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ABSTRACT  

All-polymer organic solar cells offer exceptional stability. Unfortunately, the use of bulk 

heterojunction (BHJ) structure has the intrinsic challenge to control the side-chain entanglement 

and backbone orientation to achieve sophisticated phase separation in all-polymer blend. Here, 

we revealed that the P-i-N structure can outperform the BHJ ones with a nearly 50% efficiency 

improvement, reaching a power conversion efficiency approaching 10%. This P-i-N structure 

can also provide enhanced internal electric field and remarkably stable morphology under harsh 

thermal stress. We have further demonstrated generality of the P-i-N structure in several other 

all-polymer systems. Considering the adjustable polymer molecular weight and solubility, the P-

i-N device structure can be more beneficial for all-polymer systems. With the design of more 

crystalline polymers, the antiquated P-i-N structure can further show its strength in all-polymer 

system by simplified morphology control and improved carrier extraction, becoming a more 

favorite device structure than dominant BHJ structure.  
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Conjugated polymer materials offer immense tunability in their molecular structure, optical 

bandgap, energetic position of the electronic states, and less toxicity with scale-up synthesis 

compared to emerging metal halide perovskite materials.[1-4] Additionally, polymeric materials 

exhibit efficient charge transport and high absorption coefficient across a broad range of the solar 

spectrum,[5-6] which led to the first report of 10% organic solar cells.[7] Quite recently, it has 

been shown that organic nonfullerene acceptors can further extend the solar cell response 

spectrum,[8-10] and power conversion efficiencies (PCEs) above 15% have been demonstrated 

in these systems.[11] During the past few years, we and few other groups have developed 

efficient polymer-polymer (all-polymer) solar cells.[12-17] With this polymer-polymer 

combination,[18] the active layer exhibits outstanding thermal and mechanical device 

stability.[19] We have also shown that all-polymer solar cell devices are less sensitive to thermal 

stress, D/A composition and processing environment relative to the polymer-fullerene and 

polymer-molecule ones.[20] Although all-polymer solar cells come with many advantages, their 

performance has been limited by low short-circuit current density (Jsc) and low fill factor 

(FF).[21-24] A general explanation is that convectional fullerene acceptors are spherically 

symmetric materials which can have close contact with the donor polymers in arbitrary 

directions to achieve efficient charge transfer.[25-26] Similarly, nonfullerene molecular 

acceptors tend to form highly crystalline domains with long-range charge delocalization that 

lowers the Coulomb barrier and hence improves exciton dissociation. However, the similar 

properties between donor and acceptor polymers increase the difficulty to optimize the 

polymer/polymer interfaces to achieve preferable contact and molecular orientation. We have 

indicated that reduced polymer ordering and unfavorable orientation at polymer/polymer 

interfaces leads to limited charge delocalization, inefficient carrier transport and larger potential 
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barrier, which can reasonably explain the origin of the lower Jsc and FF in all-polymer 

devices.[27] 

In a solution-processed organic photovoltaic device, the organic/organic interfacial 

properties are extremely important in deciding the solar-to-electricity conversion efficiencies, as 

well as device long-term stability.[28] In 1995, Heeger et al. first reported significantly enhanced 

power conversion efficiency (PCE) via a network of internal polymer-soluble fullerene 

derivative bulk heterojunction (BHJ),[1] which benefits from efficient photo-to-exciton 

generation process. During the past two decades, the BHJ structure dominated research on 

solution-processed organic solar cells.[29] However; the electronic structure at the interface 

could strongly depend on how the materials make contact with each other, which in turn is 

affected by many factors such as materials crystallinity, processing condition etc. From the start 

of organic solar cells, C. W. Tang reported thermally evaporated two-layer structure organic 

solar cells with a PCE around 1%.[30] Photo-generated excitons dissociate into free charges at 

material interfaces driven by the energy offset, and the bilayer structure creates efficient charge 

transport pathways to the electrodes. Inspired by the early stage research of organic photovoltaic, 

we here demonstrated that the sequentially processed P-i-N junction structure could be extremely 

advantageous for all-polymer solar cells. It should be noted that the sequentially processed 

organic solar cells has been previous reported in both polymer-fullerene and polymer-polymer 

systems from quasi-orthogonal solvents, achieving more adjustable morphology compared to the 

BHJ ones.[31-33] However, the obtained best PCE from P-i-N structure is around 5%.  During 

the preparation of the manuscript, efficient polymer-molecule nonfullerene solar cells using P-i-

N structure have been reported,[34-35] which indicates increased attention on the P-i-N structure 

in organic photovoltaic. Efficient charge transfer and significantly improved charge transport 
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successfully take place across the polymer/polymer interfaces to achieve improved Jsc and FF 

relative to the conventional BHJ. An open-circuit voltage (Voc) of 0.904 V, Jsc of 15.33 mA cm-2, 

FF of 68.7% and PCE of 9.52% are obtained, outperforming the PCE of 6.58% in BHJ analogue 

cell. In the P-i-N device, a vertical phase separated morphology composed of highly ordered 

donor and acceptor domains with buried thin polymer-polymer BHJ is obtained from solution 

processing, where carrier dissociation and transport achieve an optimal balance to enhance 

charge collection at each electrode. Such P-i-N structure can fully utilize the advantages in 

absorption and carrier transport for single polymeric phase, and demonstrates promising potential 

for all-polymer devices. 

Figure 1A-1B shows the chemical structures of the donor and acceptor polymers and 

device architecture of all-polymer solar cells in this work. The polymer PBDB-T and its 

derivatives are widely used electron donors in organic nonfullerene solar cells,[8] and n-type 

polymer N2200[36] (also known as P(NDI2OD-T2)) is popular electron acceptor in efficient all-

polymer solar cells.[18] N2200 exhibits excellent electron transporting properties, but on the 

other hand, the relative high molecular weight and strong interaction between the polymer 

backbones decrease its solubility in common organic solvents.[37-38] The difference in 

solubility between donor and acceptor polymer allows us to sequentially deposit layer-by-layer 

structures. As shown in Figure S1 (Supporting Information, SI), without heating or stirring, 

N2200 has limited solubility in chloroform. Therefore, we fabricated the inverted BHJ 

(ITO/ZnO/PBDB-T:N2200/MoO3/Ag) and P-i-N device architecture (ITO/ZnO/N2200/inter-

mixed/PBDB-T/MoO3/Ag) to compare the photovoltaic performance. The absorption of 

donor/acceptor polymers is well complemented to cover the whole visible to NIR region (300-

850 nm, Figure S2). In order to avoid the effect of thickness on absorption, we compared the 
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absorption coefficient of both films, and it is quite interesting that the absorption of the P-i-N 

film is enhanced compared to the BHJ film. To investigate the influence of device architecture 

on light harvesting, we first simulated the spectral- and position-dependent optical field 

distribution in the BHJ and bilayer device respectively.[39] In Figure 1C, the region with strong 

optical field for BHJ film is beyond 780 nm, which, unfortunately, mismatch the absorption 

range of active film. For the P/N bilayer film (Figure 1D), the high intensity field covers a larger 

range from 650 nm to the infrared. Meanwhile, the optical field in the visible region is also 

enhanced. Basically, the additional interface between donor and acceptor affects the light 

interference in the BHJ device, which further results in the redistribution of electromagnetic 

field.  As a result, the absorption of both PBDB-T and N2200 is increased, indicating improved 

exciton generation in P-i-N all-polymer devices. In addition, it is worth noting that the pure D/A 

polymer phase in P-i-N film has evidently higher crystallinity than that in BHJ film, which can 

also help to achieve higher optical absorption coefficient,[40] and the change of the film 

crystallinity will be investigated in the following part. 

As shown in Figure 2A and Table 1, the PBDB-T:N2200 BHJ device shows a moderate 

efficiency of 6.37±0.21 %, similar to previous results.[41-42]. Quite recently, through adopting a 

modified conventional device structure, Yang et al. reported the efficient PBDB-T:N2200 BHJ 

device with a best PCE of 8.61%.[43] Fortunately, the strategy of P-i-N structure can take full 

advantages of both improved absorption and carrier transport in highly-crystalline pure N2200 

phase. After optimization (see Table S1-S4, SI), a significantly enhanced average Jsc of 14.79 

mA/cm2, slightly improved Voc of 0.898 V and FF of 66.3 % is observed, giving a remarkably 

improved average PCE of 9.28 % and the best one of 9.52%. As shown in Figure 2B, the 

optimal thickness of PBDB-T and N2200 is determined to be 50 nm and 60 nm, respectively. 
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The total optimal thickness of 110 nm is similar with that of the BHJ devices. When further 

increasing the thickness of either PBDB-T or N2200, the P-i-N all-polymer devices exhibit 

gradually decreased efficiency. Meanwhile, the dark J−V characteristics in Figure S3 indicate 

better diode properties for P-i-N device, showing lower leakage current and ideality factor (For 

an ideal diode, the ideality factor is equal to 1). It is not surprising the P-i-N structure can 

outperform the popular BHJ structure in all-polymer system. The polymer blend has the intrinsic 

challenge to control the side-chain entanglement and backbone orientation between high 

molecular weight polymers with long chains. The strong inter- or intra-chain interactions make it 

extremely difficult to achieve sophisticated phase separation using conventional treatment like 

thermal annealing,[44] processing additive[45] etc. In contrast, the P-i-N structure can overcome 

the big challenge in control the polymer blend morphology. However, well control the 

intermixed region of D/A polymers is critical to achieve efficient charge separation. As shown in 

Table S1-S4, the inter-mixing region between the pure p-type and n-type polymers should be 

well manipulated to achieve optimal thickness and better contact with the bottom and upper layer. 

The development of OPV has reached a stage where device stability should be further 

considered for entering commercial market. Previous report has demonstrated that the 

morphological change under thermal stress in BHJ film is one of the core issues limiting the 

OPV stability.[20] All-polymer blend devices have already been reported to exhibit improved 

thermal stability compared to PCBM and nonfullerene based BHJ devices. As shown in Figure 

2C, we can observe both BHJ and P-i-N devices show steady PCE value under continuous 

thermal stresses at 80 oC. However, the P-i-N all-polymer devices still exhibit decent 

performance under continuous thermal stresses at a higher temperature of 160 oC for nearly 1000 

hours, indicating exceptional stable morphology even under harsh environment. The universality 



 10 

of P-i-N structure were also explored in other all-polymer systems based on popular donor 

polymer P3HT, PT8,[19] and J51[46] (see Figure 2D). As shown in Table S5 in SI, it is clear that 

all device parameter including Voc, Jsc and FF are simultaneously enhanced in P-i-N devices in 

comparison with the conventional BHJ cells. All these results demonstrate that the P-i-N 

structure can be a universal strategy to overcome the intrinsic morphological issue in all-polymer 

BHJ structure and achieve stable and superior device performance. 

To compare the number of generated charge carriers/number of excitons generated by 

photon absorption in BHJ and P-i-N, the external quantum efficiency (EQE) and the internal 

quantum efficiency (IQE) of optimized BHJ and P-i-N PBDB-T:N2200 devices have been 

measured, with the results shown in Figure 3A. We can observe an overall increase in EQE for 

P-i-N based device, indicating higher incident photon to converted carriers ratio in P-i-N based 

devices.  the absorption (extracted from reflection spectrum (R) by 100%-R, Figure S4, SI) and, 

To clarify the origin of EQE enhancement, the IQE of both systems was also measured (the 

absorption of both devices was shown in Figure S4, SI).[27] Exclude the factor of absorption 

enhancement, we observe more evident increase of IQE value for P-i-N device, especially 

around the absorption peaks of N2200 at 400 nm and 730 nm, indicating largely increased photo-

exciton contribution from the polymer acceptor. Note that N2200 usually contributes poorly to 

current in BHJ all-polymer solar cells, which has been generally thought to be an obstacle to 

achieve similar high Jsc value with the device based on small-molecule acceptor. In the P-i-N 

structure, the improved absorption may help to achieve more efficient charge generation, and 

modify vertical phase separation is beneficial for efficient charge transport and overcoming both 

charge recombination especially in the N2200 phase. The improved charge dynamic process, 
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which will be investigated in the following part, could explain the higher EQE and IQE in the P-

i-N based devices. 

To confirm the IQE results, we further conducted time-resolved microwave conductivity 

(TRMC) measurements.[47] TRMC is a contactless technique that probes local carrier mobility 

on the length scale of carrier delocalization, so the measured mobility is not as impacted by 

morphology, grain boundaries, or other problems that limit long range charge transport 

measurements in a device. Therefore, these measurements give an indication of the potential 

performance or upper limit that one should expect from a particular blend. As shown in Figure 

3B, the TRMC figure of merit (ϕ∑μ) measured during the experiment is a product of the 

quantum efficiency of free carrier generation per photon absorbed (ϕ) and the sum of the 

mobilities of electrons and holes (∑μ). The P-i-N PBDB-T: N2200 blend (0.20 cm2 V−1 s−1) 

exhibits a higher yield-mobility product relative to the BHJ film (0.14 cm2 V−1 s−1). Bi-

exponential fits of the photoconductivity transient, as shown in Figure S5, reveal the average 

carrier lifetime is also longer in the P-i-N than BHJ (950 ns vs. 880 ns). We further compared the 

TRMC free carrier diffusion length according to the mobility and lifetime results for each blend. 

As shown in Figure 3C, the P-i-N PBDB-T:N2200 blend (DL=844 nm) exhibits a higher free 

carrier diffusion length relative to the bulk device (DL=709 nm). In comparison with the recently 

TRMC characterization of PCE-10:PCBM blend,[47] both TRMC mobility and carrier lifetime is 

significantly improved in the all-polymer blend. In addition, we can conclude that P-i-N is a 

more desirable architecture than BHJ in terms of free charge generation, carrier mobility and 

diffusion length, resulting in improved carrier collection at the electrodes to achieve high 

exciton-to-free-carrier yield. The dependence of Jsc and Voc on light intensity was measured to 

examine recombination process in P-i-N and BHJ devices.[48-49] As shown in Figure 3D, for 
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the optimized device, Jsc scales almost linearly with light intensity (α=0.98 for both BHJ and P-i-

N PBDB-T:N2200 based devices). These values indicate that the charge carrier losses in the all-

polymer system are not dominated by bimolecular recombination. Additionally, the Voc of 

optimal P-i-N devices exhibits a logarithmic dependence on light intensity with a slope of 1.05 

kTq-1 compared to that of 1.41 kTq-1 in BHJ system, indicating less interfacial trap-assisted 

Shockley-Read-Hall (SRH) recombination. In an ideal P-i-N film, the free electron and hole 

move more efficiently in single donor and acceptor phase after the exciton dissociation at the 

interface. In addition, the charge recombination at each electrode could also be reduced in the P-

i-N devices due to the improved carrier selectivity. 

The higher Voc of P-i-N all-polymer device (0.904 V vs. 0.867 V) motivated us to study the 

energy loss associated with the processes of exciton dissociation and carrier recombination. To 

get insight into the higher Voc in the P-i-N devices, Fourier transform photocurrent spectroscopy 

(FTPS) was performed. For organic solar cells, Voc is correlated to the energy of the charge 

transfer (CT) state (Ect) formed at the donor/acceptor interface. A high Voc requires a high Ect 

plus a relatively small energy loss. The FTPS data for the solar cells based on P-i-N and bulk 

PBDB-T:N2200 are shown in Figure 3E. Fitting the CT region of the EQE spectra with 

Equation (2):[50]  

                                         EQE(E)∝ 1
E√4 π λ kT

 exp {-(Ect+λ-E)2

4 λ kT
}                                                      (1

) 

where k is the Boltzmann’s constant, T is the absolute temperature, Ect is the energy of CT states, 

and λ is related to the width of the CT absorbance band. The Ect values from the fitting are both 

around 1.40 eV for the P-i-N and BHJ devices. Similar results can be also found from the 
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electroluminescence measurements (Figure 3F). Both devices exhibit similar Ect emission peak 

at ~950 nm. Non-radiative recombination induced Voc loss [51] was also characterized, which 

would decrease the Voc by:  

                                                 ∆Voc
non-rad=-

kT
q

ln (EQEEL)                                                            

(2) 

where EQEEL is radiative quantum efficiency of the solar cell when charge carriers are injected 

into the device in the dark. At room temperature, ∆ Voc non-rad increases by 60 mV when the 

EQEEL decreases by one order. The EQEEL of the bulk PBDB-T:N2200 device is measured as 

4×10−5 %, and that of the P-i-N PBDB-T:N2200 blend is 1.6×10−4 % (insert in Figure 3F). The 

non-radiative loss for bulk and P-i-N is 0.41 V and 0.38 V, respectively, which corresponds to 

the Voc difference. The difference in the EQEEL values indicates reduced non-radiative 

recombination loss in P-i-N system. 

In a typical organic solar cell device, the exciton dissociation and charge transport process 

is strongly affected by the blend morphology. Therefore, a thorough morphological study may be 

helpful to understand the carrier generation and transport process in all-polymer solar cells. 

Therefore, we further investigated the all-polymer blend morphology using cross-sectional 

scanning electron microscopy (SEM), atomic force microscopy (AFM), grazing incidence wide-

angle X-ray scattering (GIWAXS),[52] and resonant soft X-ray scattering (RSoXS).[53] Figure 

S6 shows the cross-sectional SEM analysis of both BHJ and P-i-N film. The BHJ shows quite 

uniform structure, while the P-i-N film shows different morphological properties. Figure 4A 

shows the AFM topographical images, the neat N2200 film exhibits highly textured surface 

structure with long range order of polymer fibers, while PBDB-T exhibit amorphous surface 
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without any fiber structure. When blending highly-crystalline N2200 with amorphous PBDB-T, 

the relevant bulk blend film exhibits significantly reduced domain order and decreased fiber size, 

which can well explain the significant decrease in electron mobility of the BHJ relative to the 

neat N2200. In contrast, when depositing amorphous PBDB-T on top of highly-crystalline 

N2200, we surprisingly find that the PBDB-T upper layer shows ordered surface structure with 

polymer fibers. Previous reports have demonstrated that depositing polymer film onto a nano-

grooved substrate can further increase the ordering and transport in the polymer thin films.[54] 

Hence, we believe that the highly ordered N2200 layer can serve as “nano-grooved substrate”, 

which can not only maintain its ordered structure, but also improve the ordering of the upper 

PBDB-T layer. A similar result is also observed in the GIWAXS measurements (Figure 4B-4D). 

The neat N2200 film is a highly-crystalline film with strong face-on orientation, showing 

multiple characteristic diffraction peaks in the in-plane direction. The neat PBDB-T film is 

amorphous with a broad (010) diffraction ring, showing no dominant orientation. In comparison 

with the BHJ, the P-i-N film exhibits more apparent combined (010) diffraction peaks at ~1.6 Å-1 

in the near out-of-plane direction, and (100), (001), (200), (300), (002), (400), (003) and (004) 

peaks at in the in-plane direction respectively, which corresponds to the characteristic scattering 

peaks of neat N2200. Thus, the combination of surface AFM and GIWAXS characterization 

indicate that both polymers are highly ordered with favorite orientation, which enables efficient 

charge separation at interface and better carrier transport within respective phases, as well as 

increased optical absorption in comparison with the conventional BHJ devices. More detailed 

information on interfacial phase-separation in the P-i-N was studied via RSoXS. A series of 

photon energies were used to determine the maximum scattering contrast between the donor and 

the acceptor polymers (Figure S7). RSoXS likely reflects general phase separation between D/A 
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materials, and RSoXS from a single component film of polymer likely will have minimal 

scattering because there is no phase separation.[51] As seen from Figure 4E, the PBDB-

T:N2200 BHJ shows a relatively sharp scattering peak at ~0.0076 Å-1. In contrast, the P-i-N 

blend film shows a greatly decreased scattering peak at ~0.0076 Å-1. Therefore, the BHJ scatters 

more in RSoXS because there are phase separated D and A regions throughout the entire 

thickness of the film. For the P-i-N, the only scattering region should come from the burid mixed 

D/A region at the interface, resulting in a relatively weaker scattering signal.    

Finally, in order to understand the charge carrier dynamics in the P-i-N all-polymer solar 

cells, we mapped the potential difference at the P/N junction interface using Kelvin probe force 

microscope (KPFM).[55] Figures 5A-5B show the morphology and surface potential near the 

junction of PBDB-T:N2200 bilayer. The set-up for the KPFM measurements is shown in Figure 

5C, with the drop-casted PBDB-T film covering part of the N2200 layer. The large contrast 

between junction of PBDB-T and N2200 in Figure 5B indicates large Fermi level difference 

between the two polymers. Following cross-lines at the same position (Figure 5D), we find a 

sharp potential change region in PBDB-T film with ~1μm lateral distance which equal to a ~380 

nm film thickness (in height). Likewise, as illustrated in Figure S8-9, we also observe a sharp 

potential change region of ~400 nm film thicknesses in the N2200 film cast on top of PBDB-T. 

These potential changes in both PBDB-T and N2200 are caused by the large Fermi level 

difference between the polymer donor and acceptor, leading to desired electric field distribution 

near the P/N junction.  For organic materials, the free carrier density is relatively low, which 

results in depletion region longer than the active film thickness in P-i-N all-polymer solar cells. 

We performed capacitance–voltage (C-V) measurements to investigate their built-in potential 

(Vbi).[56] As shown in Figure S10, The Vbi of the P-i-N device is about 0.61 V which is 
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obviously higher than the 0.52 V for conventional BHJ device. These results are in agreement 

with the observation in KPFM characterization. These enhanced electric fields are beneficial for 

driving electrons and holes to transport in separate donor acceptor layer.  

The free carrier generation efficiency is a very critical factor when evaluating the P-i-N and 

BHJ structures. From the photoluminescence (PL) characterization of neat and blend films 

(Figure S11), both the BHJ and P-i-N all-polymer films exhibit efficient PL quenching. We 

therefore used ultrafast transient absorption (TA) spectroscopy to further compare exciton 

dissociation and charge generation efficiency in the BHJ and P-i-N films.[57] When pumped at 

400 nm within the strong absorption region of the PBDB-T donor polymer, both films show 

long-lived large bleaching signals (transmission change ΔT/T>0) with two peaks at 570 nm and 

650 nm, as shown in Figure S11a and S11b. In the neat PBDB-T film, the transient bleaching 

signals with two peaks at 570 nm and 650 nm are also observed (Figure S11c), however, these 

signals quickly decay at the time scale of 50 picoseconds (ps) as a result of geminate exciton 

recombination. These results thus indicate that in both BHJ and P-i-N films a significant number 

of photo-excited excitons diffuse to the D/A interface, and then dissociate to generate charge 

carriers (polarons) with long lifetime. The hole polarons residing in the PBDB-T deplete the 

ground state, leading to positive bleaching signals with long lifetime (>500 ps). The hole 

polarons can also cause the extra absorption at photon energies slightly below the band gap, 

manifested as the absorption peak centered at ~900 nm in Figure S11a and S11b, whereas this 

polaron induced peak is absent in the neat donor and acceptor films (see Figure S11c and S11d). 

To make a quantitative comparison of exciton dissociation and charge transfer, we plot in Figure 

5E the ΔT/T dynamics (normalized at 1 ps) probed at 650 nm for the BHJ and P-i-N films, and 

the neat PBDB-T and N2200 films pumped at 400 nm. The ΔT/T signals in all films show a 
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quick rise within 1 ps owing to the photo-generated excitons. But in contrast to the fast decay to 

nearly zero due to the exciton recombination in the neat films, the ΔT/T in both BHJ and P-i-N 

films show a fast but small decay within 15 ps and then a very slow recovery longer than 800 ps. 

The ΔT/T dynamics are very similar for the BHJ and P-i-N films, indicating that the charge 

transfer rates and efficiencies are comparable in these two films. Actually, similar hole transfers 

were also observed by selective excitation of N2200 using 800 nm laser pulses (see Figure 5F). 

For both films, the ΔT/T dynamics probed at 650 nm shows an extra rise within 15 ps followed 

by a very slow decay longer than 800 ps. The extra rise of ΔT/T signal must be due to the 

dissociation of the excitons at the interface and the consequent formation of hole polarons in 

PBDB-T. In principle, the BHJ structure has more interfaces than the P-i-N one, thus the exciton 

diffusion to the interface for charge transfer is more favorable in the BHJ when considering the 

limited diffusion length before the exciton recombination. But on the contrary, the probability of 

geminate and bimolecular recombination after exciton dissociation is higher in the BHJ due to its 

increased and randomly distributed interfaces. Moreover, the intermixed polymer phases in the 

BHJ show intrinsic difficulty to optimize the side-chain entanglement and backbone orientation 

between donor and acceptor polymers for efficient charge transfer. These factors overall may 

result in a similar free carrier generation efficiency in the BHJ and P-i-N films.  

We designed and reported efficient all-polymer solar cells with a P-i-N architecture using 

polymeric donor (PBDB-T) and acceptor (N2200) that delivered a high device efficiency of 9.52 

%, which is significantly improved compared to the 6.58 % for conventional PBDB-T:N2200 

bulk heterojunction solar cell. A schematic of this P-i-N structure is shown in Scheme 1, which 

consists of highly crystalline and high purity donor and acceptor polymer phases connected by 

intermixed D/A region to achieve improved charge generation, transport and collection. This P-i-
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N structure can also provide enhanced internal electric field and more stable morphology under 

harsh thermal stress compared with BHJ structure. In addition, long-range exciton from 

delocalized photoexcitation may enable an immediate probability of charge-transfer over 

distances, which has been suggested in the previous report.[58] The P-i-N structure can be 

facilely realized in all-polymer system by manipulating the molecular weight and solubility of 

the polymers. We further proved the general effect of P-i-N in several other all-polymer systems.  

Since fine control of the phase-separation morphology in all-polymer BHJ blend remains an 

intrinsic challenge, the modified P-i-N structure would be extremely advantageous and become a 

more favorite device structure than dominant BHJ in all-polymer solar cells. We also believe the 

adoption of P-i-N structure can promote the use of more crystalline conjugated polymers with 

high carrier mobility. 
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FIGURES 

 

Figure 1. Schematic illustration of the device structure of BHJ (A) and P-i-N (B) all-polymer 
solar cells together with the chemical structure of PBDB-T and N2200.  Optical simulation of 
photon flux intensity distributions in cross-sectional BHJ (C) and P-i-N (D) all-polymer solar 
cells. Position 0 nm corresponds to the glass/ITO interface and the P-i-N light source is 
illuminating from the bottom.  
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Figure 2. Current–voltage characteristics of optimized BHJ and P-i-N devices under AM 1.5G, 
100 mW cm−2, insert is the histogram of the PCE measurements for 20 devices (A). PCEs of P-i-
N all-polymer solar cells as a function of N2200 thickness (the thickness of PBDB-T is fixed at 
40 nm) or PBDB-T thickness (the thickness of N2200 is fixed at 60 nm) (B). Thermal stability of 
BHJ and P-i-N all-polymer solar cell devices based on PBDB-T:N2200 kept on the hotplate in 
N2-filled glovebox. (C). PCE of all-polymer solar cell based on BHJ and P-i-N structure using 
P3HT, PT8, J51 and PBDB-T as donor, and N2200 as acceptor (D). 
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Figure 3. EQE and IQE curves of the optimized BHJ and P-i-N PBDB-T:N2200 solar cells (A). 
The product of charge carrier yield (ϕ) and sum of free carrier mobilities (Σμ) (B) for BHJ and P-
i-N PBDB-T: N2200 blends at a laser excitation wavelength of 640 nm. Calculated free carrier 
diffusion length as a function of internal free charge yield from TRMC measurements (C). 
Measurements of Jsc and Voc as a function of light intensity (D). FTPS-EQE of BHJ and P-i-N 
all-polymer devices, insert is the EQEEL of the devices (E). Electroluminescence spectra of 
devices based on the neat polymers and blend films (F). 
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Figure 4. AFM topographical images (A) and GIWAXS two-dimensional diffraction patterns 
(B) of neat PBDB-T, neat N2200, PBDB-T:N2200 BHJ blend, and PBDB-T on top of N2200 P-
i-N blend. Nearly out-of-plane (C) and in-plane (D) of the two-dimensional GIWAXS patterns. 
RSoXS scattering profiles of the bulk and P-i-N all-polymer blend films using a photon energy 
of 284.2 eV (E).  
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Figure 5. Height morphology (A) and surface potential (B) images of the N2200 layer partially 
covered by PBDB-T the layer. Illustration of the KPFM measurements (C). Height and surface 
potential  change as a function of scanning distance in N2200 layer partially covered by PBDB-T 
the layer (D). Comparison of ΔT/T dynamics (normalized at 1 ps) probed at 650 nm in PBDB-
T/N2200 BHJ and P-i-N films, and neat PBDB-T and N2200 films under pump excitations of (E) 
λ=400 nm and (F) λ=800 nm. The pump fluence is I=70 μJ cm-2. 
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Scheme 1. Illustration of the carrier dynamic in the P-i-N all-polymer blends. 

 

Table 1. Device parameters of BHJ and P-i-N heterojunction all-polymer solar cells. 

 
Voc 
(V) 

Jsc 
(mA/cm2) 

FF 
(%) 

PCE 
(%) 

Yield 
Mobility 
Product 

(cm2 V−1s−1) 

TRMC 
Lifetime 

(ns) 

Eloss 
(eV) 

Ect 
(eV) 

Enon-rad 
loss 

(eV) 

BHJ 
0.867  

(0.860±0.007) 
11.89 

(11.27±0.62) 
64.4%  

(61.2±3.2%) 
6.58  

(6.37±0.21) 
0.14 880 0.59 1.41 0.41 

P-i-N 
0.904 

(0.898±0.006) 
15.33 

(14.79±0.54) 
68.7% 

(66.3±2.4%) 
9.52 

(9.28±0.24) 
0.20 950 0.55 1.40 0.38 
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