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Price experimentation is an important tool for firms to find the optimal selling price of their products. It should
be conducted properly, since experimenting with selling prices can be costly. A firm, therefore, needs to find

a pricing policy that optimally balances between learning the optimal price and gaining revenue. In this paper,
we propose such a pricing policy, called controlled variance pricing (CVP). The key idea of the policy is to
enhance the certainty equivalent pricing policy with a taboo interval around the average of previously chosen
prices. The width of the taboo interval shrinks at an appropriate rate as the amount of data gathered gets large;
this guarantees sufficient price dispersion. For a large class of demand models, we show that this procedure
is strongly consistent, which means that eventually the value of the optimal price will be learned, and derive
upper bounds on the regret, which is the expected amount of money lost due to not using the optimal price.
Numerical tests indicate that CVP performs well on different demand models and time scales.
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1. Introduction and Literature
1.1. Introduction
A firm that sells products or delivers services faces
the problem of determining the selling price that gen-
erates the highest revenue. This price is generally
unknown to the seller, but by experimenting with the
selling price, its value might be learned. Price exper-
imentation, however, may be costly, since it means
that suboptimal prices are chosen, and thus less rev-
enue is generated. The seller should, therefore, find a
balance between price experimentation and revenue
maximization. The problem of finding this optimal
balance is the subject of this paper.

The demand for the product during a certain time
period is modeled as a random variable. This random
variable depends on the chosen price and on certain
unknown parameters. Common examples include a
Normal, Poisson, or Bernoulli distributed demand,
with expectation a linear or logit function of the price.
To learn the price that generates the highest revenue,
the seller needs to obtain good estimates for these
unknown parameters. This is done by experiment-
ing with different prices in different selling periods.
In this way, the seller accumulates information about
the demand function and can then determine the opti-
mal selling price.

At the beginning of each selling period—which
may be a day or a week, but also minutes or hours—
the seller decides on a price. On one hand, he wishes
to set the price close to what is optimal according
to his current knowledge of the demand function.
On the other hand, the prices should vary, to learn
about the relation between demand and price. This
collection of price decisions for each selling period is
called a pricing policy. The goal of the seller is to find
a pricing policy that exhibits sufficient price experi-
mentation to learn the value of the unknown demand
parameters, but that also is not too costly.

An intuitively appealing pricing policy is to set the
new price at each period equal to the price that would
be optimal if the current parameter estimates were
correct. Such a policy is usually called passive learn-
ing, myopic pricing, or certainty equivalent pricing,
for obvious reasons: each decision is made as if the
current parameter estimates are equal to the true val-
ues. In this paper, we show that this policy, although
intuitively appealing, is not suitable: the seller may
never learn the value of the optimal price. The reason
is that certainty equivalent pricing puts too much
emphasis on instant revenue maximization, and not
enough emphasis on collecting information.

To solve this issue, we propose a new dynamic pric-
ing policy called controlled variance pricing (CVP).
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The idea is to select the certainty equivalent price,
unless it lies in a certain, slowly shrinking, taboo
interval around the average prices chosen so far. This
taboo interval guarantees sufficient price dispersion,
and leads to a good balance between experimentation
and optimization.

We formulate our pricing policy for a broad class
of demand functions, which includes many demand
models that are used in practice. Moreover, we do
not require that the seller has complete knowledge
about the structural form of the demand distribu-
tion, but only about the relation between the first
two moments and the selling price. This makes the
model a little more robust compared with models
where a complete demand distribution is assumed.
The unknown parameters are estimated by maximum
quasi-likelihood estimation (MQLE); this is a gener-
alization of maximum likelihood estimation (MLE) to
distributions where only the first two moments are
known. For many demand models that are used in
practice, MQLE and MLE are similar; this enables us
to compare our results with other pricing policies in
the literature that use MLE.

We show analytically that CVP will eventually pro-
vide the correct value of the unknown parameters,
and thus the value of the optimal price. We also
provide bounds on the speed of convergence. Fur-
thermore, we obtain an asymptotic upper bound on
the regret, which measures the expected amount of
money lost due to not using the optimal price. In par-
ticular, we show that the regret after T time peri-
ods is O4T 1/2+�5, where �> 0 is arbitrarily small. This
bound is close to O4

√
T 5, which in several settings

has been shown to be the best achievable asymptotic
upper bound of the regret (see, e.g., Besbes and Zeevi
2011, Broder and Rusmevichientong 2012, Kleinberg
and Leighton 2003). Apart from this theoretical result,
we also numerically compare the performance of CVP
with other existing pricing policies from the literature.
These numerical experiments suggest that CVP per-
forms well for different demand functions and time
scales.

1.2. Literature Review
The problem we are considering is a dynamic pric-
ing problem with unknown demand. There is a
wide range of literature on this topic. The exist-
ing operations research literature can be categorized
into “classical” parametric, Bayesian parametric, and
nonparametric approaches. We also mention some
relevant economics literature on this subject, and con-
nections to literature on multiarmed bandit problems
and stochastic approximation.

1.2.1. Parametric Approaches with Non-Bayesian
Estimation Methods. In these studies it is assumed
that the unknown demand function is in a parameter-
ized family of distributions; the unknown parameters

are estimated by classical statistical methods such
as maximum likelihood or least squares estimation.
Examples include Lobo and Boyd (2003), Carvalho
and Puterman (2005a, b), Bertsimas and Perakis
(2006), Besbes and Zeevi (2009), and Broder and
Rusmevichientong (2012).

Lobo and Boyd (2003) maximize the expected dis-
counted revenue of a linear demand model over a
short time horizon. They formulate the pricing prob-
lem as a dynamic program and propose a tractable
convex approximation. No analytical results are given
on the performance of this pricing policy, but it is
numerically compared with two other policies: cer-
tainty equivalent pricing and certainty equivalent
pricing with added random perturbations. Simulation
results on a short time horizon (10 periods) suggest
that the convex approximation performs better than
the other two policies.

The papers by Carvalho and Puterman (2005a, b)
propose one-step-ahead pricing. Using a Taylor
expansion of the expected revenue for the next period,
the price is chosen that approximately maximizes the
sum of the revenues in the next two periods. This
is in contrast to certainty equivalent pricing, where
only the expected revenue of one period is maxi-
mized. In Carvalho and Puterman (2005b), this idea is
applied to a binomial demand function with expecta-
tion a logit function of the price, whereas in Carvalho
and Puterman (2005a), a log-normal demand model is
considered. Neither paper provides analytical results
on the performance of the policies, but both show
numerical simulations suggesting that the one-step-
ahead policy performs well.

Bertsimas and Perakis (2006) consider a dynamic
pricing problem with unknown, linear demand and
finite inventory. They formulate pricing policies based
on dynamic programming heuristics, and also apply
their techniques to a setting with competition.

A Bernoulli demand distribution is assumed by
Broder and Rusmevichientong (2012). They propose
a policy called the MLE-cycle, and show that it
achieves the asymptotically optimal bound O4

√
T 5 on

the regret. In this pricing policy, the time horizon is
divided into learning phases, during which certain
a priori determined prices are chosen, and optimiza-
tion phases, during which the certainty equivalent
price is chosen. A policy somewhat similar in struc-
ture was studied in Besbes and Zeevi (2009), where
performance bounds are derived in a certain asymp-
totic regime.

1.2.2. Parametric Approaches with Bayesian
Learning. In Bayesian approaches to dynamic pric-
ing with unknown demand, the unknown parameters
are learned via Bayesian updates of a certain belief
distribution. Such an approach is studied by Lin
(2006), Araman and Caldentey (2009), Farias and
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van Roy (2010), and Harrison et al. (2012). All these
papers assume a single unknown parameter and
propose several pricing heuristics.

A general framework for stochastic control of lin-
ear regression models is investigated by Easley and
Kiefer (1988), Kiefer and Nyarko (1989), and Aghion
et al. (1991). They study the asymptotic behavior of
different Bayesian learning policies, and show that in
some settings, the beliefs converge to a limit that in
expectation may differ from the correct value.

1.2.3. Nonparametric Approaches. Robust or non-
parametric approaches do not assume a known para-
metric functional form of the demand, and generally
investigate how to maximize revenue in worst-
case scenarios. Such approaches can be found in
Kleinberg and Leighton (2003), Cope (2007), Lim and
Shanthikumar (2007), Eren and Maglaras (2010), and
Besbes and Zeevi (2009).

1.2.4. Economics Literature. Related research from
the economics literature is found in Taylor (1974),
Anderson and Taylor (1976), McLennan (1984),
Balvers and Cosimano (1990), and Keller and Rady
(1999). Taylor (1974) shows consistency of certainty
equivalent pricing in a linear demand model with one
unknown parameter. Anderson and Taylor (1976) con-
sider a linear model with two unknown parameters;
they perform simulations to investigate if a certainty
equivalent policy is inconsistent when the objective is
to steer the demand to a certain fixed, a priori cho-
sen value. A difference with our setting is that we
try to steer the expected demand to a level (namely,
the expected demand level that occurs at the opti-
mal price) that is not known a priori: its value is
learned over time. Lai and Robbins (1982) prove that
in this model, the certainty equivalent policy is not
strongly consistent. They also propose a strongly con-
sistent modification of the certainty equivalent policy.
McLennan (1984) studies a dynamic pricing problem
with unknown demand and assumes that there are
only two possible values that the unknown parame-
ters can take. Balvers and Cosimano (1990) and Keller
and Rady (1999) study optimal learning in the case
where the unknown parameters of a linear demand
function are not static, but change over time.

1.2.5. Multiarmed Bandit Problem and Stochas-
tic Approximation. Dynamic pricing with unknown
demand has similarities to the classical multiarmed
bandit problem: both are sequential decision prob-
lems under uncertainty, for which one wants to
determine a decision policy that optimally bal-
ances exploration and exploitation. Some differences
between these problems are that we have an uncount-
able action space, whereas bandit problems often

assume a finite action space, and we assume a known
structural relation between reward and action. Lai
and Robbins (1985), Gittins (1989), Vermorel and
Mohri (2005), Cesa-Bianchi and Lugosi (2006), and
Powell (2010) provide an introduction to these types
of problems, and discuss several decision policies.
Typically, these policies have to balance between
exploration and exploitation; a similar trade-off is
encountered in this study.

A study from the multiarmed bandit literature
that is interesting to mention is Goldenshluger and
Zeevi (2009). They study a particular type of a single-
armed bandit problem. In one of the policies they pro-
pose, called nearly myopic policy, the action taken at
each time step is equal to the myopic action minus
a factor that converges to zero. This is similar to the
taboo interval approach taken in this study (see §3).

There is also a connection with the classical stochas-
tic approximation literature (Robbins and Monro
1951, Kiefer and Wolfowitz 1952), in which one at-
tempts to determine the unknown maximizer of a
function. A difference is that in these settings, the per-
formance is measured by the quality of the estimate
of the maximizer, and not by the cumulative costs that
leads to the estimate.

1.2.6. Consistency of Linear Regression and Max-
imum Quasi-Likelihood Estimation. Our results on
the strong consistency of CVP are based on den Boer
and Zwart (2012), who establish sufficient condi-
tions for consistency of MQLE, and provide bounds
on mean square convergence rates. Their results are
partly based on Lai and Wei (1982), who provide
sufficient conditions for strong consistency of recur-
sive least squares estimation in a linear model with
adapted design. In particular, writing �min4t51�max4t5
for the smallest and largest eigenvalues of the design
matrix, they showed that �min4t5 → � almost surely
(a.s.) and 4log�max4t55/�min4t5 → 0 a.s. are sufficient
conditions for strong consistency of the least squares
estimates (under some additional assumptions on the
noise terms). This result is the counterpart of Lai et al.
(1979), where it was shown that �min4t5 → � a.s. is
both necessary and sufficient for strong consistency in
the case of a fixed design. Results by Nassiri-Toussi
and Ren (1994) indicate that in the adapted case the
extra requirement 4log�max4t55/�min4t5→ 0 a.s. cannot
simply be removed.

Our analysis of CVP is valid for a large class of
demand models. This is in contrast to Lobo and
Boyd (2003), Carvalho and Puterman (2005a, b), and
Bertsimas and Perakis (2006), where the analysis is
restricted to specific models (e.g., linear) or distri-
butions (e.g., log-normal). In addition, CVP is the
first parametric approach to dynamic pricing with
unknown demand where only knowledge on the first
two moments of the demand distribution is required.
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The expected demand can depend on two unknown
parameters; this is more natural than a single
unknown parameter, which is assumed in the
Bayesian approaches to dynamic pricing mentioned
above.

Another feature of CVP is that it balances learning
and optimization at each decision moment, enabling
convergence of the prices to the optimal price. This
differs from policies that strictly separate the time
horizon in exploration and exploitation phases, as
in Broder and Rusmevichientong (2012) or Besbes
and Zeevi (2009); here only the average price con-
verges to the optimal price. Moreover, in these lat-
ter type of policies, the number of exploration prices
that need to be chosen beforehand increases when
the number of unknown parameters increases. CVP
only requires one variable to choose, independent
of the number of unknown parameters (namely, the
constant c in, e.g., Proposition 2, for fixed �). This
makes the method potentially suitable for extensions
to models with multiple products. (Such an exten-
sion can be constructed by requiring a lower bound
on the smallest eigenvalue of the design matrix Pn,
defined in Lemma 1 (see §3.2), instead of on the sam-
ple variance of the prices Var4p5t .) Another difference
between CVP and these policies is that CVP uses all
available historical data to form parameter estimates,
whereas the analysis of the algorithms by Broder and
Rusmevichientong (2012) and Besbes and Zeevi (2009)
uses only data from the exploration phases.

CVP is intuitively easy to understand by price man-
agers and easy to implement in decision support
systems. Numerical experiments suggest that CVP
performs well on different time scales and demand
models.

The rest of this paper is organized as follows. The
demand model and some notation are described in §2,
followed by a short discussion on the model assump-
tions (§2.1) and the method to estimate the unknown
parameters (§2.2). In §3, we show that certainty equiv-
alent pricing is not consistent, which motivates the
introduction of CVP. We show that under this policy
the parameter estimates converge to the true value,
and we show that the regret admits the upper bound
O4T 1/2+�5, where T is the number of time periods and
� > 0 is arbitrarily small. While preparing the final
version of this paper, we learned that Keskin and
Zeevi (2013) show that CVP is part of a larger family
of algorithms that achieve the same regret. In §4, CVP
is numerically compared with another pricing policy
from the literature on different time scales and dif-
ferent demand functions. Conclusions and directions
for future research are provided in §5. The appendix
contains the proofs of the propositions in this
paper.

2. Model and Notation
We consider a monopolist firm that sells a single
product. Time is discretized, and time periods are
denoted by t ∈ �. At the beginning of each time
period, the firm determines a selling price pt ∈ 6pl1 ph7.
The prices 0 < pl < ph are the minimum and maximum
prices that are acceptable to the firm. After setting the
price, the firm observes a realization dt of the demand
Dt4pt5, which is a random variable, and collects rev-
enue pt ·dt . We assume that the inventory is sufficient
to meet all demand; i.e., stockouts do not occur.

The random variable Dt4pt5 denotes the demand
in period t against selling price pt . Given the selling
prices, the demand in different time periods is inde-
pendent, and for each t ∈� and pt = p ∈ 6pl1 ph7, Dt4pt5
is distributed as D4p5, for which we assume the fol-
lowing parametric model:

E6D4p57= h4a
405
0 + a

405
1 p51

Var6D4p57= �2v4E6D4p5750 (1)

Here, h2 �+ → �+ and v2 �+ → �++ are both twice
continuously differentiable known functions, with
ḣ4x5 2= ¡h4x5/¡x > 0 for all x ≥ 0. Furthermore, � and
a405 = 4a

405
0 1 a

405
1 5 are unknown parameters with � > 0,

a
405
0 > 0, a4051 < 0, and a

405
0 + a

405
1 ph ≥ 0.

Write et =D4pt5− E6D4pt5 � p11 0 0 0 1 pt−11d11 0 0 0 1 dt−17.
We make the technical assumption on the demand
that for some r > 3,

sup
t∈�

E6�et�
r
� p11 0 0 0 1 pt−11d11 0 0 0 1 dt−17 <� a.s. (2)

The expected revenue collected in a single time period
where price p is used is denoted by r4p5 = p ·

h4a
405
0 + a

405
1 p5; to emphasize the dependence on the

parameter values, we write r4p1 a01 a15= p ·h4a0 +a1p5
as a function of p and (a01 a1).

We assume that there is an open neighborhood
U ⊂�2 of (a4050 1 a

405
1 ) such that for all 4a01 a15 ∈ U ,

r4p1 a01 a15 has a unique maximizer

p4a01 a15= arg max
pl<p<ph

8p ·h4a0 + a1p591

and such that r ′′4p4a01 a151 a01 a15 < 0. This ensures that
the optimal price popt = p4a

405
0 1 a

405
1 5 is unique and well

defined, and lies strictly between pl and ph.
The marginal costs of the sold product equal zero;

therefore, maximizing profit is equivalent to max-
imizing revenue. Note that a situation with posi-
tive marginal costs c > 0 can easily be captured by
replacing p by p− c.

A pricing policy � is a method that for each t gen-
erates a price pt ∈ 6pl1 ph7, based on the previously
chosen prices p11 0 0 0 1 pt−1 and demand realizations
d11d21 0 0 0 1 dt−1. This pt may be a random variable.
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The performance of a pricing policy is measured in
terms of regret, which is the expected revenue loss
caused by not using the optimal price popt. For a pric-
ing policy � that generates prices p11 p21 0 0 0 1 pT , the
regret after T time periods is defined as

Regret4T 1�5= E

[ T
∑

t=1

r4popt1 a
4055− r4pt1 a

4055

]

0

The objective of the seller is to find a pricing pol-
icy � that maximizes the total expected revenue over
a finite number of T time periods. This is equiva-
lent to minimizing Regret4T 1�5. Note, however, that
the regret cannot directly be used by the seller to
find an optimal policy, since its value depends on the
unknown parameters a405.

Notation. With log4t5 we denote the natural log-
arithm. If x11x21 0 0 0 1 xt is a sequence, then x̄t 2=
41/t5

∑t
i=1 xi denotes the sample mean and Var4x5t =

41/t5
∑t

i=14xi − x̄t5
2 the sample variance. For a vector

x ∈ �n, xT denotes the transpose and ��x�� denotes
the Euclidean norm of x. For nonrandom sequences
4xn5n∈� and 4yn5n∈�, xn =O4yn5 means that there exists
a K > 0 such that �xn� ≤K�yn� for all n ∈�.

2.1. Discussion of Model Assumptions
We do not assume complete knowledge about
the demand distribution, only about the first two
moments. This makes the demand model a little more
robust to misspecifications.

In Equation (1) we assume that the variance of
demand is a function of the expectation. This holds
for many common demand models, like Bernoulli
(with v4x5= x41−x51� = 1), Poisson (v4x5= x, � = 1),
and Normal (v4x5 = 1 and arbitrary � > 0) distribu-
tions. All these examples also satisfy the moment
condition (2).

The assumptions on the functions h and v and
parameters � , a

405
0 , and a

405
1 imply that the expected

demand is strictly decreasing in the price, and that
the variance is strictly positive; i.e., demand is non-
deterministic. These are both natural assumptions on
the demand distribution.

The assumption on the existence and uniqueness of
arg maxpl<p<ph

8p · h4a0 + a1p59 for all a0, a1 in an open
neighborhood U of a405 is satisfied by many func-
tions h that are used in practice to model the relation
between price and expected demand; examples are
h4x5 = x, h4x5 = exp4x5, and h4x5 = 41 + exp4−x55−1.
A sufficient condition to satisfy this assumption is that
the revenue function r4p1 a4055 is strictly concave in p
and attains its maximum strictly between pl and ph.

2.2. Estimating the Unknown Parameters
The unknown parameters a405 can be estimated with
MQLE. This is a natural extension of MLE to settings

where only the first two moments of the distribu-
tion are known; see Wedderburn (1974), McCullagh
(1983), and Godambe and Heyde (1987), and the
books by McCullagh and Nelder (1983), Heyde (1997),
and Gill (2001).

Given prices p11 0 0 0 1 pt and demand realizations
d11 0 0 0 1 dt , the MQLE of (a4050 1 a

405
1 ), denoted by ât =

4â0t1 â1t5, is the solution to the two-dimensional
equation

lt4ât5 =

t
∑

i=1

ḣ4â0t + â1tpi5

�2v4h4â0t + â1tpi55

(

1
pi

)

· 4di −h4â0t + â1tpi55= 00 (3)

If the probability density function (or probabil-
ity mass function in the case of discrete demand
distribution) of D4p5 can be written in the form
exp4�−14d�− g4�555, where � is some function of
h4a0 + a1p5, then (3) corresponds to the maximum-
likelihood equations (Wedderburn 1974). Many
demand distributions that are used in practice, such
as Poisson, Bernoulli, and Normal distributions, fall
into this class (see, e.g., McCullagh and Nelder 1983,
Gill 2001). In case of Normal distributed demand with
h the identity function, (3) is also equivalent to the
Normal equations of ordinary least squares, namely,

lt4ât5=

t
∑

i=1

(

1
pi

)

4di − â0t − â1tpi5= 00 (4)

The solution to the quasi-likelihood equations may,
in general, not always be unique. A standard way
to select the “right” solution is to pick the solu-
tion with the lowest mean-square error (see Heyde
1997, §13.3). In our numerical results (see §4), we did
not encounter problems with multiple solutions of (3).

3. Controlled Variance Pricing
3.1. Inconsistency of Certainty Equivalent Pricing
An intuitively natural pricing policy is to estimate
after each time period the unknown parameters, and
to set the next price equal to the price that is opti-
mal with respect to these estimates. More precisely,
choose two different initial prices p11 p2 ∈ 6pl1 ph7; after
t ≥ 2 time periods, calculate the MQLE estimators ât
with (3), and set the next price pt+1 equal to

pt+1 = arg max
p∈6pl1 ph7

r4p1 â0t1 â1t50 (5)

This pricing policy is known under the name cer-
tainty equivalent pricing, myopic pricing, or passive
learning.

Under different settings, certainty equivalent poli-
cies are known to produce suboptimal outcomes; see,
e.g., the simulation results of such policies in Lobo
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and Boyd (2003) and Carvalho and Puterman (2005a, b).
Anderson and Taylor (1976) studied a linear system
yt = a

405
0 +a

405
1 xt +�t with unknown parameters a

405
0 and

a
405
1 and input variables xt ; the objective is to steer yt to

a desired value y∗. The certainty equivalent policy is
to set xt+1 = min8xmax1max8xmin1 4y∗ − â0t5/â1t99, where
â0t and â1t are the least squares estimates of a

405
0 and

a
405
1 , based on observations 4x11y151 0 0 0 1 4xt1yt5, and
xmin and xmax are the minimum and maximum admis-
sible values for xt . Lai and Robbins (1982) showed
that there are parameter values such that using this
certainty equivalent policy, the controls xt converge
with positive probability to a value different from the
optimal control x = 4y∗ − a

405
0 5/a

405
1 ; this implies that

the certainty equivalent policy is not strongly consis-
tent. (Interestingly, in a Bayesian setting the certainty
equivalence policy is strongly consistent, as shown
by Chen and Hu 1998.) The proof idea of Lai and
Robbins (1982) can easily be extended to our case,
when h is the identity and v is constant. In that
case, the expected demand is a linear function of the
price, and the MQLE equations (3) are equivalent to
the Normal equations for ordinary linear regression.
A difference with Lai and Robbins (1982) is that they
posed specific conditions on p1, p2, pl, and ph; in our
result, these assumptions are left out.

Proposition 1. Suppose that demand is normally dis-
tributed with constant variance and expected demand a
linear function of the price (i.e., h4x5 = x, v4x5 = 1), and
suppose that certainty equivalent pricing is used. Then,
with positive probability, pt does not converge to popt.

The details of the proof of this proposition can
be found in the appendix. The idea of the proof is
to show by induction that with positive probability,
pt = ph for all t ≥ 3. Since it was assumed that popt < ph,
the proposition then follows.

Proposition 1 shows that certainty equivalent pric-
ing is not strongly consistent for a linear demand
function with constant variance. Its scope, however,
is somewhat limited in the sense that it does only
partially describe the asymptotic behavior of the pol-
icy. It is proven that with a positive, but possibly
very small probability, the prices converge to ph 6= popt.
If this would happen in practice, the price manager
would simply increase ph. Moreover, simulations sug-
gest that pt may also converge to a value strictly
between pl and ph, and that the limit price is with
probability one different from popt.

3.2. Controlled Variance Pricing
An intuition for what goes wrong with the certainty
equivalent policy is that the prices pt converge “too
quickly” to a certain value. As a result, not enough
new information is obtained to further improve the
parameter estimates, and thus they will not converge

to the correct values. The key idea is to control the
speed at which the prices converge. This is done by
constructing a lower bound on the sample variance
of the chosen prices. In particular, we require that at
each time period t, Var4p5t ≥ ct�−1, for some c > 0 and
� ∈ 40115.

The pricing policy we propose, CVP, chooses at
each time period the certainty equivalent price (5),
unless this means that the lower bound on the sam-
ple variance of the prices Var4p5t+1 ≥ c4t+ 15�−1 is not
satisfied. In that case, the next price should be chosen
not too close to the average price chosen so far; in
particular, pt+1 is then not allowed to lie in the interval

TI4t5 =

(

p̄t −

√

c64t + 15� − t�7
t + 1
t

1

p̄t +

√

c64t + 15� − t�7
t + 1
t

)

1 (6)

which is referred to as the taboo interval (TI) at time t.
Choosing pt+1 outside the taboo interval creates
extra price dispersion by guaranteeing Var4p5t+1 ≥ c ·

4t + 15�−1 (see Proposition 2).

Pricing Policy: Controlled Variance Pricing
Initialization. Choose initial prices p11 p2 ∈ 6pl1 ph7, p1 6= p2.
Choose � ∈ 40115 and

c ∈ 4012−�4p1 − p25
2 min811 43�5−195.

For all t ≥ 2:
Step 1: Estimation. Calculate the MQLE estimates ât

according to (3).
Step 2: Pricing. If

(a) there is no solution ât , or
(b) â0t ≤ 0 or â1t ≥ 0, or
(c) â0t + â1tp < 0 for some p ∈ 6pl1 ph7,

set pt+1 ∈ 8p11 p29 such that
�pt+1 − p̄t� = max4�p1 − p̄t�1 �p2 − p̄t�5.

Now assume ât exists and â0t > 0, â1t < 0, â0t + â1tp ≥ 0
4p ∈ 6pl1 ph75.

Set
pt+1 = arg max

p∈6pl1 ph7

r4p1 ât5 (7)

if this results in Var4p5t+1 ≥ c4t + 15�−1.
Else, set

pt+1 = arg max
p∈6pl1 ph7\TI4t5

r4p1 ât51 (8)

where TI4t5 is the taboo interval (6) at time t.

In cases (a)–(c), we choose one of the initial
prices p1, p2, that is most far away from p̄t . This
ensures that the bound on the variance Var4p5t ≥ ct�−1

remains valid. The upper bound on the constant c
ensures that 6pl1 ph7\TI4t5 is nonempty for t ≥ 2, and
that Var4p5t ≥ ct�−1 is satisfied for t = 2.

A basic requirement for any pricing policy is that
the price pt should converge to the optimal price popt,
and thus the sample variance Var4p5t should converge
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to zero. The speed at which the sample variance goes
to zero turns out to be strongly related to the quality
of the parameter estimates: in particular, the parame-
ter estimates ât converge quickly to the correct values
a405 if the sample variance Var4p5t converges slowly
to zero; then the price, however, converges slowly,
which may be costly. We here observe a trade-off
between exploration (quick convergence of parame-
ter estimates to the correct values) and exploitation
(quick convergence of prices to the optimal price).
The balance between exploration and exploitation is
captured in the parameter � of CVP. The following
proposition establishes a relation between � and the
sample variance of the prices:

Proposition 2. With CVP, Var4p5t ≥ ct�−1 for all
t ≥ 2.

This assertion follows directly from the construc-
tion of CVP. The details are given in the appendix.

The results from the literature on consistency and
convergence rates of parameter estimates that we use
are stated in terms of the eigenvalues of the design
matrix. The following lemma relates these eigenval-
ues to the sample variance of the prices. Its proof is
straightforward and contained in the appendix.

Lemma 1. Let �max4t5 and �min4t5 be the largest and
smallest eigenvalues of the design matrix

Pt =

(

t
∑t

i=1 pi
∑t

i=1 pi
∑t

i=1 p
2
i

)

1 4t ≥ 251

where p11 0 0 0 1 pt ∈ 6pl1 ph7 and p1 6= p2. Then �max4t5 ≤

41 + p2
h5t and tVar4p5t ≤ 41 + p2

h5�min4t5.

In the following proposition and theorem, we
assume that CVP with � ∈ 41/2115 is used. We show
that a solution ât to the estimation equations (3) even-
tually exists, and the parameter estimates ât converge
to the correct value a405. In addition, we provide an
upper bound on the mean square convergence rate in
terms of the parameter �.

Proposition 3. Let �> 1/2. A solution ât to (3) even-
tually exists, and ât → a405 a.s. In addition, if we define

T� = sup8t ∈� � there is no solution ât of (3)

such that ��ât − a405�� ≤ �91 (9)

then there exists a �0 > 0 such that E6T 1/2
�0

7 <� and

E6��ât − a405��21t>T�0
7=O

(

log t

t�

)

1 (10)

where 1t>T�0
denotes the indicator function of the event

t > T�0
.

This proposition can be derived from den Boer
and Zwart (2012), where strong consistency and con-
vergence rates for quasi-likelihood estimates are dis-
cussed. Theorem 1 of den Boer and Zwart (2012)
implies the assertion E6T 1/2

�0
7 <�. (Note that in their

Theorem 1, the required condition 1/2 < r�−1 is valid
for all 1/2 < � ≤ 1, because of our moment condi-
tion (2), with r > 3.) Its proof is based on the Leray–
Schauder theorem, and on results concerning the
moments of last-time random variables of the form
sup8n ∈� � �Sn� ≥ cn�9, where Sn is a martingale, c > 0,
and 1/2 < � ≤ 1; see Lemma 4 and Proposition 1 of
den Boer and Zwart (2012). The convergence rates (10)
follow from Theorem 2 and Remark 2 of den Boer and
Zwart (2012), together with our Lemma 1. The proof
of their Theorem 2 relies on bounds for the solutions
of certain quadratic equations (their Lemma 6), and
on an extension of the a.s. bounds of Lai and Wei
(1982) to bounds in expectation (their Proposition 2).

Quite some machinery is thus needed to prove
Proposition 3 in its fullest generality, which is con-
tained in den Boer and Zwart (2012). However, in the
relevant special case of normally distributed demand
with a linear demand function, the assertions of
Proposition 3 can be shown with a considerably easier
proof. The reason is that in this case, the MQLE esti-
mates ât are equal to the least-squares linear regres-
sion estimates, and strong consistency follows by
adapting results from Lai and Wei (1982) to derive

E6��ât − a405��27=O

(

log t

t�

)

0 (11)

A proof of (11) is shown in the appendix.
Proposition 3 enables us to calculate the following

upper bound on the Regret:

Theorem 1.

Regret4T 1CVP5=O4T �
+ T 1−� logT 51

provided �> 1/2.

We use a Taylor-series expansion of the revenue
function r4p5 to show that �r4p5 − r4popt5� = O44p −

popt5
25. The implicit function theorem is invoked to

obtain �p4a5 − popt� = O4��a − a405��5. The theorem can
then be derived from Proposition 3, and the rate at
which the size of the taboo interval converges to zero.
The details of the proof are given in the appendix.

3.3. Discussion

3.3.1. Discussion of Bound on Regret. The term
T 1−� logT in Theorem 1 comes from bounds (10) on
the quality of the parameter estimates, and the term
T � comes from the length of the taboo interval (6). The
parameter � captures the trade-off between learning

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
1.

15
5.

15
1.

8]
 o

n 
15

 A
pr

il 
20

14
, a

t 0
2:

15
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



den Boer and Zwart: Simultaneously Learning and Optimizing Using CVP
Management Science 60(3), pp. 770–783, © 2014 INFORMS 777

and optimization. If � is large, then much emphasis
is put on learning: the parameters converge quickly
to their correct values, but due to the large size of
the taboo interval, the prices converge slowly. If � is
small, then the emphasis is on optimizing instant rev-
enue: the taboo interval is then very small, thus the
next-period price is close to the certainty equivalent
optimal price; however, for small �, only a relatively
slow convergence of the parameter estimates is guar-
anteed by Proposition 3. The optimal choice of � in
Theorem 1 clearly is 1/2, but since � should be larger
than 1/2, we get the following:

Corollary 1.

Regret4T 1CVP5=O4T 1/2+�51

with �= 1/2 + �, for arbitrarily small �> 0.

This result would be a little more elegant if the
term T �, � > 0, could be removed. The results of
den Boer and Zwart (2012), however, require �> 1/2,
and it appears that, in general, this requirement cannot
easily be removed. In some special cases, e.g., h4x5= x,
v4x5= 1, or h4x5 = 41 + exp4−x55−11v4x5 = x41 − x5,
Remark 5 of den Boer and Zwart (2012) implies
that Proposition 3 also holds for �= 1/2. In these
cases, CVP has Regret4T 1CVP5 = O4

√
T logT 5, which

slightly improves Corollary 1.
The bound from Corollary 1 is nevertheless quite

close to O4
√
T 5. In several settings it has been shown

that this is the best achievable asymptotic upper
bound on the Regret (see, e.g., Besbes and Zeevi 2011,
Broder and Rusmevichientong 2012, Kleinberg and
Leighton 2003).

3.3.2. Generality of Result. Concerning the gen-
erality of the result, we note that Proposition 3 holds
for any pricing policy that guarantees Var4p5t ≥ ct�−1.
The relation between Regret and Var4p5t through the
parameter �, as in Theorem 1, depends, however, on
the specifics of the used pricing policy.

A lower bound on Regret4t5 in terms of Var4p5t
can easily be constructed. For example, if the rev-
enue function r4p5 is strictly concave in p, then
one can show that Regret4t1�5 ≥ k

∑t
i=14pi − popt5

2

for some positive constant k and any policy �.
Since arg minp∈P

∑t
i=14pi − p52 = p̄t , this implies that

tVar4p5t ≤ k−1Regret4t1�5 a.s. To derive an upper
bound on the Regret in terms of the growth rate
of Var4p5t for arbitrary policies � seems much less
straightforward. It is an interesting direction for
future research to completely characterize the relation
between Regret and empirical variance.

Remark 1 (Differences with the Multiperiod
Control Problem). For the multiperiod control prob-
lem mentioned in §3.1, Lai and Robbins (1982)

showed that one can achieve Regret4T 5 = O4logT 5.
This problem is very much akin to the dynamic pric-
ing problem with linear demand function: in the first
problem, the optimal control x4â0t1 â1t5 as a function
of the parameter estimates equals 4y∗ − â0t5/â1t , in
the latter problem, the optimal price p4â0t1 â1t5 equals
−â0t/42â1t5 (for the moment neglecting bounds on x
and p and assuming â0t and â1t have the correct sign).
When y∗ = 0, these optimal controls only differ by a
factor of 2. An intuitive explanation of why we do
not achieve Regret4T 5=O4logT 5 in the dynamic pric-
ing problem, despite the similarities with the mul-
tiperiod control problem, is the presence of what
Harrison et al. (2012) call “indeterminate equilibria.”
An indeterminate equilibrium occurs if there are esti-
mates 4â01 â15 such that the average observed out-
put at x4â01 â15 “confirms” the correctness of these
estimates, i.e., if 4â01 â15 satisfies a

405
0 + a

405
1 x4â01 â15 =

â0 + â1x4â01 â15. It is not difficult to show that there
are infinitely many indeterminate equilibria, both in
the multiperiod control problem and the dynamic
pricing problem. In the multiperiod control problem,
each indeterminate equilibrium 4â01 â15 6= 4a

405
0 1 a

405
1 5

still gives an optimal control x4â01 â15 = x4a
405
0 1 a

405
1 5,

whereas in the dynamic pricing problem, each inde-
terminate equilibrium 4â01 â15 6= 4a

405
0 1 a

405
1 5 yields a sub-

optimal price p4â01 â15 6= p4a
405
0 1 a

405
1 5. This means that

in the multiperiod control problem, convergence of
the parameter estimates to any arbitrary indetermi-
nate equilibrium implies convergence of the controls
to the optimal control; whereas in the dynamic pricing
problem, only convergence of the parameter estimates
to the “true” indeterminate equilibrium a405 implies
convergence of the controls to the optimal control.
This makes the dynamic pricing problem structurally
more complex than the multiperiod control problem.

Remark 2 (Applicability to Other Sequential
Decision Problems). In §§3.1 and 3.2, we discuss
inconsistency of certainty equivalent pricing and
study the performance of CVP in the specific con-
text of dynamic pricing under uncertainty. We believe,
however, that the ideas developed in this paper can
be applied to many other types of sequential decision
problems with uncertainty. We provide a brief sketch
of problems for which the controlled variance pricing
idea may be a fruitful approach. At each time instance
t ∈ �, the decision maker chooses a control xt ∈ �d,
(d ∈�), and observes a realization yt of a random vari-
able Y 4xt1 �5, whose probability distribution depends
on xt and on an unknown parameter � in a param-
eter space ä ⊂ �d; subsequently, a cost c4xt1yt1 �5 is
encountered. The decision maker estimates � using
historical data 4xi1yi5i≤t , with an appropriate statis-
tical estimation technique (e.g., MLE). A certainty
equivalent control rule then sets the next control to
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xt+1 = arg minx E6c4x1Y 4x1 �̂t51 �̂t57, where �̂t denotes
the estimate of � at time t. If the quality of the param-
eter estimates ���̂t − ��� depends on some measure
of dispersion of the controls (e.g., on their sample
variance Var4x5t , as in the dynamic pricing problem,
or on �min4t5, as in den Boer and Zwart 2012), then
a controlled variance rule sets the next control to
xt+1 = arg minx E6c4x1Y 4x1 �̂t51 �̂t57 subject to a lower
bound on the measure of dispersion. The optimal
lower bound depends on the problem characteris-
tics, and captures in some sense the trade-off between
estimation and instant optimization, i.e., exploration
and exploitation. An extension of the dynamic pricing
problem to a setting with multiple products may also
be elaborated in this fashion.

4. Numerical Evaluation
We numerically compare the performance of CVP
with the policy MLE-cycle, which was introduced by
Broder and Rusmevichientong (2012). We test Nor-
mal, Poisson, and Bernoulli distributed demand, since
these are commonly used demand models in prac-
tice. For each distribution, we test two functions h
that model the relation between price and expected
demand. The function v need not be specified, since
it is already determined by the demand distribution:
v4x5 = 1 for Normal demand, v4x5 = x for Poisson
demand, and v4x5 = x41 − x5 for Bernoulli demand.
All six sets of demand distribution and the func-
tion h are listed in Table 1. For each set, we randomly
generate 10,000 different instances of parameters a0
and a1. For Normal demand we also generate a value
for � ; for Poisson and Bernoulli demand, � = 1. The
parameters are drawn from a uniform distribution.
The support of these uniform distributions is chosen
such that the optimal price lies between 3 and 8. For
Normal demand, an additional requirement is that
h4a0 + a1popt5− 3� > 0 and �/4h4a0 + a1popt55 >

1
20 . This

implies that at the optimal price, the probability that
demand is negative is small (less than 0.135%), and

Table 1 Problem Sets, with Parameter Range

Distribution h4x5 a0 a1 �

1. Normal x 60011207 6−a0/111−a0/167 61/2011/37 · 4a0 + a1popt5

2. Normal x3/4 60011207 6−a0/111−a0/147 61/2011/37 · 4a0 + a1popt5
3/4

3. Poisson exp4x5 611/31207 6−1/31−1/87 1

4. Poisson x 611/31207 6−a0/111−a0/167 1

5. Bernoulli 41+ exp4−x55−1 6log4−3a1 − 15− 3a1, 6−11−4/97 1
log4−8a1 − 15− 8a17

6. Bernoulli x3/4 600811017 6−a0/111−a0/147 1

the coefficient of variation at the optimal price is not
extremely small (at least 1

20 ). For Bernoulli demand,
an additional requirement is h4a0 + a1p5 ∈ 40115 for all
pl ≤ p ≤ ph. Table 2 lists summary statistics for the cho-
sen parameter values.

For both policies that we compare, the lowest and
highest admissible price are set to pl = 1 and ph = 10,
respectively. The policy CVP uses �= 005001, and ini-
tial prices p1 = 4 and p2 = 7. For the constant c in
the taboo interval, we try three different values: 1, 3,
and 5. The exploration prices of MLE-cycle are set
to p1 = 4 and p2 = 7. We vary the number of explo-
ration phases per cycle. In particular, we try one, two,
and three consecutive exploration phases (n consec-
utive exploration phases means that during the 2n
exploration periods in each cycle, the price alternates
between p1 and p2).

For each set of instances, we calculate the average
relative regret over 10,000 instances. Thus, for each
instance, corresponding to a choice of parameter val-
ues, we measure the relative regret

∑T
t=1 ropt − r4pt5

Tropt
× 100%1

and then we average over all instances:

1
101000

101000
∑

i=1

∑T
t=1 ropt − r4pt5

Tropt
× 100%0

This quantity is measured for T ∈ 810150110015001
110009. The results are listed in Table 3. In this table,
the header CVP(c) denotes the policy CVP with con-
stant c and the header MLE-c(n) denotes the policy
MLE-cycle with n consecutive exploration phases.

The results from Table 3 suggest that CVP per-
forms comparably to MLE-cycle, or even better. This
holds for all tested time scales T = 1015011001500,
and 11000, and all six sets of problem instances. If we
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consider the results for T = 11000, we see that CVP
outperforms MLE-cycle on all problem sets except 1.
On a shorter time scale, T = 100, this holds for all
problem sets. One of the reasons for this difference
is that MLE-cycle only uses the data from the explo-
ration phases to form parameter estimates, whereas
CVP uses all the available historical data.

Note that for some instances—in particular, prob-
lem set 3—the relative regret decreases very fast:
CVP(1) has regret below 1% already from T = 50. The
sets 5 and 6, with Bernoulli distributed demand, show
a more slowly decreasing relative regret.

We also see that the optimal value of the constant c
in CVP depends on T . For example, in problem set 6,
c = 1 performs best for T = 101501100, whereas c = 5
is the best choice for T = 500111000.

We wish to emphasize that these results are
not meant as an exhaustive comparison between
the numerical performance of CVP and MLE-cycle.
In that case, we should also have fine-tuned the value
of the exploration prices p1 and p2. The simulation
results, nevertheless, are an indication that CVP may
perform well in practical applications.

Table 2 Sample Statistics of Parameters

a0 a1 � popt

Problem set 1
Max 1909973 −000066 302775 709993
Mean 1000518 −007712 009652 605984
Min 001050 −108004 000042 505002
Std 507519 004517 007246 007187

Problem set 2
Max 1909989 −000075 208178 709998
Mean 1000050 −008125 008181 700703
Min 001009 −108044 000037 602860
Std 507400 004704 006135 004964

Problem set 3
Max 1909995 −001250 100000 709991
Mean 1108249 −002286 100000 407182
Min 306669 −003333 100000 300004
Std 407345 000600 0 103508

Problem set 4
Max 1909983 −002353 100000 709991
Mean 1108751 −009094 100000 606062
Min 306687 −108095 100000 505006
Std 407217 003762 0 007230

Problem set 5
Max 908596 −004445 100000 709998
Mean 408056 −007255 100000 503353
Min 003068 −100000 100000 300006
Std 109504 001606 0 104570

Problem set 6
Max 101000 −000574 100000 800000
Mean 009497 −000770 100000 700780
Min 008000 −000997 100000 602858
Std 000866 000088 0 004952

Table 3 Average Relative Regret

CVP(1) CVP(3) CVP(5) MLE-c(1) MLE-c(3) MLE-c(5)
t (%) (%) (%) (%) (%) (%)

Problem set 1: Normal demand, h4x5= x

10 500 500 500 706 809 806
50 302 301 302 500 607 702
100 209 209 209 309 503 605
500 207 207 207 200 300 401
1,000 207 206 207 105 202 302

Problem set 2: Normal demand, h4x5= x3/4

10 608 702 705 904 1100 1004
50 400 307 308 700 806 809
100 302 208 208 509 700 801
500 109 104 104 304 400 502
1,000 104 100 100 206 300 401

Problem set 3: Poisson demand, h4x5= exp4x5
10 203 207 303 508 707 901
50 009 103 109 301 603 703
100 006 100 104 203 500 606
500 003 004 007 102 209 402
1,000 002 003 005 008 202 303

Problem set 4: Poisson demand, h4x5= x

10 801 806 901 904 905 807
50 505 505 506 805 801 800
100 408 405 403 706 609 703
500 304 207 204 409 402 408
1,000 208 201 109 309 302 308

Problem set 5: Bernoulli demand, h4x5= 41+ exp4−x55−1

10 1804 1805 1803 2100 1902 2007
50 905 1000 1005 1508 1701 1800
100 608 702 706 1305 1404 1605
500 306 305 305 806 809 1100
1,000 208 205 205 608 609 807

Problem set 6: Bernoulli demand, h4x5= x3/4

10 1103 1105 1106 1104 1203 1004
50 902 908 1001 1101 1008 1004
100 800 803 804 1100 1003 1000
500 508 504 500 909 801 709
1,000 500 404 309 900 608 605

5. Conclusions and Future Research
It is important for firms to find the optimal selling
price for their products. Price experimentation can
be a valuable tool to find this revenue-maximizing
price; however, it may be costly if it is not executed
in a proper way. A firm, therefore, needs a pricing
policy that optimally balances obtaining information
and gaining revenue. Controlled variance pricing is
such a pricing policy, and it is proposed in this paper.
The key idea is to enhance certainty equivalent pric-
ing with a slowly shrinking taboo interval around the
average price chosen up to that moment. We have
shown that the parameter estimates then converge to
the true values, and the chosen prices to the opti-
mal price. The Regret after T time periods satisfies
the upper bound O4T 1/2+�5 for arbitrarily small �> 0.
The intuition behind CVP is easy to understand, the
method is easily implemented, and is applicable to
a wide range of demand distributions. Numerical
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tests indicate that CVP performs well on several time
scales and demand models.

From a theoretical perspective, interesting future
research is to study whether the term T � in the upper
bound on the Regret can be removed, and to further
study the relation between Regret and Var4p5t , as dis-
cussed in §3.3.2. From an application point of view, it
would be useful to develop a heuristic that suggests
which parameter c in the taboo interval (6) is approx-
imately optimal.
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Appendix

Proof of Proposition 1. The proof is similar to §2 of
Lai and Robbins (1982), with the difference that we do not
make assumptions on the values of p1, p2, pl, and ph.

Without loss of generality, assume p1 < p2, define a =

44ph − p15
2 + 4ph − p25

25p−1
h , and recall that et = D4pt5 −

E6D4pt5 � p11 0 0 0 1 pt−11d11 0 0 0 1 dt−17. Write �2 = E6e2
t 7 for all

t ∈�t. Let �> 0, and consider the event

A=























4p2 − 2ph5e1 + 42ph − p15e2 ≥ −a
405
1 4p2 − p152ph

4p1 − ph5e1 + 4p2 − ph5e2 ≥ 4−2pha
405
1 − a

405
0 + �5a

+ 42ph − p1 − p25

��ēt� ≤ � for all t ≥ 3























0

We first show that for sufficiently large �, the event A occurs
with strictly positive probability. The first two inequalities
of A are satisfied when

(

p2 − 2ph 2ph − p1
p1 − ph p2 − ph

)

(

e1
e2

)

≥

(

−a
405
1 4p2 − p152ph

a4−2pha
405
1 − a

405
0 + �5+ 42ph − p1 − p25�

)

0 (12)

The determinant of the coefficient matrix equals 4p2 − 2ph5 ·
4p2 − ph5 + 4p1 − ph54p1 − 2ph5, which is strictly positive.
A solution to this linear system therefore exists, and
(12) happens with positive probability. Let B ⊂ �2 be a
bounded subset of the solutions 4e11 e25 of (12), such that
P44e11 e25 ∈ B5 > 0. Choose � >

√
8� + sup4e11 e25∈B

1
3 �e1 + e2�.

It follows from the Kolmogorov inequality (see, e.g., Chow
and Teicher 2003, Theorem 6, p. 133) that for any � >

√
8� ,

P

(

sup
3≤t

∣

∣

∣

∣

1
t−2

t
∑

i=3

ei

∣

∣

∣

∣

>�

)

≤

�
∑

j=1

P

(

sup
2j<t≤2j+1

∣

∣

∣

∣

1
t−2

t
∑

i=3

ei

∣

∣

∣

∣

>�

)

≤

�
∑

j=1

P

(

sup
2j<t≤2j+1

∣

∣

∣

∣

t
∑

i=3

ei

∣

∣

∣

∣

>42j
−15�

)

≤

�
∑

j=1

P

(

sup
1≤t≤2j+1

∣

∣

∣

∣

t
∑

i=3

ei

∣

∣

∣

∣

>42j
−15�

)

≤

�
∑

j=1

1
42j −152�2

�22j+1
≤

�
∑

j=1

8�2�−22−j

= 8�2�−2 <11

since 2j+1/42j − 152 ≤ 8 · 2−j , j ≥ 1. This implies

P4�ēt�≤� for all t≥35

=P

(

sup
t≥3

�ēt�≤�

)

=P

(

sup
t≥3

∣

∣

∣

∣

e1 +e2

t
+

1
t

t
∑

i=3

ei

∣

∣

∣

∣

≤�

)

≥P

(

4e11e25∈B and sup
t≥3

∣

∣

∣

∣

1
t

t
∑

i=3

ei

∣

∣

∣

∣

≤�− sup
4e11e25∈B

1
3
�e1 +e2�

)

=P44e11e25∈B5·P

(

sup
t≥3

∣

∣

∣

∣

1
t

t
∑

i=3

ei

∣

∣

∣

∣

≤

(

�− sup
4e11e25∈B

1
3
�e1 +e2�

))

≥P44e11e25∈B5·P

(

sup
t≥3

∣

∣

∣

∣

1
t−2

t
∑

i=3

ei

∣

∣

∣

∣

≤

(

�− sup
4e11e25∈B

1
3
�e1 +e2�

))

>00

This proves that for � sufficiently large, the event A occurs
with probability P4A5 > 0.

If for some t, â1t ≥ 0 or â0t ≤ 0, then clearly the param-
eter estimates have the wrong sign; it would be foolish
for a price manager to use the certainty equivalent price
arg maxpl≤p≤ph

p ·4â0t + â1tp5 in that case. We therefore assume
that pt+1 = ph whenever â1t ≥ 0. (Alternatively, one might
impose some extra conditions in the set A, and still use
pt+1 = arg maxpl≤p≤ph

p · 4â0t + â1tp5 when the estimates have
the wrong sign.)

We show by induction that on the event A, pt+1 = ph for
all t ≥ 2.

Case t = 2. The line through the points 4pi1 a
405
0 +a

405
1 pi +ei5,

i = 112 has slope â12 = a
405
1 + 4e2 −e154p2 −p15

−1 and intercept
â02 = 4e1p2 −e2p154p2 −p15

−1. If â12 ≥ 0, then p3 = ph. If â12 < 0,
then p3 = â02/4−2â125≥ ph is implied by

4e1p2 − e2p154p2 − p15
−1

≥ −2
(

a
405
1 + 4e2 − e154p2 − p15

−1)ph1

which, by multiplying (p2 − p1) and rearranging terms, is
equivalent to the condition

4p2 − 2ph5e1 + 42ph − p15e2 ≥ −a
405
1 4p2 − p152ph0

Case t ≥ 3. Suppose that for all i = 31 0 0 0 1 t, pi = ph.
Then p̄i = ph − 442ph − p1 − p25/i5 (3 ≤ i ≤ t). Defining
Ct =

∑t
i=14pi − p̄t5ei and Vt =

∑t
i=14pi − p̄t5

2, the least squares
estimates are

(

â0t

â1t

)

=

(

a
405
0

a
405
1

)

+

(

ēt − p̄tCt/Vt

Ct/Vt

)

0

For all t ≥ 2, Vt and Ct can be rewritten as

Vt =

t
∑

i=2

i− 1
i

4pi− p̄i−15
21 Ct =

t
∑

i=2

i− 1
i

4pi− p̄i−154ei− ēi−151
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and by some algebra and an induction argument, it follows
that

Vt = V2 + 42ph − p1 − p25
2( 1

2 − t−1)1

Ct =C2 + 42ph − p1 − p254ēt − ē251

where V2 = 1
2 4p2 − p15

2 and C2 =
1
2 4p2 − p154e2 − e15.

If â1t ≥ 0, then pt+1 = ph.
Now suppose â1t < 0. Then,

pt+1 = ph

⇔
â0t

−2â1t
≥ ph

⇔ â0t ≥ −2â1tph

⇔ a
405
0 + ēt − p̄tCt/Vt ≥ −2pha

405
1 − 2phCt/Vt

⇔ ēt + 42ph − p̄t5Ct/Vt ≥ −2pha
405
1 − a

405
0

⇔

(

ph +
2ph − p1 − p2

t

)

Ct/Vt ≥ −2pha
405
1 − a

405
0 − ēt 0

Observe that on the event A, −ēt <�, ph + 42ph −p1 −p25/t ≥

ph, Vt ≤ V2 + 42ph − p1 − p25
2 · 1

2 , Ct = C2 + 42ph − p1 − p25 ·
4ēt − ē25 ≥ C2 + 42ph − p1 − p254−�− ē25, and thus it suffices
to show

C2 + 42ph − p1 − p254−�− ē25

≥ 4−2pha
405
1 − a

405
0 + �5

(

V2 + 42ph − p1 − p25
2
· 1

2

)

p−1
h 3

i.e.,

1
2 4p2 − p154e2 − e15− 42ph − p1 − p25ē2

≥ 4−2pha
405
1 − a

405
0 + �5

( 1
2 4p2 − p15

2
+ 42ph − p1 − p25

2
· 1

2

)

p−1
h

+ 42ph − p1 − p25�0

Rewriting the left-hand side, we get the condition

e14p1 − ph5+ e24p2 − ph5

≥ 4−2pha
405
1 − a

405
0 + �5

( 1
2 4p2 − p15

2
+ 42ph − p1 − p25

2
· 1

2

)

p−1
h

+ 42ph − p1 − p25�

= 4−2pha
405
1 − a

405
0 + �5a+ 42ph − p1 − p25�0 �

Proof of Proposition 2. We prove the assertion by
induction. For t = 2, observe that the upper bound c ≤

2−�4p1 − p25
2 on the constant c implies Var4p52 = 4p1 − p25

2/
2 ≥ c2�−1. Now let t ≥ 2 and suppose that Var4p5t ≥ ct�−1.
If (3) has no solution, â0t ≤ 0, â1t ≥ 0, or â0t + â1tp <
0 for some p ∈ 6pl1 ph7, then �pt+1 − p̄t� = max4�p1 − p̄t�1
�p2 − p̄t�5 ≥ �p1 − p2�/2. Observe that for all t ≥ 2 and � ∈

40115, 4t + 15� − t� ≤ �t�−1. Together with the bound c ≤

2−�43�5−14p1 − p25
2, this implies

4t + 15Var4p5t+1 = tVar4p5t +
t

t + 1
4pt+1 − p̄t5

2

≥ ct� + c64t + 15� − t�7= c4t + 15�0

If (7) is chosen, then automatically Var4p5t+1 ≥ c4t + 15�−1.

If (8) is chosen, then by construction of the taboo inter-
val (6), we have

4t + 15Var4p5t+1 = tVar4p5t +
t

t + 1
4pt+1 − p̄t5

2

≥ ct� + c64t + 15� − t�7= c4t + 15�0 �

Proof of Lemma 1. From �max4t5 + �min4t5 = trace4Pt5 =

t41 + p̄2
t 5 > 0 and �max4t5�min4t5 = det4Pt5 = t2 Var4p5t >

0, it follows that �min4t5 > 0. Together with p̄2
t ≤ ph, we

thus have �max4t5 ≤ t41 + p̄2
t 5 ≤ t41 + p2

h5. Furthermore,
�min4t5 = �max4t5

−1 det4Pt5 = �max4t5
−1t2 Var4p5t ≥ 41 + p2

h5
−1t ·

Var4p5t . �

Proof of (11), in Case of Normally Distributed Lin-
ear Demand. We assume D4p5∼N4a

405
0 +a

405
1 p1�25 for some

� > 0, and show

E6��ât − a405��27=O

(

log t

t�

)

0

Write qt =
∑t

i=1 ei
( 1
pi

)

and Qt = qtP
−1
t qt . By (4) we have ât =

a405 + P−1
t qt for t ≥ 2, and thus

E6��ât − a405��27 = E6��P−1
t qt��

27≤ E6��P−1/2
t ��

2
��P−1/2

t qt��
27

≤ E6Qt741 + ph5
2c−1t−�1

where we used ��P−1/2
t ��2 = �max4P

−1/2
t 52 = �min4P

−1
t 5 ≤

41 + ph5
2/4tVar4p5t5 ≤ 41 + ph5

2c−1t−� a.s., by Lemma 1 and
Proposition 2. It thus suffices to show E6Qt7 = O4log t5.
We have

Qt = 4qTt−1 + 411 pt5et5P
−1
t

(

qt−1 +

(

1
pt

)

et

)

= Qt−1 + qTt−14P
−1
t − P−1

t−15qt−1 + 411 pt5P
−1
t

(

1
pt

)

e2
t

+ 2411 pt5P
−1
t qt−1et 0 (13)

By the Sherman–Morrison formula (Bartlett 1951),

P−1
t = P−1

t−1 −

(

P−1
t−1

(

1
pt

)

411 pt5P
−1
t−1

)/(

1 + 411 pt5P
−1
t−1

(

1
pt

)

)

1

which implies

qTt−14P
−1
t − P−1

t−15qt−1

= −

(

qTt−1P
−1
t−1

(

1
pt

)

411 pt5P
−1
t−1qt−1

)/(

1 + 411 pt5P
−1
t−1

(

1
pt

)

)

= −4411 pt5P
−1
t−1qt−15

2
/(

1 + 411 pt5P
−1
t−1

(

1
pt

)

)

≤ 0 a.s. (14)

In addition, we have

E

[

411 pt5P
−1
t

(

1
pt

)

e2
t

]

= E

[

411 pt5P
−1
t

(

1
pt

)

E6e2
t � p11 0 0 0 1 pt−11d11 0 0 0 1 dt−17

]

≤ �2E

[

411 pt5P
−1
t

(

1
pt

)

]

1 (15)
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and

E62411 pt5P
−1
t qt−1et7

= E62411 pt5P
−1
t qt−1E6et � p11 0 0 0 1 pt−11d11 0 0 0 1 dt−177= 00 (16)

Combining Equations (13)–(16), we obtain for all t ≥ 2,

E6Qt7 = E6Q27+E

[ t
∑

j=3

Qj −Qj−1

]

≤ E6Q27+�2
t
∑

j=3

E

[

411 pj5P
−1
j

(

1
pj

)

]

0

Sylvester’s determinant theorem, det4I +AB5= det4I +BA5,
for matrices A, B, implies

det4Pt−15 = det4Pt5det
(

I − P−1
t

(

1
pt

)

411 pt5
)

= det4Pt5

(

1 − 411 pt5P
−1
t

(

1
pt

)

)

1

and thus

E6Qt7≤ E6Q27+�2
t
∑

j=3

E

[det4Pj5− det4Pj−15

det4Pj5

]

0

Write yj = det4Pj5/det4P25, j ≥ 2, and Rt = 4log yt5
−1 ·

∑t
j=34yj − yj−15/yj , t ≥ 3. We show by induction that Rt ≤ C

for all t ≥ 3, where C = 1 + 1/ log y3. For t = 3, this follows
immediately. Now let t > 3 and assume Rt−1 ≤ C. Define
g4y5 = 41 − yt−1/y + Rt−1 log yt−15/ log y, and observe Rt =

g4yt5. If Rt−1 ≤ C − 1/ log yt , then Rt = g4yt5 ≤ 1/ log yt +

Rt−1 ≤ C. If Rt−1 > C − 1/ log yt , then Rt−1 > 1 + 1/ log y3 −

1/ log yt ≥ 1, and

¡g4y5

¡y
=

1
y4log y52

[

−1 +
yt−1

y
41 + log y5− log4yt−15Rt−1

]

< 00

The term between square brackets is strictly smaller than
zero, which follows from Rt−1 > 1, yt−1 ≥ 1, and the fact that
41+ log z5/z is decreasing in z, for z≥ 1. It follows that Rt =

g4yt5 ≤ maxy≥yt−1
g4y5 = g4yt−15 = Rt−1 ≤ C. This completes

the proof of the fact Rt ≤C for all t ≥ 3. As a result,

E6Qt7 ≤ E6Q27+�2C log4det4Pt5/det4P255

≤ E6Q27+�2C log441 + p2
h5

2t2/det4P255=O4log t51

where we used Lemma 1 and det4Pt5≤ �max4t5
2. �

Proof of Theorem 1. Since r4p1 a5 is twice continuously
differentiable in p, it follows from a Taylor-series expansion
that, given a, for all p ∈ 6pl1 ph7, there is a p̃ ∈ 6pl1 ph7 on the
line segment between p and popt, such that

r4p1 a5= r4popt1 a5+ r ′4popt1 a54p− popt5+
1
2 r

′′4p̃1 a54p− popt5
21

where r ′4p1 a5 and r ′′4p1 a5 denote the first and second deriva-
tives of r with respect to p. The assumption pl < popt < ph
implies r ′4popt5 = 0, and with K 2= supp∈6pl1 ph7

�r ′′4p5� < �, it
follows that

�r4p5− r4popt5� ≤
K

2
4p− popt5

21 4p ∈P50 (17)

On an open neighborhood of popt in P, popt = p4a4055 is
the unique solution to r ′4p1 a4055 = 0. Since by assumption
r ′′4p1 a01 a15 exists and is nonzero at the point (p4a40551 a405),
it follows from the implicit function theorem (see, e.g.,
Duistermaat and Kolk 2004) that there are open neighbor-
hoods U of p4a4055 in � and V of a405 in �2, such that for each
a ∈ V there is a unique p ∈ U with r ′4p1 a5 = 0. Moreover,
the mapping V →U1a 7→ p4a5 is continuously differentiable
in V . Consequently, for all a ∈ V , there is a ã ∈ V on the line
segment between a and a405, such that

p4a5= p4a4055+
¡p4a5

¡aT

∣

∣

∣

∣

ã

4a− a40551

which implies that we can choose V such that for all a ∈ V ,
∣

∣p4a5− p4a4055
∣

∣=O4��a− a405��50 (18)

Let � > 0 such that 8a2 ��a− a405�� ≤ �9 ⊂ V and ��a− a405�� ≤

� ⇒ a0 > 01 a1 < 0, and let T� be as in (9). This implies that
for all t ∈�,

E6�pt −popt�
27 = E6�pt −popt�

2
·1t>T�

7+E6�pt −popt�
2
·1t≤T�

7

≤ E6�pt −popt�
2
·1t>T�

7+4ph−pl5
2P4t≤T�5

≤ E6�pt −popt�
2
·1t>T�

7+4ph−pl5
2
E6T 1/2

� 7

t1/2
1 (19)

where 1A denotes the indicator function of the event A.
Since r ′4p4a40551 a4055 = 0 and r ′′4p4a40551 a4055 < 0, it fol-

lows from continuity arguments that r ′4p4a51 a5 = 0 and
r ′′4p4a51 a5 < 0 for all a in an open neighborhood of a405. This
implies that if ��ât − a405�� is sufficiently small and t suffi-
ciently large, arg maxp∈6pl1 ph7\TI4t5 r4p1 ât5 lies on the boundary
of the taboo interval TI4t5. It follows that there is a � > 0
such that for all t > T�,

�pt − p4ât5� ≤ �TI4t5� (20)

where �TI4t5� denotes the length of the taboo interval TI4t5.
Combining (18), (20), and (19),

E6�pt −popt�
27

≤E6�pt −popt�
2
·1t>T�

7+4ph−pl5
2
E6T 1/2

� 7

t1/2
1

≤2E6�pt −p4ât5�
2
·1t>T�

7+2E6�p4ât5−p4a4055�2 ·1t>T�
7

+4ph−pl5
2
E6T 1/2

� 7

t1/2
1

=O

(

E6�TI4t5�27+E6��ât −a405��2 ·1t>T�
7+4ph−pl5

2
E6T 1/2

� 7

t1/2

)

1

=O

(

t�−1
+

logt
t�

)

1

by Proposition 3, from which follows

Regret4T 5 =

T
∑

t=1

E6r4popt5− r4pt57=O

( T
∑

t=1

E64pt − popt5
27

)

= O

( T
∑

t=1

t�−1
+ t−� log t

)

= O4T �
+ T 1−� logT 50 �
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