert and Shih (2010). Notably missing in this literature is variable selection. As in any 

modeling exercise, correct specification of the model and inclusion of the right independent 

variables are of essential importance, for the preservation of scientific validity. For joint 

models in particular, random variable selection serves the purpose of justifying the use of 

shared random effects connecting the longitudinal and survival components.

Traditionally, variable selection has been performed through model comparisons using 

information-based criteria, such as the Akaike and Bayesian information criteria (AIC and 

BIC). But such criteria are not always feasible in complex model settings where the number 

of candidate models is large. As an alternative, penalized likelihood approach has gained 

popularity since the mid-1990’s. Tibshirani (1996) proposed a least absolute shrinkage and 

selection operator (LASSO) for fixed-effect selection. Asymptotic “oracle” properties of the 

smoothly clipped absolute deviation (SCAD; Fan and Li, 2001) and the adaptive least 

absolute shrinkage and selection operator (ALASSO; Zou, 2006) have provided a theoretical 

assurance for mixed effect selection. Along this line, Fan and Li (2004), Garcia et al. (2010) 

and Johnson et al. (2008) discussed the application of penalized likelihood method to select 

fixed effect variables in longitudinal model settings. Fan and Li (2002), Garcia et al. (2010) 

and Zhang and Lu (2007) discussed the selection of fixed effects in survival models. 

Extending these previous work, Bondell et al. (2010) proposed a method for selecting fixed 

and random effects in a linear mixed-effects model setting. Most recently, Ibrahim et al. 

(2011) studied the mixed-effects selection in generalized linear mixed models through an 

EM algorithm. To the best of our knowledge, no work has been done for simultaneous 

selection of fixed and random effects in a joint model setting with longitudinal and survival 

outcomes. To fill in this methodological gap, we propose a penalized likelihood method with 

ALASSO penalty for fixed and random effect selection in joint models. We optimize the 

penalized likelihood using an EM algorithm.

We illustrate the method by analyzing data from an observational study of heart failure 

patients. The study cohort included 1702 patients with diagnosed congestive heart failure 

(CHF) between Jan 1, 2004 and Dec 31, 2009, identified from a large electronic medical 

record system. The analytical objective is to assess the effects of medication adherence on 

disease exacerbation and on patient survival; we also like to assess the correlation between 

He et al. Page 2

Biometrics. Author manuscript; available in PMC 2015 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CHF exacerbation and patient mortality. Specifically, we considered two outcomes: the 

survival outcome is defined as the time from the first recorded CHF diagnosis to mortality, 

or to Dec 31, 2009, which ever comes first; the longitudinal outcomes are the repeatedly 

measured B-type natriuretic peptide (BNP) levels. BNP is a commonly used bedside marker 

of CHF exacerbation; a higher BNP value indicates fluid volume overload in the left 

ventricle and increased mortality risk. (Morrison et al., 2002). Although the two outcomes 

can be modeled individually, separate modeling does not accommodate correlations between 

BNP and survival. In this paper, we consider a joint modeling approach. We consider eight 

known risk factors and four interaction terms as candidate variables and develop an 

ALASSO procedure to select the independent variables. In particular, we consider random-

effect selection as medical literature rarely avails information on the possible random slopes 

(e.g., the effect of an independent variable varies across subjects). Misspecification of fixed 

and random effects for the two outcome variables could result in erroneous inferences.

The remainder of the article is organized as follows. In Section 2, we present the model and 

the proposed selection method. In Section 3, we report the operating characteristics of the 

proposed method as observed in a simulation study. In Section 4, we revisit the CHF data 

analysis. We end the paper in Section 5 with a few concluding remarks.

2. Method

2.1 Model Formulation

Suppose in a longitudinal study, we observe a survival outcome (ti, δi), and repeated 

measurements of a continuous outcome yi, for subject i = 1, ···, n. Here ti is the observed 

event time subject to right censoring, and δi is a failure indicator with δi = 1 indicating the 

occurrence of an event of interest, and δi = 0 indicating censoring, whereas yi is an ni × 1 

vector of the ni repeated measurements. Let X1i ∈ ℝni×p and Z1i ∈ ℝni×q be the fixed and 

random covariate matrices for the longitudinal outcome, respectively. Similarly, we let x2i ∈ 

ℝ1×p and z2i ∈ ℝ1×q be the fixed and random covariate vectors for the survival outcome. 

Combining these observations we write Oi = (yi, X1i, Z1i, ti, δi, x2i, z2i). We assume that the 

observations Oi are independent across subjects.

Without loss of generality, we herein consider a case where the longitudinal and survival 

components share the same set of fixed- and random-effect covariates. This model 

formulation could easily be generalized to situations where the two components have 

different sets of covariates.

For the longitudinal outcome, we consider the following linear mixed-effects model:

(1)

where β1 = (β10, β11, …, β1p)T is the coefficient vector, and β10 is the intercept. εi = (εi1, ···, 

εini)
T ~ Nni(0, σ2Ini) is the measurement error vector, and  is a q–dimensional random 

effect vector following a multivariate normal distribution Nq(0, Iq), with Iq as a q × q 

identity matrix.Γ1 is a q × q lower triangular matrix and Γ1bi follows Nq(0, D1). Thus Γ1 

represents a Cholesky decomposition of the covariance matrix D1.
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For the survival outcome, we consider a frailty model, defined as follows:

(2)

where h0(ti) is the baseline hazard function, and β2 = (β21, …, β2p)T is the coefficient vector. 

Γ2bi follows Nq(0, D2), and Γ2 is a Cholesky decomposition of the q × q matrix D2.

2.2 Variable Selection Using Penalized Likelihood

To select fixed and random effects, we propose a penalized likelihood to simultaneously 

identify the non-zero elements in (β1, β2, Γ1bi, Γ2bi). Let θ = (β1, β2, Γ1, Γ2, φ) be the 

collection of all the unknown parameters, where φ denotes parameters other than (β1, β2, Γ1, 

Γ2). Writing the density function of (yi, ti, bi) as f(yi, ti, bi|X1i, Z1i, x2i, z2i, h0(ti), δi, θ), we 

have the following log-marginal likelihood for θ:

(3)

where fb(bi) is a q–variate normal density function for bi. Functions fs(·) and fy(·) are the 

conditional density functions of the survival time and repeated measurements when bi is 

given, respectively. We note that in the absence of restrictions on the baseline hazard h0(ti), 

the maximum of the marginal likelihood is infinity. To remedy the deficiency, one could 

parameterize h0(ti) with a parametric distribution. For example, a natural choice is to use a 

Weibull distribution with a baseline hazard , where α is the shape parameter 

and λ is the scale parameter. Alternatively, one could use a piece-wise constant baseline 

hazard by dividing the study period into m intervals and assuming h0(t) to be a constant 

within each interval as h0(t) = hk, tk−1 < t ≤ tk, k = 1 … m, where tks are knots defining the 

intervals. This piece-wise constant baseline hazard have been shown to perform well by 

Feng et al. (2005).

To select fixed and random effects simultaneously, we consider a penalized likelihood 

. The penalty terms κλ1 (β1) and 

κλ2(β2) control for the sparsity of estimates of β1 and β2 so that the fixed effects are selected. 

The penalty terms κλ3(D1) and κλ4(D2) control for the sparsity of estimates of D1 and D2 to 

select the random effects. The penalty functions κλj(·), for j = 1, 2, 3, 4, could be the 

adaptive LASSO, or the smoothly clipped absolute deviation (SCAD). For the fixed-effect 

selection, we define the adaptive LASSO penalties as  and 

, where λ1 and λ2 are tuning parameters that control the degree 

of penalties; ωβ1j, ωβ2k are the corresponding positive weights for penalties |β1j| and |β2k|. 

The summation in  starts from 1 as we are not interested in 

selecting intercept β10. Some of the estimates of β̂
1j and β̂

2k will be zero since |β1k| and |β2k| 

are singular when |β1j| = 0 and |β2k| = 0.

For the random-effect selection, we note that  and . Let γ1m and γ2l be 

the mth and lth row vectors of Γ1, Γ2, respectively. In fact,  and 
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 are the variance components of the mth and lth elements of the random effects 

Γ1bi and Γ2bi. We form the penalty terms for the random effects in a group manner so that 

the estimates of elements of the entire vectors γ1m and γ2l are either all zero or at least one of 

the estimates is non-zero. The group penalties on γ1m and γ2l will ensure selection for the 

covariance structure due to the following connection of covariance matrices D1, D2 and the 

Cholesky decomposition matrices Γ1, Γ2 (Wang et al., 2010):

(4)

From (4), it follows that if γ1m = 0, then the diagonal element D1mm, the variance of the 

random effect (Γ1bi)m, is zero. Furthermore, for any h ≠ m, the off-diagonal element D1mh = 

D1hm = 0 implies that the covariance between (Γ1bi)m and all other random effects are zero. 

Thus, the random effect (Γ1bi)m in longitudinal component is to be excluded from the model 

and the positive-definiteness of D1 will be preserved. This applies to the random-effect 

selection in the survival component as well, which is to shrink the whole vector γ2l to zero.

To perform group penalties on vectors γ1m and γ2m, we first summarize the penalties using 

L2–norm:  and  for m, l = 2, ···, q. Following Yuan 

and Lin (2006), the adaptive LASSO penalties are defined as: 

 and . We use adaptive LASSO 

penalties in the simulation study. Note that the summation starts from m = 2, l = 2, as we 

keep the random intercepts in both the longitudinal and survival components without 

eliminating the possible minimal within-cluster correlation. λ3 and λ4 are the positive tuning 

parameters, and ωγ1m, ωγ2l, are the positive weights associated with penalties on ||γ1m|| and ||

γ2l||. Let 

, 

and the penalized likelihood with the adaptive LASSO penalties can be written as

(5)

Penalized likelihood with SCAD penalties could be constructed by substituting the penalty 

terms in (5) using SCAD. The estimator of θ can be obtained by maximizing (5).

2.3 EM Algorithm for Optimization of the Penalized Likelihood

To maximize the penalized likelihood (5), we use an EM algorithm. We start with the 

penalized log-complete likelihood for (Oi, bi) for i = 1, ···, n, which is

(6)
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In Equation (6), S(·) is the survival function of ti conditional on bi. Let λ = (λ1, λ2, λ3, λ4)T 

and ω = (ωβ1j, ωβ2k, ωγ1m, ωγ2l)
T. We denote gc,i1 = (yi, X1i, Z1i, bi), gc,i2 = (ti, δi, x2i, z2i, bi) 

and gc,i = (yi, X1i, Z1i, ti, δi, x2i, z2i, bi) as the complete data for longitudinal, survival and 

both components, respectively, and go,i1 = (yi, X1i, Z1i), go,i2 = (ti, δi, x2i, z2i) and go,i = (yi, 

X1i, Z1i, x2i, z2i) as the corresponding observed data.

2.3.1 E-step—We first derive the E-step of the EM algorithm for the given λ and ω. 

Assuming that we have estimates θ(s) from the (s)th iteration of the maximization step, we 

take the expectation of the penalized log-complete likelihood conditional on θ(s) and goi, for 

i = 1, …, n and obtain the following penalized Q-function:

(7)

We write

(8)

for each of H(bi) = log fy(gc,i1, θ), H(bi) = δi log h(gc,i2, θ), and H(bi) = log S(gc,i2, θ). 

Because integral (8) is intractable, we approximate it by using a multivariate Gaussian 

quadrature method (Pinheiro and Bates, 1995). Since bi ~ N(0, Iq), if we choose k quadrature 

points in each dimension, there will be kq vector nodes of q × 1 dimension. Let 

 denote the lth node, and wl the corresponding quadrature weight, for l 

= 1, ···, kq, integral in (8) can be approximated by

(9)

We therefore obtain the approximated penalized Q-function in the (s + 1)th iteration

(10)

The last term  in (7) does not involve any unknown 

parameters, thus could be omitted from the optimization.

2.3.2 M-step—We maximize (10) with respect to the fixed- and random-effect parameters 

alternatively. When (Γ1,Γ2, φ) are fixed, we maximize (10) with respect to (β1, β2), and the 

penalty function involving L1 penalty terms can be solved by applying the LARS/LASSO 

algorithm (Efron et al., 2004) and the SCAD penalties could be solved according to Fan and 

Li (2001). When (β1, β2, φ) are fixed, we maximize (10) with respect to (Γ1, Γ2). Following 
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Lin and Zhang (2006) and Wang et al. (2010), we transform the optimization problem to a 

two-step equivalent objective function involving quadratic penalty term that is easier to 

solve. Specifically, let

then for any given β̂ and (λ, ω), the following two optimization problems with respect to γs 

achieve the same solution:

(11)

(12)

Let (γ̂
1m, γ̂

2l) be the maximizer of (11), and (ζ̃
1m, γ̃

1m, η̃
2l, γ̃

2l) be the maximizer of (12), 

then we have

(13)

(14)

(13) and (14) imply that one can optimize (12) iteratively with respect to (γ1m, γ2l) and (ζ1m, 

η2l), instead of directly maximizing (12). Maximizing (12) with respect to (γ1m, γ2l) when 

(ζ1m, η2l) is given is similar to a generalized ridge regression. When (γ1m, γ2l) is given, (ζ1m, 

η2l) could be easily computed from (14).

Let Θ = (θ, ζ1m, η2l), where θ = (β1, β2, Γ1, Γ2, φ) are defined in section 2.2. We propose the 

expectation conditional maximization procedures to optimize the penalized likelihood and 

the details are described in the Supplementary Materials (Web Appendix 1). The typical 

values for the weights are selected as: 

, where , 

γ̂
1m

*, γ̂
2l

* are the unpenalized MLEs (Zou, 2006; Ibrahim et al., 2011) and  are the 

normalizing constants for penalty parameters γ1m, γ2l to accommodate the varying sizes of 

γ1m, γ2l.

2.4 Tuning Parameter Selection and Two-stage Estimation

A data-driven method for determining tuning parameters is essential for variable selection. 

Criteria such as generalized cross-validation, k-fold cross validation, AIC, BIC, or GIC have 
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been used as the objective scores to minimize over a preselected grid of tuning parameters. 

BIC is known to be consistent in the model selection (Shao, 1997; Pu and Niu, 2006). Wang 

et al. (2009) showed that selecting tuning parameters via BIC consistently yielded the true 

model in the linear model setting. Ibrahim et al. (2011) showed that selecting tuning 

parameters for mixed-effects selection via BIC-type ICQ criterion also consistently yielded 

true models in generalized linear mixed models; their simulation study further showed that 

the approach worked well in finite sample situations. Thus, we propose to use the BIC-type 

criterion to determine the values of tuning parameters, where

(15)

In (15), θ̂ are the estimators obtained from penalized likelihood under the given λ, and lo(θ̂) 

is the value of the observed likelihood lo(θ) at the estimates θ̂. The solution is chosen to 

minimize the BICλ criterion. In this BIC-type criterion, the total sample size n is used. We 

take d, the total number of non-zero estimates of θ̂ as the degree of freedom dfλ. In the linear 

model, d is an unbiased estimator of dfλ. Our simulation shows this criterion works well, as 

suggested by Pu and Niu (2006).

To reduce the estimation bias, we propose a two-stage process. In the first stage, we focus 

on variable selection and use the penalized likelihood method to select the model that 

minimizes the BIC value. In the second stage, we re-estimate parameters using selected 

variables without penalty for selection, to reduce the estimation bias.

3. Simulation study

3.1 Data generation

We conduct a simulation study to examine the performance of the proposed method. We 

generate data under six different scenarios.

For Scenarios 1 to 4, we generate the longitudinal outcome Yij from the following model:

(16)

and the failure time from a Weibull distribution with the hazard function:

(17)

for i = 1, …, 250, j = 1, …, 5, where λ0(t) = αλtα−1 with α = 2, and λ = exp(1) = 2.718.

Random effect vector bi is independently generated from N(0, I5). bli = (bli,0, bli,1, bli,2, bli,3, 

bli,4) is obtained from bli = Γ1bi and bsi = (bsi,0, bsi,1, bsi,2, bsi,3, bsi,4) is obtained from bsi = 

Γ2bi, where Γ1 = σDR1 and Γ2 = σDR2, with lower triangular matrix 

 and . 

Covariates X1ij,1 = Z1ij,1, X1ij,2 = Z1ij,2, X1ij,4 = Z1ij,4 and x2i,1 = z2i,1, x2i,2 = z2i,2, x2i,4 = z2i,4 

are generated as independent N(0, 1) variables; X1ij,3 = Z1ij,3 and x2i,3 = z2i,3 are binary 

variables with equal probability taking value 0 or 1. The measurement error εij ~ i.i.d.N(0, 
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1). Censoring time is independently generated from an exponential distribution to achieve 

the desired censoring percentage.

In Scenario 1, we set σD to  and censoring percentage to 30%; in Scenario 2, we set σD 

to  and censoring percentage to 30%; in Scenario 3, we set σD to  and censoring p 

percentage to 10%; in Scenario 4: we set σD to  and censoring percentage to 10%.

We additionally simulated data settings where there are higher proportions of censoring 

(Scenario 5) and larger numbers of random effects (Scenario 6). We describe the data 

generation schemes and simulation results from those settings in the Supplemental Materials 

(Web Appendices 2–3, Web Table 1–6).

For each scenario, we generate 100 data sets and apply the proposed method to select the 

non-zero fixed or random effects in the first-stage model. After obtaining the selected 

variables, we fit the second-stage model including only the selected effects. The tuning 

parameters λ1, λ2, λ3, λ4 are determined by minimizing the BIC criterion, as defined in (15). 

The model without variable selection is also fitted for comparison.

3.2 Simulation results

For Scenarios 1 to 4, we present the fixed- and random-effect selection results in Table 1, 

fixed-effect estimation results in Table 2, and random-effect estimation results in Table 3. 

For fixed effects, the average correct selection rates are 100% for both non-zero and zero 

effects in longitudinal component, and 100% for non-zero and 98% for zero effects in 

survival component. The longitudinal fixed-effect estimates do not show severe biases in the 

first-stage estimation, and the biases are further reduced to less than 1% in the second-stage 

estimation. The survival fixed-effect estimates show 15% to 25% biases in the first-stage 

estimation, and the biases are reduced to below 4% in the second-stage estimation.

For random effects, the average rates of correct selection are 100% for non-zero and 94% 

for zero effects in longitudinal component, and approximately 96% for non-zero and 90% 

for zero effects in survival component. For non-zero random effects, the estimates in 

longitudinal component have biases ranging from 8% to 17% in the first-stage estimation, 

and the biases are reduced to below 6% in the second-stage estimation. The survival non-

zero random effect estimates show up to 42% biases in the first-stage estimation; in the 

second stage, the biases are reduced to less than 8%. For zero random effects, both the first- 

and second-stage estimates in longitudinal component have biases below 2%. The survival 

zero random effect estimates generally have less than 10% biases in both stage estimations.

Simulation results for settings with higher proportions of censoring and larger numbers of 

random effects are reported in the online Supplemental Materials (Web Table 1–6). Briefly, 

we find that the probabilities of correct selection remain excellent for those data settings.

One consequence of including more random effects is the increased computing time. The 

complexity of Gaussian quadrature increases exponentially with the dimension of the 

random effect vector. In this research, we used 3 quadrature points. With 3 quadrature 

points, each data set in Scenarios 1 to 4 took approximately 20 minutes to complete the first 
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stage variable selection under one tuning parameter; and it took another 10 minutes in the 

second stage estimation. When we increased the number of random effects to 8 (as in 

Scenario 6), the computation time increased to 10 and 5 hours, respectively. The computing 

time is estimated on a single CPU (Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz) and 4 GB 

memory in the Unix system. The total computing time depended on the number of tuning 

parameters. Other factors, such as the shape of the likelihood function could also influence 

the approximation accuracy of Gaussian quadrature and the computing time.

Generally, mis-selection rate increases as the censoring rate increases or the variance 

magnitude σD decreases, since smaller variance σD means less resolution between non-zero 

and zero random effects. The mis-selection subsequently leads to larger estimation bias. The 

influence of censoring rate on selection accuracy is greater than that of variance. Increased 

number of random effects does not necessarily lead to worse selection accuracy, but it tends 

to slightly increase estimation bias, which may be due to the reduced approximation 

accuracy of Gaussian quadrature method. The estimates from the model without variable 

selection generally have more biases than the second-stage estimates, especially for the zero 

effects. In summary, we contend that the proposed variable selection and estimation method 

works well even under high proportions of censoring and large number of random effects. 

The two stage procedure ensures good selection performance in the first stage and reduced 

biased parameter estimation in the second stage.

4. Data application

To illustrate the method, we analyzed observational data from the CHF study. As previously 

stated, the main purpose of the investigation is to assess the effects of medication adherence 

on disease exacerbation and patient survival. For the survival outcome, we modeled the time 

from the first recorded CHF diagnosis to patient mortality, which could be censored on Dec 

31, 2009. For the longitudinal outcome, we modeled the repeatedly measured BNP levels as 

markers of disease exacerbation. Because the distribution of BNP skewed strongly to the 

right, we used the logarithmic-transformed BNP (log(BNP)) in the model. Medication 

adherence, the independent variable of primary interest, was the average proportion of days 

covered (PDC) by all prescribed medications within each patient (Choudhry et al., 2009). 

Besides PDC, seven other risk factors were considered, including systolic blood pressure 

(SBP), diastolic blood pressure (DBP), BMI, gender, age at CHF diagnosis date (IndexAge), 

number of comorbidities (NumComorbid) and number of medications taken (NumMed). We 

also considered interactions among SBP, DBP, BMI, PDC and gender.

In the study sample, 58.3% of the subjects were females and the average BMI was 32.7 

(kg/m2). The average age for the study cohort at the CHF diagnosis date was 62.7 years. On 

average, the study subjects had 5.1 comorbidities and took 8.4 medications with a mean 

PDC of 0.327. Among the covariates, concurrently measured SBP (mean: 134.8mmHg; SD: 

24.2 mmHg) and DBP (mean: 77.0mmHg; SD: 16.0 mmHg) were recorded at the time of 

BNP assessment; the remaining variables were collected as baseline covariates. The 

censoring percentage was 64.1%, and median time to death was 4115 days (11.3 years).
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For longitudinally measured BNP levels, we use linear mixed-effects model log(BNP)ij = 

x1,ijβ1+z1,ijΓ1bi+εij for i = 1, …, 1702, and j = 1, …, ni. We let x1,ij = (1, DBPij, SBPij, BMIi, 

PDCi, Genderi, DBPij × Genderi, SBPij × Genderi, BMIi × Genderi, PDCi × Genderi, 

NumComorbidi, NumMedi, IndexAgei) be the design matrix of the fixed effects and z1,ij = (1, 

DBPij, SBPij, BMIi, PDCi) be the design matrix of the random effects. We assume that bi 

follows N(0, I5) and we let εij ~ i.i.d.N(0, σ2) be the measurement error.

For mortality, we assume that the survival time ti follows a Weibull distribution. We use a 

proportional hazard model h(ti) = h0(ti) exp(x2,iβ2+z2,iΓ2bi), with baseline hazard 

 for i = 1, …, 1702, where α is the shape parameter and λ is the scale 

parameter. We let i x2,i = (1, DBPi1, SBPi1, BMIi, PDCi, Genderi, DBPi1×Genderi, 

SBPi1×Genderi, BMIi× Genderi, PDCi ×Genderi, NumComorbidi, NumMedi, IndexAgei) be 

the design matrix for the fixed effects and z2,i = (1, DBPi1, SBPi1, BMIi, PDCi) be the design 

matrix for the random effects. Given the random effect bi, we assume that log(BNP)ij, 

log(BNP)ij′ and ti are conditionally independent.

Data analytical results are presented in Table 4. For longitudinally measured BNP, our 

procedure selects DBP, BMI, NumComorbid, and IndexAge as non-zero fixed effects; SBP 

and PDC as non-zero random effects. For the survival outcome, NumMed is selected as the 

non-zero fixed effect; PDC as non-zero random effect. The residual plots (Web Figure 1) 

show no violation of basic model assumptions for the two outcomes. The selected model has 

a smaller BIC value than the full model and a reduced model including all fixed effects and 

random intercept.

The effects of the selected variables on the outcomes are in expected directions. In the 

longitudinal model, DBP is positively associated with BNP (β = 0.0145) (greater diastolic 

dysfunction is associated with increased BNP level). BMI exhibits a significant negative 

association with BNP. For each unit of increase in BMI, log-BNP level decreases by 0.0299 

(β = −0.0299). This result is not surprising as patients at advanced stage of CHF (indicated 

by greater BNP values) tend to have deteriorated health and much reduced body weight. 

Interestingly, blood pressure is not found to be associated with the survival outcome, which 

is influenced more strongly by the number of medications. Patients taking more medications 

have reduced mortality risk (β = −0.1163). Patients who are older at CHF diagnosis tend to 

have significantly increased mortality risk (β = 0.0044). PDC, our primary variable of 

interest, has non-zero random effects in both longitudinal (SD=2.8857) and survival 

(SD=1.7911) components, which implies that medication adherence is the underlying latent 

process influencing both the BNP level and patient survival, and further suggests that the 

effects of medication adherence on the outcomes may vary across subjects. The shared 

random intercepts in the longitudinal component (SD=2.6735), and in the survival 

component (SD=0.9657) are also non-zero, which implies a strong within-patient correlation 

between the two outcomes as well. The heart failure patient data and code for its variable 

selection are provided online in the Supplemental Materials.
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5. Discussion

Despite the increasing popularity of joint models in practical data analysis, few variable 

selection tools are available for identifying appropriate models. In this paper, we propose a 

method that simultaneously selects random and fixed effects in a joint model setting. For 

random effect selection, we apply a Cholesky parametrization to the covariance matrix of 

random effects and use a group penalty, as previous studies have done (Bondell et al., 2010; 

Ibrahim et al., 2011). This parametrization has made the mixed-effects selection easily 

adaptable in the complicated joint model settings. Our simulation study shows that the 

proposed method could correctly identify important fixed and random effects 

simultaneously, even in the presence of a high proportion of censoring and a large number 

of random effects. The two-stage model fitting process has helped to control the estimation 

biases caused by the inclusion of penalty.

A major challenge of using penalized likelihood for variable selection is the computational 

complexity. The observed likelihood or the E-step in the EM algorithm involves analytically 

intractable integration. The MCMC method for integral approximation is computationally 

intensive. Laplace approximation could be a useful alternative, as it has been shown to offer 

improved computation efficiency at the expense of extra estimation bias (Ye et al., 2008). 

The Gaussian quadrature method used in the current study exhibits excellent stability (At the 

threshold of 10−7, our simulation shows a 100% convergence rate in Scenarios 2–6, and 

92% convergence rate in Scenario 1; Generally, the simulation converges within 60 

iterations). As we have demonstrated in the simulation, the proposed method can easily 

handle up to eight random effects. A possible alternative of Gaussian quadrature is the 

pseudo-adaptive Gauss-Hermite quadrature rule, which has been shown to be faster in 

computation with comparable accuracy in the joint model setting (Rizopoulos, 2012). In 

practice, considering the fact that most biomedical applications use random effects to 

accommodate structured data dependency, thus will have a relatively small numbers of 

random effects, we contend that the proposed method is likely adequate for most 

applications. Additionally, as we have demonstrated through simulation, the number of 

quadrature points has limited impact on the accuracy of model selection. As a result, for 

complicated models one could use a smaller number of quadrature points to enhance 

computational efficiency in the first stage, and then increase the number of quadrature points 

in the second stage to achieve desired estimation accuracy. Comparing our simulation results 

with the reported performance in linear mixed-effects models (Bondell et al., 2010), 

generalized linear mixed models (Ibrahim et al., 2011), and survival models (Zhang and Lu, 

2007), we note that our method has achieved comparable selection and estimation accuracy.

In summary, we show that penalized likelihood method can be used for variable selection in 

joint model settings. The procedure can be modified for the simultaneous mixed-effects 

selection in other bi-component models. Our research has demonstrated, through a real data 

example, that the proposed method provides a useful tool for practical data analysis. The 

method is easy to implement and it is efficient in computation.
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Table 4

Results for the heart failure patient data analysis.

Longitudinal component Survival component

Fixed Effecta Variance Componentb Fixed Effecta Variance Componentb

Intercept 5.0042±0.2321 2.6735 - 0.9657

DBP 0.0145±0.0016 0 0 0

SBP 0 0.0133 0 0

BMI −0.0299±0.0030 0 0 0

PDC 0 2.8857 0 1.7911

Gender 0 - 0 -

DBP × Gender 0 - 0 -

SBP × Gender 0 - 0 -

BMI × Gender 0 - 0 -

PDC × Gender 0 - 0 -

Num. of comorbidities 0.1197±0.0196 - 0 -

Num. of drugs 0 - −0.1163±0.0121 -

Index Age −0.0033±0.0022 - 0.0044±0.0024 -

a
Estimate of β1 ± SE and β2 ± SE.

b
Estimate of ) and .
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