
 Open access  Journal Article  DOI:10.1109/TII.2020.2984482

Simultaneously Encoding Movement and sEMG-Based Stiffness for Robotic Skill
Learning — Source link 

Chao Zeng, Chenguang Yang, Hong Cheng, Yanan Li ...+1 more authors

Institutions: South China University of Technology, University of Electronic Science and Technology of China,
University of Sussex

Published on: 01 Feb 2021 - IEEE Transactions on Industrial Informatics (IEEE)

Topics: Impedance control, Robot and Stiffness

Related papers:

 Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives

 A Learning Framework of Adaptive Manipulative Skills From Human to Robot

 Force-based variable impedance learning for robotic manipulation

 A Framework for Teaching Impedance Behaviours by Combining Human and Robot ‘Best Practice’

 Force-Based Learning of Variable Impedance Skills for Robotic Manipulation

Share this paper:    

View more about this paper here: https://typeset.io/papers/simultaneously-encoding-movement-and-semg-based-stiffness-
51krmmggj8

https://typeset.io/
https://www.doi.org/10.1109/TII.2020.2984482
https://typeset.io/papers/simultaneously-encoding-movement-and-semg-based-stiffness-51krmmggj8
https://typeset.io/authors/chao-zeng-68cmv6usss
https://typeset.io/authors/chenguang-yang-3cm24myc8l
https://typeset.io/authors/hong-cheng-2x4qj96sa3
https://typeset.io/authors/yanan-li-4ncx4ixbvs
https://typeset.io/institutions/south-china-university-of-technology-2q6g6xo8
https://typeset.io/institutions/university-of-electronic-science-and-technology-of-china-2ngxdbs5
https://typeset.io/institutions/university-of-sussex-3pmbfkl0
https://typeset.io/journals/ieee-transactions-on-industrial-informatics-1gm33xe8
https://typeset.io/topics/impedance-control-3acodl26
https://typeset.io/topics/robot-2gtn7p2t
https://typeset.io/topics/stiffness-v88k8z92
https://typeset.io/papers/robot-learning-system-based-on-adaptive-neural-control-and-2vmne3vsl5
https://typeset.io/papers/a-learning-framework-of-adaptive-manipulative-skills-from-lu9qmlka5n
https://typeset.io/papers/force-based-variable-impedance-learning-for-robotic-1x048ryb7k
https://typeset.io/papers/a-framework-for-teaching-impedance-behaviours-by-combining-1hm359da4f
https://typeset.io/papers/force-based-learning-of-variable-impedance-skills-for-1xe50nfbxs
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/simultaneously-encoding-movement-and-semg-based-stiffness-51krmmggj8
https://twitter.com/intent/tweet?text=Simultaneously%20Encoding%20Movement%20and%20sEMG-Based%20Stiffness%20for%20Robotic%20Skill%20Learning&url=https://typeset.io/papers/simultaneously-encoding-movement-and-semg-based-stiffness-51krmmggj8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/simultaneously-encoding-movement-and-semg-based-stiffness-51krmmggj8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/simultaneously-encoding-movement-and-semg-based-stiffness-51krmmggj8
https://typeset.io/papers/simultaneously-encoding-movement-and-semg-based-stiffness-51krmmggj8


Simultaneously encoding movement and sEMG-based stiffness 
for robotic skill learning

Article  (Accepted Version)

http://sro.sussex.ac.uk

Zeng, Chao, Yang, Chenguang, Cheng, Hong, Li, Yanan and Dai, Shi-Lu (2021) Simultaneously 
encoding movement and sEMG-based stiffness for robotic skill learning. IEEE Transactions on 
Industrial Informatics, 17 (2). pp. 1244-1252. ISSN 1551-3203 

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/90632/

This document is made available in accordance with publisher policies and may differ from the 
published  version or from the version of record. If you wish to cite this item you are advised to 
consult the publisher’s version. Please see the URL above for details on accessing the published 
version. 

Copyright and reuse: 
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable, the material 
made available in SRO has been checked for eligibility before being made available. 

Copies of full text items generally can be reproduced, displayed or performed and given to third 
parties in any format or medium for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge, provided that the authors, title and full bibliographic 
details are credited, a hyperlink and/or URL is given for the original metadata page and the 
content is not changed in any way. 

http://sro.sussex.ac.uk/


1

Simultaneously Encoding Movement and

sEMG-based Stiffness for Robotic Skill Learning
Chao Zeng, Student Member, IEEE, Chenguang Yang, Senior Member, IEEE,

Hong Cheng, Senior Member, IEEE, Yanan Li, Member, IEEE, Shi-Lu Dai, Member, IEEE

Abstract—Transferring human stiffness regulation strategies to
robots enables them to effectively and efficiently acquire adaptive
impedance control policies to deal with uncertainties during the
accomplishment of physical contact tasks in an unstructured en-
vironment. In this work, we develop such a physical human-robot
interaction (pHRI) system which allows robots to learn variable
impedance skills from human demonstrations. Specifically, the
biological signals, i.e., surface electromyography (sEMG) are
utilized for the extraction of human arm stiffness features during
the task demonstration. The estimated human arm stiffness is
then mapped into a robot impedance controller. The dynamics of
both movement and stiffness are simultaneously modeled by using
a model combining the hidden semi-Markov model (HSMM) and
the Gaussian mixture regression (GMR). More importantly, the
correlation between the movement information and the stiffness
information is encoded in a systematic manner. This approach
enables capturing uncertainties over time and space and allows
the robot to satisfy both position and stiffness requirements
in a task with modulation of the impedance controller. The
experimental study validated the proposed approach.

Index Terms—Adaptive Impedance Control; Multimodality;
Human-robot interaction systems

I. INTRODUCTION

Programming by demonstration (PbD) is regarded as one

of the most promising ways to enable robots to efficiently

acquire the ability of performing tasks by transferring human

dexterous manipulation skills to them [1–3]. Especially, for

in-contact tasks where force profiles in addition to positional

profiles need to be regulated [4], PbD allows relaxing the

analytical burden required for the process of human-to-robot

physical skills transfer [5]. One of the challenges is to enable

a robot to learn human-like behaviours with flexibility and

impedance adaptation [6–9]. Especially for force-dominant

tasks [10], this challenge needs to be addressed urgently.

A potential way to equip the robots with a high level of

interaction capabilities is to explore human’s underlying sen-

sorimotor principles and integrate multimodal information into

the robotic control policies [11–13]. Neurological research has

shown that humans can adapt limb impedance subconsciously

to deal with different situations when performing tasks thanks

to the central nervous system (CNS). The development of
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a PbD system for transferring such a kind of impedance

regulation mechanism from a human instructor to a robot,

therefore, can to a large extent facilitate the improvement

of robot learning dexterous skills. Actually, a number of

studies inspired by the research in human neuroscience and

biomechanics have sought to transfer the sEMG-based human

limb stiffness regulation skills to the robots and achieved

encouraging results [14, 15]. By utilizing the sEMG signals

collected from the human limb for representing the activation

level of the human muscles, the human arm joint or end-

effector stiffness can be estimated and in real-time extracted

during the task execution [16–19].

One of the most significant benefits of the bio-inspired

human-to-robot impedance feature transfer is that adaptive

impedance control for robotic arms can be realized, which

has demonstrated better performance than position control or

invariant impedance control for in-contact tasks by a number

of works (e.g., [4, 14, 15, 20, 21]). In [22], a learning

framework was established for achieving variable impedance

control for robots. However, the variable impedance profiles

are obtained via a time-consuming process which may limit the

framework’s functionality available to real world applications.

In [4, 20], the variable stiffness profile in task space is

computed partially based on the measured forces through an

external high-accuracy force sensor mounted on the robot

end-effector, thus increasing the cost of the HRI system.

Compared with these methods, the sEMG-based human-to-

robot impedance transfer has the following advantages: i) the

cost is no longer a problem since the human limb sEMG

signals can usually be collected via some cheap devices (e.g.,

MYO Armhand); ii) the human limb stiffness profiles can be

extracted in a real time manner, guaranteeing the efficiency

of the realization of the variable impedance control [23];

and iii) in this way, most importantly, the human factors

(e.g., flexibility and adaptability) are taken into account within

the process of the human-to-robot skill transfer, which can

facilitate the interactions between humans and robots [24] and

robotic dexterous manipulations [25].

One issue of this impedance skill transfer is to represent the

stiffness profile during robot task execution. This is because

simply reproducing the learned control policies from humans

is often insufficient for the robot to successfully accomplish a

specific task, especially when dealing with the task situations

different from the demonstration. One solution to this issue is

to equally treat movement trajectories and stiffness profiles by

simultaneously encoding them in a systematic manner [26]. In

[27, 28], a framework was proposed to achieve this goal by
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encoding movement and stiffness in parallel using dynamic

movement primitives (DMP). DMP encodes each dimension

of movement and stiffness separately, allowing the learning of

the control policies in each dimension without changes to the

basic approach [29]. Modeling the dimensions independently,

however, can not leave room for exploiting the correlation

between movement trajectories and stiffness profiles [4].

In [30], the framework combining Hidden Markov Model

(HMM) and GMR was proposed to generate a probabilistic

model of demonstrated data, by modeling a joint probabil-

ity density function between the position and the velocity

using HMM, and by generalizing the learned skills through

regression using GMR. In [31], the hidden semi-Markov

model (HSMM) was further used to encode the duration

information of each HMM state such that the duration and

position information can be encapsulated in a robust manner

with parameterization on the involvement of both temporal and

spatial constraints. In [20], GMM was used to model both

movement and force patterns for robot learning impedance

behaviors. In [4], the HSMM-GMR model was proposed to

encode the demonstration data, plus the force profiles sensed

at the robot end-effector. Inspired by the encouraging results

of the use of these models, our work develops a PbD approach

based on the HSMM-GMR model, encoding the demonstrated

data including the stiffness profiles extracted from the human

instructor.

The contributions of this work are summarized as follows:

i) We develop a PbD system for human-robot variable

impedance skill transfer, which enables the robots to phys-

ically interact with the environment by directly adapting

the human instructor’s arm impedance profiles without force

sensing at the robotic manipulator.

ii) A novel approach is proposed to encode both the

demonstrated movement trajectories and the stiffness profiles,

considering the correlation between the physical information

and the biological information in a systematic manner. The

evolution of the stiffness profiles depends on the position

information, which can improve the performance of the robot’s

task execution.

II. METHODOLOGY

A. The PbD system overview

The overview diagram of the proposed PbD system is shown

in Fig. 1, which includes three phases:

Demonstration: In a conventional PbD system, a human

instructor demonstrates the skills to accomplish one specific

task, during which the demonstration trajectories (sometimes

including forces) are recorded for subsequent usage. In our Pb-

D system, the instructor’s arm sEMG signals are also extracted

for stiffness estimation of the human arm (see Subsection II-

B). The teleoperation based on a dual-arm control strategy

is used for task demonstration, in which a haptic feedback

mechanism is introduced for easy regulation of the instructor’s

muscle activations [15].

Model training: The second phase is model training (see

Subsection II-C 1). The demonstration profiles are fitted into

the HSMM model and the model parameters are accordingly

Fig. 1: Workflow diagram of learning from demonstration for

human robot variable impedance skill transfer.

computed. In this way, the dynamics of the movement and the

stiffness are modeled and learned.

Robot task execution: Finally, the robot executes the learned

task based on the desired control policies, which are generated

by GMR in accordance with the estimated parameters and the

current measured robot state (see Subsection II-C 2).

B. Stiffness Extraction

1) Human arm Cartesian impedance model: Generally, the

dynamic behaviour of the human arm during human-robot

interaction is usually described as a mechanical impedance

which relates to the desired force F of the limb endpoint to a

deviation from the desired position x. It is defined as below

F = IH ẍ+DH ẋ+Kcx (1)

where IH , DH and Kc are inertia, damping and endpoint

Cartesian stiffness matrices of human arm, respectively. By

ignoring the negligible influence of the muscle mass distribu-

tion on IH in the vicinity of the predefined posture [14], the

control objective (1) can be simplified by dropping the inertia

term in the control loop with the following form

F = DH ẋ+Kcx (2)

where the limb endpoint stiffness matrix Kc takes the form

as below

Kc =

[

KP KPR

KRP KR

]

(3)

with KP relating forces to positional profiles, KPR relat-

ing forces to rotational profiles, KRP relating torques to

positional profiles, and KR relating torques to rotational

profiles. For simplicity, the off-diagonal components (owing

to the existence of cross-joint muscles) can be assumed as

KPR = KRP = 0 during the experiments [24]. It means that

positional profiles only result in force corrections, and rotation-

al profiles only result in torque corrections. Correspondingly,

the damping matrix DH is defined in the same structure as

the endpoint stiffness matrix, i.e.,

DH =

[

DP 0

0 DR

]

(4)

In our work, the stiffness Kc is estimated based on the

sEMG signals extracted from the human instructor’s limb. The

robot end-effector force which can be seen as a consequence
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of the stiffness modulation [32], therefore, can adapt to task

requirements.

2) sEMG-based human arm endpoint stiffness acquisition

from demonstrations: This module is developed to enable the

robot learning of the impedance regulation strategy from the

human instructor’s demonstrations. To this end, the human

instructor’s arm endpoint stiffness is estimated first.

The relation between the end-effector stiffness of the human

arm and the joint stiffness is described as [23]

Kc(p, x) = J+T (x)[KJ(p, x)−GJ(x)]J
+(x) (5)

with

GJ(x) =
∂J(x)f0

∂x
+

∂τg(x)

∂x
(6)

and

KJ(p, x) = c(p)Kmin
J (7)

where Kc(p, x) and KJ(p, x) are the Cartesian stiffness

matrix and the joint stiffness matrix of the human instructor,

respectively, with p and x denoting the muscle activity (consid-

ered as the stiffness indicator in this work) and the joint angle

vector, respectively. J(x) represents the human arm Jacobian

matrix. GJ(x) takes into account the effect of arm geometry

in the presence of external force f0 and gravity load τg(x). (5)

and (6) suggest that the Cartesian stiffness profile depends on

the joint stiffness (through the muscle activities of contraction

and co-contraction), the exerted external force and gravity. In

our case, for simplicity f0 and τg(x) are dropped within the

identification of the human arm parameters as suggested in

[23]. c(p) is a variable coefficient that will be introduced later.

Kmin
J is the minimal joint stiffness.

The muscle activity indicator is obtained based on the ex-

traction of the human instructor’s sEMG signals. The collected

raw sEMG signals are first smoothed using a moving average

process, subsequently filtered by a low-pass filter (2nd order

low-pass filter with cutoff frequency 2.5 Hz). In this way, an

envelope from the raw sEMG signals is extracted.

According to [23, 33], we use a single joint stiffness as the

estimation of the human instructor’s arm stiffness along the

relevant axis in the Cartesian space. It is reasonable to do so

because a stiffening pattern can be observed among different

antagonistic pairs thanks to the human arm muscle activations

following a synergistic way [34]. In our work, the antagonistic

muscles Biceps and Triceps are utilized to compute the muscle

stiffness indicator as below

p =
1

W
(

W−1
∑

k=1

EB(t− k) +

W−1
∑

k=1

ET (t− k)) (8)

where W is the predefined window size. EB(·) and ET (·)
denote the amplitudes of the enveloped sEMG signals of

Biceps and Triceps, respectively. t and k represent the current

sampling time and the sample point, respectively.

Then, the muscle stiffness indicator is mapped to the coef-

ficient c(p) in the model of the human arm endpoint stiffness

by

c(p) = 1 +
γ1[1− e−γ2p]

1 + e−γ2p
(9)

Fig. 2: Graphical representation of the two joint Gaussian

distributions P(x, ẋ) and P(x, kj), respectively, encoded in

each of two continuous HSMMs of K states. The output

distribution of each state of these two HSMMs is represented

by a Gaussian locally encoding variation and correlation

information between position and velocity, and position and

stiffness, respectively.

where γ1 and γ2 are predefined constant coefficients affect-

ing the amplitude and the shape of c(p), respectively. The

estimation of the desired Cartesian stiffness profile can be

then obtained in accordance with [14] requiring an off-line

identification and calibration process before demonstrations,

which will not be detailed in this paper.

Subsequently, the normalized human arm endpoint stiffness

is mapped to the robotic arm endpoint stiffness Kr by

Kr =











Kmax
r Kr > Kmax

r

γKc Kmin
r < Kr < Kmax

r

Kmin
r Kr < Kmin

r

(10)

where Kmax
r and Kmin

r are the pre-set values of the robotic

arm endpoint stiffness. γ is a pre-set constant enabling the

robot to work with an endpoint stiffness within a proper range.

To summarize, after the parameters of the human arm stiffness

model are estimated, during one specific demonstration the

human arm endpoint stiffness can be extracted by (9), (7) and

(5), and further mapped to the robot endpoint through (10).

C. Demonstration data modeling with the HSMM model

Our developed method based on the HSMM model and

the GMR model applied to PbD is first proposed in [30]

and [31], respectively. The work [4] combines these two

models considering forces for in-contact tasks. In order to

achieve human robot variable impedance skill transfer, our

method takes into account stiffness profiles recorded during

demonstrations.

Our method includes two basic steps. First, the HSMM is

used to model the dynamics of the demonstration trajectories

with a continuous Gaussian observation probability distribu-

tion assigned to each HSMM state. The parameters of this

model are learned with the Baum-Welch algorithm from the

demonstration trajectories in an offline manner. Then, based

on the estimated parameters the GMR is utilized to compute

the desired stiffness profiles at each time step [35].
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1) Encoding Demonstration Data with HSMM: Given a set

of M demonstrations, each demonstration m ∈ {1, . . . ,M}
consists of a set of Tmax samples representing the robot

movement trajectories in joint space and stiffness extracted

from the human instructor’s arm. The HSMM with K states

is parametrized by:

Θ = {{ai,j}
K
j=1,j 6=i, πi, µ

D
i ,ΣD

i ,µi,Σi}
K
i=1 (11)

where πi is the initial probability of the ith state. aij is the

transition probability from state j to i. µD
i and ΣD

i are sets

of mean values and variances, respectively, modelling the K

Gaussian parametric duration distributions. µi and Σi are sets

of mean vectors and covariance matrices of the K Gaussian

joint observation probabilities, respectively.

The ith state duration probability density function is defined

as

pDi (t) = N (t;µD
i ,ΣD

i ) (12)

with t = 1, . . . , tmax. tmax is the maximum allowed duration

of a HSMM state which is usually determined by

tmax = η
Tmax

K
(13)

where η is a scaling factor that is set 2 ∼ 3 so as to guarantee

that pDi (t) is well defined even if EM converges to poor local

optima [31].

The observation probability at each time step t for the ith

state is defined by

pi(zt) = N (zt;µi,Σi) (14)

where 1zt = [xT
t ẋT

t ]
T and 2zt = [xT

t kT
jt
]T are the

concatenation of the observed variables at each time step

t. xt and ẋt denote the robot joint angles and velocities,

respectively. kjt denotes the estimated human arm stiffness

during demonstration. The mean vector µi and the covariance

matrix Σi are defined as [35]














1µi =

[

µx
i

µẋ
i

]

1
Σi =

[

Σxx
i Σxẋ

i

Σẋx
i Σẋẋ

i

] (15)

and


















2µi =

[

µx
i

µ
kj

i

]

2
Σi =

[

Σxx
i Σ

xkj

i

Σ
kjx

i Σ
kjkj

i

] (16)

parametrize the joint Gaussian distribution P(x, ẋ) and

P(x, kj), respectively. This indicates that we model these two

joint Gaussian distributions in parallel (see Fig. 2). These

parameters Θ are learned over the demonstration dataset using

the Baum-Welch algorithm [36], which is a variant of EM

algorithm.

The brief distribution is first updated over the K HSMM

states, based on which we compute the desired control param-

eters: angles, velocities, and stiffness profiles in joint space.

The brief represents the probability to be in state i at time

Fig. 3: The control diagram during the reproduction phase.

step t given the partial observation z1:t = {z1, z2, . . . , zt}
and defined as

hi,t = P(st = i; z1:t) =
ai,t

∑K

κ=1 aκ,t
(17)

with the forward variable ai,t recursively computed by

ai,t =

K
∑

j=1

min(tmax,t−1)
∑

d=1

aj,t−daj,ip
D
i (d)

t
∏

s=t−d+1

N (xs;µ
x
i ,Σ

xx
i )

(18)

and initiation in each sate given by

ai,1 = πiN (x1;µ
x
i ,Σ

xx
i ) (19)

with x1 denoting the starting position.

The brief is a normalized version of the forward variable,

and it is seen as the weight assigned to each HSMM state at

time step t.

2) Task Reproduction with GMR: We compute the desired

control parameters using the GMR model at each time step

t. Their expectations are based on the current HSMM state

weights hi,t given the reference position, i.e.,

ẋ∗
t =

K
∑

i=1

hi,t[µ
ẋ
i +Σẋx

i (Σxx
i )−1(xt − µx

i )] (20)

k∗
jt
=

K
∑

i=1

hi,t[µ
kj

i +Σ
kjx

i (Σxx
i )−1(xt − µx

i )] (21)

The desired velocities and the desired stiffness profiles are

computed in (20) and (21), respectively, based on the reference

positions xt, the estimated parameters of the HSMM’s states,

and assuming that the distributions of these variables are

Gaussian. According to [4], the forward variable depends

only on the observed positions [see (18)], which suggests that

during reproduction the evolution of the HSMM states do not

directly depend on the velocities or stiffness profiles.

It can be seen from Eqs. (15), (16), (20) and (21) that

two HSMM models are used in parallel to encode position-

velocity and position-stiffness rather than encoding them in

one HSMM model. We would like to learn the stiffness step

by step depending on the evolution of position trajectory.

This is consistent with our experience, that is, we adapt arm

stiffness based on position information to complete a task and

we usually do not adapt it depending on the moving speed.
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Fig. 4: The experimental setup for skill demonstration

More specifically, the adaptation of stiffness should be directly

related to the position not to the velocity.

D. Impedance controller

We use an impedance controller with variable stiffness for

different DOFs to control the robotic arm in joint space. In

this work, the controller is designed as

τcmd =Kj(xcmd − xmsr) +Dj(ẋcmd − ẋmsr)

+ τdyn(x, ẋ, ẍ)
(22)

with

Kj = diag(kj) = JT
r KrJr (23)

where Kj denotes the diagonal joint stiffness matrix with the

elements of kj = [k1, k2, · · · , k7] on the main diagonal, and

Dj the corresponding damping matrix, computed based on

kj to make the controller critically damped. Jr denotes the

robot arm Jacobian matrix. xcmd and xmsr are the desired

and the measured joint positions, respectively. ẋcmd and ẋmsr

are the desired and the measured joint velocities, respectively.

τdyn(x, ẋ, ẍ) represents the model of the arm compensating

for dynamical forces, i.e., the gravity, the inertia and the

Coriolis forces.

We compute the desired velocities ẋcmd based on the

HSMM-GMR model from (20), and the desired joint stiffness

matrix Kj from (21). The control diagram during the task

reproduction phase is shown in Fig. 3.

III. EXPERIMENTAL STUDY

A. Experimental setup

An experimental platform based on a Baxter robot is set up

for the validation of the proposed method. Fig. 4 shows the

dual arm teleoperation system used for skill demonstration.

The MYO is used as a sEMG detection device to collect the

human tutor’s upper arm sEMG signals. Then, the raw sEMG

signals are collected at 200 Hz and sent to the master computer

for stiffness estimation. Then, the estimated endpoint stiffness

is sent through UDP to the slave computer (Linux/ROS). The

Fig. 5: Successful task reproduction of the button-pressing

task. From left to right: the starting pose, moving to the button,

pressing the button and finally leaving the button.

generated control command is finally sent to the robot at 100

Hz. The robot has two arms, each of which has 7 degrees

of freedom (DOFs). The master arm is physically connected

to the human tutor’s hand through a mechanical module. A

virtual spring system is attached between the two arms of the

robot, which enables the slave arm to follow the movement of

the master arm. In this way, the tutor is able to demonstrate

the skills. See [15] for the details of the experimental system.

During the demonstration, the human demonstrator guides

the robot to press a button or push a box at a reachable

distance from the robot arm. The robot joint state and the

human arm muscle sEMG signals are simultaneously recorded

for subsequent model training. The changes (e.g. drift) that

may appear in sEMG sensors during demonstrations are not

considered in this paper because they will not significantly

affect the performance of the proposed method. Only several

demonstrations are usually needed for most tasks and the

long time usage of sEMG sensors will be unnecessary, and

the human tutor can control the arm’s moving speed and

configuration in a proper range.

Two tasks are performed in this section to verify the

effectiveness of the proposed method, and they are detailed

as below.

B. Button-pressing task

1) Setting: During the button-pressing experiment, the

maximum and minimum joint stiffness of the robot arm joint

are respectively set as: Kmax
r = [80, 80, 80, 60, 30, 20, 10]Nm

rad
and Kmin

r = [10, 10, 10, 10, 1, 1, 0.5]Nm
rad . The constant γ is

chosen as 15.

For the sEMG processing, the window size W is set 40 in

this work. A set of M = 6 demonstrations are obtained and

then used to train the HSMM model. The number of states

of the HSMM model K is manually chosen as 15 and 20 for

the learning of the observed variables 1zt = [xT
t ẋT

t ]
T and

2zt = [xT
t kT

jt
]T , respectively.

For comparison, the following four experimental conditions

were considered. The code we have utilized is mainly based

on the implementation provided by S. Calinon’s group1.

Condition 1: force-free control mode. The human demon-

strator taught the button-pressing task with the built-in func-

tionality of the robot by grabbing the flange of the robot

arm and moving it to approach the button. Then, the robot

reproduced the task under the position control mode without

involving stiffness regulation.

1The implementation can be found at http://calinon.ch/codes.htm
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Fig. 6: The demonstrated and commanded angle profiles of

the six joints.

Condition 2a: the human demonstrated the skill using the

dual arm demonstration for better collection of sEMG signals.

The position and velocity control variables (i.e., 1zt) were

estimated using the HSMM model as described above. The s-

tiffness control variables, however, were learned using dynam-

ic movement primitives (DMP) model from the demonstrated

stiffness profiles. Then, the robot reproduced the task under

the torque control mode with impedance adaptation.

Condition 2b: the procedure was the same with Condition 2a

only with one modification: the stiffness was modelled using

the GMM model instead of DMP. Under conditions 2a and

2b, position and stiffness were modelled in a separate manner,

which means that the stiffness adaptation is independent of the

movement information.

Condition 3: the proposed method was used in this con-

dition. Both the observations were estimated using HSMM.

Thus, the correlation between the position and the stiffness can

be obtained. The robot was also controlled under the torque

control mode with varying impedance.

Condition 4: in order to further test the abilities of our

method, we introduced small perturbations into the experiment

environment by placing the button 5 mm lower in the z axis.

The experimental procedure is the same as condition 3.

2) Results and analyses: For all the conditions, task re-

productions were conducted several times and no significant

variance was obtained between the reproductions under each

condition.

Under condition 1, the task’s goal could not be achieved.

This can be explained by the fact that only position control

can not deal with this force-dominant task which requires

(a) (b)

Fig. 7: The demonstrated and learned stiffness profiles of joint

S1 with respect to (a) joint angle and (b) time step.

(a) (b)

Fig. 8: The measured (a) position profiles and (b) force profiles

of robot endpoint in z direction during task reproduction.

stiffness regulation during the physical interaction with the

environment.

For conditions 2a-4, the learned joint angle command pro-

files of joints S0-W1 are shown in Fig. 5. The joint W2

is fixed during task demonstration and reproduction for the

convenience of mounting the tool. Reference trajectories which

are estimated from the six demonstrations for these joints

are needed in this work since the master arm is not used

again during the task reproductions. Fig 6 shows the position

commands of each joint learned from demonstrations. It shows

that our method can generate decent commands although there

are significant variances between the different demonstrations.

Task reproduction has also not been achieved successfully

under conditions 2a and 2b. This can be explained by the

fact that the stiffness can not be modeled well enough by

using DMP and GMM compared with the HSMM model.

Under conditions 3 and 4 the task has been successfully

performed even when there exist small perturbations. An

example of the successful reproduction is shown in Fig. 5

(also see the supplementary video). The Spearman correlation

coefficient (SCC) between stiffness and position can be coded

and increased with the proposed method (see Table I). Thus

the dependence of the evolution of the stiffness on position is

obtained, resulting in the better performance of representation

TABLE I: The Spearman correlation coefficient (SCC) be-

tween the joint angles and the corresponding stiffness profiles.

SCC Condition 2a Condition 2b Condition 3

0.9102 0.9380 0.9609
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(a) (b)

Fig. 9: The demonstrated and learned stiffness profiles of joint

E1 with respect to (a) joint angle and (b) time step.

of the stiffness regulation features.

Take joint S1 for example. Fig. 7 shows the learned stiffness

profiles with respect to the demonstrations and the time coor-

dinate. The visual inspection of the lines in Fig. 7 suggests that

the HSMM model can capture most of the features across the

demonstrations. Fig. 8 shows the measured position and force

profiles of the robot endpoint in z axis during task reproduction

under these conditions. The position and force profiles meet

the expectation of the task reproductions regarding the stiffness

profiles in Fig. 7.

C. Box-pushing task

Another type of task, i.e., the box-pushing task has also

been performed based on the proposed method. In this task

the robot was demonstrated to push a box with a weight of

2.4 Kg placed on the surface of a table along y axis.

1) Setting: For this task, the maximum and minimum

joint stiffness of the robot arm joint are respectively set

as: Kmax
r = [100, 90, 80, 60, 30, 20, 10]Nm

rad and Kmin
r =

[10, 10, 10, 10, 1, 1, 0.5]Nm
rad .

A set of M = 5 demonstrations are obtained and then used

to train the HSMM model. The number of states of the HSMM

model K is manually chosen as 12 and 15 for learning the

observed variables 1zt = [xT
t ẋT

t ]
T and 2zt = [xT

t kT
jt
]T ,

respectively. The parameters for sEMG processing are set the

same as in the button-pressing task.

2) Results and analysis: This task has been successfully

replayed using our method. It has also been performed several

times and there is no obvious variance observed from these

reproductions. The result shows that the stiffness profiles can

be well modelled by coding the correlation between them and

the position trajectories. As an example, Fig. 9 shows the

learned stiffness of the joint E1 with respect to the joint angle

and time. The SCC between the position and the stiffness of

this joint for this task is 0.85. Fig. 10 shows the measured

position and force profiles of the robot endpoint in y axis

during the task reproduction, which is basically consistent

with the demonstrated ones. Table II shows the RMSE values

of the learned stiffness of the joint E1, the measured force

and position profiles in y axis, which are computed between

the demonstrations and reproductions for the ensemble of

trajectories.

Note that the proposed method enables the robot to perform

the button-pressing and the box-pushing tasks by modeling

(a) (b)

Fig. 10: The measured (a) position profiles and (b) force pro-

files of robot endpoint in y direction during task reproduction.

TABLE II: The RMS error for the box-pushing task of the

profiles with respect to the demonstrations.

RMSE Position[m] Stiffness[Nm/rad] Force[N]

0.0156 3.230 2.425

the stiffness instead of directly modeling the force. To model

the force profiles is usually difficult and needs to equip force

sensors in robotic systems. This experiment suggests that

variable stiffness regulation can be used as an impedance

modulating strategy for the tasks that do not require precise

force control.

D. Discussion

Learning a task by human demonstration such as pressing a

button (see [4]) and pushing an object is sometimes difficult for

a lightweight robot. Although the two tasks are quite easy for a

human or a traditional heavy-load industrial robot, they are in-

deed not as easy as expected for a current collaborative robot,

e.g., the Baxter robotic arm equipped with Series Elastic Actu-

ators (SEAs) as joint actuators. Furthermore, it becomes more

difficult when it comes to the learning of the impedance-based

skills where both movement and stiffness/force constraints are

required to be satisfied simultaneously. Our approach has the

capability of addressing this issue by enabling the robot to

learn the motor skills including both movement and stiffness

information from the human demonstration.

It should be mentioned that there are other approaches for

obtaining variable stiffness profiles. One of them is to derive a

stiffness profile based on the force signals by placing a force

sensor at the robotic wrist (see, e.g., [37]). Furthermore, this

approach assumes that the stiffness is heavily dependent on

the force and should be learned along the force trajectory. In

the human motor learning, however, it has been validated that

the stiffness and the feedforward force are learned separately

[38, 39]. Our approach can be extended to simultaneously en-

code stiffness and force. Some tasks may require very delicate

force and position control performances, in which cases the

dynamics of force need to be well modelled and learned. One

possible way to address this is to add another component to

consider force information based on the proposed method.

One weakness of our approach is the accuracy of the

estimated stiffness since so far it is difficult to precisely

calculate the human arm stiffness based on the sEMG signals.
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Although this is not a problem for most tasks, we will improve

our approach for enabling the robot to learn more human-

like impedance adaptability. The dynamics of the sEMG-based

stiffness are often complex (see Figs. 7 and 9). The stiffness

profiles should be more complex in a more complex task

situation, in which case it may affect the learning performance;

and it would increase computing cost with a larger number of

model states and more computing time. Therefore, another

direction to improve our approach is to enable effective and

efficient learning of stiffness from demonstration data for

complex tasks. Furthermore, in this paper the stiffness is

encoded as a diagonal matrix, which may limit the flexibility

of the impedance controller in a more complex manipulation

task. The complete joint stiffness will be considered in future

work as suggested in [16, 32].

IV. CONCLUSION

In this work, we proposed a programming-by-demonstration

method for force-dominant tasks which enables robots to

learn both movement and stiffness regulation features from

humans. The hidden semi-Markov model is utilized to model

the dynamics of the motion trajectories as well as the stiffness

profiles, and Gaussian Mixed Regression is used to generate

control commands based on the learned information of HSM-

M. The human stiffness is estimated directly based on the

extraction of human limb muscle sEMG signals during task

demonstration. This can realize a more complete skill transfer

process than only considering movement demonstration. Our

method integrates the bio-inspired impedance control into a

robot learning system in a unified manner. The real-world

experiments have verified the capacities of the method. Our

future work will concentrate on the improvement of our

approach as discussed above.
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