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Abstract. In this work, we study simultaneously resettable arguments
of knowledge. As our main result, we show a construction of a constant-
round simultaneously resettable witness-indistinguishable argument of
knowledge (simresWIAoK, for short) for any NP language. We also
show two applications of simresWIAoK: the first constant-round simul-
taneously resettable zero-knowledge argument of knowledge in the Bare
Public-Key Model; and the first simultaneously resettable identification
scheme which follows the knowledge extraction paradigm.

1 Introduction

Interaction and private randomness are the two fundamental ingredients in Cryp-
tography. They are especially important for achieving zero-knowledge proofs [15].
In [7] Canetti, Goldreich, Goldwasser and Micali showed that when private ran-
domness is limited and re-used in multiple instances of a proof system, it is still
possible to preserve the zero-knowledge requirement. The setting proposed by [7]
is of a malicious verifier that resets the prover, therefore forcing the prover to
run several protocol executions using the same randomness. This setting applies
to protocols where the prover is implemented by a stateless device. Therefore,
a prover can only count on the limited (hardwired) randomness while it can
be adaptively reset any polynomial number of times. The resulting security no-
tion against such powerful verifiers is referred to as resettable zero knowledge
(rZK) and is provably harder to achieve than concurrent zero knowledge [11,18].
Feasibility results have been achieved in [7,17] in the standard model with the
following round-complexity: polylogarithmic for rZK and constant for resettable
witness indistinguishability (rWI, in short). Since then, it was also shown how
to achieve resettable zero knowledge in the Bare Public-Key (BPK) model, in-
troduced by Canetti et al. [7], where one can obtain better round complexity and
assumptions [19,10,1,22,21]. Very recently, it has been shown [13] that resettable
statistical zero knowledge for non-trivial languages is possible.
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The “reverse” of the above question has been considered by Barak, Goldreich,
Goldwasser and Lindell [4] where a malicious prover resets a verifier, called
resettable soundness. In [4], it has been shown how to obtain resettable soundness
along with ZK in a constant number of rounds.

Barak et al. [4] proposed the challenging simultaneous resettability conjecture,
where one would like to prove that a protocol is secure against both a reset-
ting malicious prover and a resetting malicious verifier. The existing machinery
turned out to be insufficient, and a definitive answer required almost a decade.
In the work of Deng, Goyal and Sahai [9] they showed a resettably sound rZK
argument for NP with polynomial round complexity. Very recently, results in
the BPK model for simultaneous resettability have been obtained in [8,2] with
a constant number of rounds.

Arguments of knowledge under simultaneous resettability. Argument systems are
often used with a different goal than proving membership of an instance in a
language. Indeed, it is commonly required to prove knowledge (possession) of a
witness instead of the truthfulness of a statement. Since arguments of knowledge
serve as major building blocks in Cryptography (e.g., in identification schemes1),
it is an interesting question whether the previous results for arguments of mem-
bership extend to arguments of knowledge. Unfortunately, arguments of knowl-
edge have been achieved so far only when one party can reset. That is, we have
rZK arguments of knowledge [7] and, separately, resettably sound ZK arguments
of knowledge [4]. Instead, when reset attacks are possible in both directions, no
result is known even when only rWI with resettable argument of knowledge is
desired.

It is important to note that resettable security for ZAPs comes almost for
free because of the minimal round complexity (1 or 2 rounds). However, it is
not known how to accommodate for knowledge extraction, unless one relies on
non-standard (e.g., non-falsifiable) assumptions. For the case of resettably sound
rZK, all the above results [9,8,2] critically use an instance-dependent technique
along with ZAPs: when the statement is true (i.e., when proving rZK), the
prover/simulator can run ZAPs which allow the use of multiple witnesses. Such
use of multiple witnesses gives some flexibility that turns out to be very useful
to prove resettable zero knowledge. Instead, when the statement is false, the
protocols are designed so that adversarial malicious prover must stick with some
fixed messages during the execution of protocol. Therefore, rewinding capabil-
ities do not help the resetting malicious prover since he can not change those
fixed messages. This is critically used in the proofs of resettable soundness in or-
der to reach a contradiction when a prover proves a false statement. It is easy to
see that the above approach fails when arguments of knowledge are considered.
Indeed, when the malicious resetting prover proves a true statement, the same
freedom that allows one to prove rZK/rWI, also gives extra power to the mali-
cious prover. Consequently, designing an extractor appears problematic and new

1 Bellare et al. in [5] gave various definitions for identification schemes when the ad-
versary can also reset the proving device.
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techniques seem to be needed so that the simultaneous resettability conjecture
is resolved even when we consider knowledge extraction.

Our results. Our main result is the first construction of a constant-round simul-
taneously resettable witness-indistinguishable argument of knowledge2 (in short,
simresWIAoK) for any NP language. Our protocol is based on the novel use of
ZAPs and resettably sound zero-knowledge arguments, which improves over the
techniques previously used in [9,8] as well as concurrent and independent work3

of [16].
We show several applications of our main result. First, we show that by com-

bining two executions of our protocol for simresWIAoK, we obtain a constant-
round simultaneously resettable zero-knowledge argument of knowledge in the
BPK model. This improves the results of [8,2] which do not enjoy witness ex-
traction with respect to adversarial resetting provers.

As another application of our main protocol, we also consider the question of
secure identification under simultaneous resettability and show how to use the
above simresWIAoK to obtain the first simultaneously resettable identification
scheme which follows the knowledge extraction paradigm. We describe it by
extending the work of Bellare, et al. [5].

In addition, in the full version of this paper, we show how to obtain a constant-
round resettably sound concurrent zero knowledge argument of knowledge in the
BPK model by relying on collision-resistant hash functions only (CRHFs, for
short) (i.e., we do not require ZAPs, and thus trapdoor permutations).

Notation. We denote by n ∈ N the security parameter and by PPT the property
of an algorithm of running in probabilistic polynomial-time. A function ε is
negligible in n (or just negligible) if for every polynomial p(·) there exists a
value n0 ∈ N such that for all n > n0 it holds that ε(n) < 1/p(n). We denote
by x ← D the sampling of an element x from the distribution D. We also
use x

$← A to indicate that the element x is sampled from set A according to
the uniform distribution. Let P ,V be interactive Turing machines, we denote
by 〈P(·),V(·)〉(x) the random variable representing the local output of V when
interacting with P where x is the common input and the randomness of each
machine is uniformly and independently chosen.

Blum’s protocol. We will use the 3-round WIPoK protocol of Blum [6] for the
NP-complete language Graph Hamiltonicity (HC) as main ingredient of our
construction. We refer to Blum’s protocol as BL and to BL1, BL2, BL3 its three
rounds.

2 In this work, we will never consider the case of resettable soundness along with
non-resettable argument of knowledge. Therefore, each time we mention together
resettable soundness and argument of knowledge, we mean that both soundness and
witness extraction hold against a malicious resetting prover.

3 In a very recent and independent work [16], Goyal and Maji achieved simultaneously
resettable secure computation. Their work achieves (with simulation-based security)
simultaneous resettability with polynomial round complexity assuming also the ex-
istence of lossy trapdoor encryption.
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2 Resettably Sound rWI Arguments of Knowledge

Our goal is to obtain a construction that is resettably-sound resettable WI and
a resettable argument of knowledge in a constant number of rounds. The only
known constant-round simultaneously-resettable WI protocol is rZAP which is
not an argument of knowledge and as discussed previously there is not much
hope to transform it in an argument of knowledge (even without considering
resettability).

A typical paradigm: determining message and consistency proof. Typically, pro-
tocols dealing with a resetting adversary ([7,4,9]) rely on the following paradigm:
the resetting party is required to provide a special message (called determining
message) that determines her own action for the rest of the protocol. Namely,
for each protocol message the resetting party is required to prove that such mes-
sage is consistent with the determining message (we call this proof a consistency
proof). Moreover, the actual randomness used by the honest party in the pro-
tocol depends on the determining message (typically the honest party applies
a pseudorandom function (PRF) on it). The combination of the randomness
depending on the determining message and the consistency proof given by the
resetting party, suppresses the resetting power of the adversary. Indeed, due to
the consistency proof, the resetting party can not change a message previously
played without first having changed the determining message (unless she is able
to fake the consistency proof). However, if she changes the determining message,
then the honest party plays the protocol with (computationally) fresh random-
ness (unless the pseudo-randomness of the PRF is violated). We will follow this
paradigm to construct our simultaneously resettable witness indistinguishable
argument of knowledge as well. Recall that as specified above, we do not know
how to from rZAPs that are already simultaneously resettable and try to trans-
form them in arguments of knowledge. Our starting point is Blum’s proof of
knowledge [6]. In the following discussion we show incrementally how to trans-
form such protocol to enjoy resettable witness indistinguishability and resettable
soundness (this transformation is already known in literature) to finally present
our novel technique to obtain also resettable argument of knowledge.

Resettable WI and stand-alone argument of knowledge [4]. When the verifier
can reset the prover, following the above paradigm, it is easy to construct a
resettable WI system starting from Blum’s protocol. In Blum’s protocol the
only message from V to P is the challenge. The modified resettable version
requires that V sends a statistically binding commitment of the challenge as
determining message. The only other protocol message of V is the opening of
the commitment which, due to the binding property, is itself a proof that the
message is consistent with the determining message. Note that such modified
protocol is no longer an argument of knowledge since the extractor has the same
power of the malicious verifier. In order to allow only the extractor to cheat, the
next step is to avoid the opening as a proof of consistency. Instead of the actual
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opening of the commitment, V is required to send the challenge along with a res-
sound (non-black-box) ZK argument ([3]). The (non-black box) extractor can
send an arbitrary challenge and prove consistency with the determining message
by using the (stand-alone) non-black-box simulator (recall that only V might
reset here). The resulting protocol is resettableWI and (stand-alone) argument
of knowledge (rWIAoK for short) and it is known from [4].

We use a modified version of such protocol. We require that the commitment
sent by the verifier is statistically hiding (instead of statistically binding), and
we use the statistical zero-knowledge argument of knowledge of [20].

Achieving Resettable Soundness and Resettable Argument of Knowledge: existent
solutions do not work. We now deal with the case in which also the prover can
reset. By the BGGL compiler [4], we know that any constant-round public-
coin WI argument system can be upgraded to resettable soundness by simply
requiring the honest verifier to apply a PRF on the first message received from
the prover. However, since our aim is to obtain simultaneous resettability, we
need to start from the rWIAoK protocol shown before, which is not public coin.
Thus, following the paradigm and the technique of [9], we require that as first
message, P sends the commitment of the randomness that will be used in the
protocol: this is the determining message. Then upon each protocol message P
proves that the message is honestly computed using the randomness committed
in the determining message: this is the consistency proof. Since we are now in
the setting in which both parties can reset each other the consistency proof must
be provided with a simultaneous resettable tool. For this purpose we use rZAPs
that are constant-round simultaneously resettable WI proofs. We denote the
theorem to be proved with rZAP as “consistency theorem”, since P proves that
a message is honestly computed and consistent with the randomness committed
in the determining message.

The technical problem using rZAPs is that since guarantee WI, the theorem
being proved is required to have more than one witness (note that the simul-
taneously resettable protocol of [9] can not be used here since we aim to a
constant-round construction). Recall that we want to use rZAP to provide the
proof of consistency with the determining message. If the determining message is
a statistically binding commitment of the randomness, then there exists a unique
opening, which implies the existence of only one witness. On the other hand, if
we use a statistically hiding commitment, then any opening is a legitimate wit-
ness, the theorem is always true and the benefit of the determining message
vanishes. The solution to overcome this problem is to change the theorem to be
proved with rZAP so that it admits more than one witness.

In [9] the consistency theorem is augmented with the theorem “x ∈ L” that
we call “trapdoor theorem” recalling FLS paradigm [12] but with a different pur-
pose. We call it trapdoor to stress out that it is an escape for the prover that
can pass the consistency proof essentially having freedom to change messages
among resets. Hence in [9,8], along with each protocol message, P is required to
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prove that either the protocol message is computed honestly with the randomness
committed in the determining message, (i.e., the “consistency theorem”) or x ∈ L
(i.e., the “trapdoor theorem”).

This solution can be seen as an instance-dependent technique. Indeed, it is
easy to see that a malicious prover can play messages inconsistently with the
determining message and still pass the consistency check, therefore exploiting its
resetting power, only when x ∈ L. Instead, when proving soundness, since x /∈ L,
the trapdoor theorem is false, hence due to soundness of rZAPs, the malicious
prover is forced to play according to the determining message therefore honestly
following the protocol specifications.

Unfortunately, such an instance-dependent solution suffices to prove resettable
soundness but fails completely when one would like to prove witness extraction
(i.e., the argument of knowledge property). The reason is that, when proving
witness extraction, we have to construct an extractor that works against any
malicious prover, even one who uses the witness of the trapdoor theorem when
proving consistency of the protocol messages. This possible behavior harms the
extractor in two ways (recall that the witness can be computed from two distinct
transcripts of Blum’s protocol that have the same first message): 1) upon seeing
the challenge of the verifier/extractor,P resets it and changes the first message of
Blum’s protocol according to the challenge; 2) P acts as a resetting verifier in the
non-black-box ZK protocol, therefore preventing the extractor to use the stand-
alone non-black-box simulator. Even though this is not harmful for the soundness
property (a malicious prover can perform this attack only when x ∈ L), this
attack kills the existence of the extractor. Therefore the above construction is
only resettable WI and resettable sound. Concluding, the instance-dependent
technique of [9] inherently prevents the existence of any extractor. New ideas are
required to solve the problem.

Achieving Resettable Argument of Knowledge: the new technique. We propose
a new “trapdoor” theorem that forces the resetting prover to honestly follow the
protocol regardless of whether x ∈ L or not.

The idea is the following. We require P to run two parallel executions of the
rWIAoK shown above, that we denote as subprotocols π0,π1. In the determining
message, in addition to the commitment of the random tape that will be used
to run each sub-protocol, we require that P commits to a single bit. Then, the
trapdoor theorem in sub-protocol πd will be the following: “d is the bit committed
in the determining message”. Since in the determining message there is only one
bit committed (the other two are commitments of random tapes), due to the
statistical binding property of the commitment, the trapdoor theorem is true in
only one sub-protocol. Hence, in at least one of the sub-protocols the trapdoor
theorem is false regardless of whether x ∈ L or not, and in such sub-protocol P
is forced to honestly follow the rWIAoK protocol, playing consistently with the
determining message.

More specifically, the final protocol goes as follows. P first sends the deter-
mining message which consists of the statistically binding commitment of the
random tapes that will be used in each sub-protocol and of a single bit. Each
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sub-protocol is augmented with rZAPs sent by P to V in which P proves consis-
tency with the determining message. Therefore, in each sub-protocol πd, along
with each message of the rWIAoK protocol, P provides a rZAP for the follow-
ing compound theorem: either the message is honestly computed and consistent
with the determining message, or d is the bit committed in the determining mes-
sage. Finally, the verifier will accept the proof if and only if both sub-protocol
executions are accepting.

It is easy to see that any malicious prover can not escape from following the
determining message in at least one of the subprotocols. Indeed, let b be the
bit committed in the determining message. If on one hand, in sub-protocol πb,
a malicious P is not forced to be honest and can then use the resetting power
to prove any false theorem (indeed among resets P can change the protocol
messages without changing the determining message), on the other hand, in
sub-protocol πb̄, the trapdoor theorem is false, thus the only way to provide
an accepting rZAP is to follow the honest behavior playing messages derived
from the determining message. Therefore, in sub-protocol πb̄, the extractor is
guaranteed that 1) for sessions starting with the same determining message, the
first round of Blum’s protocol does not change, so that playing with two distinct
challenges yields the extraction of the witness; 2) the extractor can run the
stand-alone non-black-box ZK simulator without being detected. Hence we have
the following: sub-protocol πb̄ is resettably-sound and resettable argument of
knowledge, while sub-protocol πb is not sound. Note that in both sub-protocols,
the resettable WI property is still preserved.

2.1 Formal Construction of simresWIAoK

We formally describe how to build a constant-round simultaneously resettable
WI AoK (simresWIAoK) starting from Blum’s protocol (BL protocol). We de-
note by SHCom, a two-round statistically hiding commitment scheme. We denote
by SBCom the commitment procedure of a non-interactive statistically binding
commitment scheme. We denote by c← SBCom(v, s) (resp. SHCom) the output
of the commitment of the value v computed with randomness s. We use the
resettably-sound statistical (non-black-box) ZK AoK of [20] that we denote by
resSZK. In our construction, we require that P , at each round of the protocol
(except the last that is the opening of commitments as required by BL protocol),
provides a proof that either the messages are honestly computed according to
the randomness committed in the first round, or the “trapdoor” condition is sat-
isfied. Formally, P provides rZAPs for the following NP languages (except the
language ΛSHCom that is proved only by V using resSZK protocol).

ΛBL1: correctness and consistency of the first round of Blum’s protocol (BL1). A
tuple (x, m, crb

, cb) ∈ ΛBL1 if there exist (rb, sb) such that crb
= SBCom(rb, sb)

and m is honestly computed according to BL1 for the graph x using random-
ness frb

(cb).
ΛV: correctness and consistency of verifier’s messages of the protocol resSZK.

A tuple (mP , mV , crb
, cb) ∈ ΛV if there exist (rb, sb) such that crb

=
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SBCom(rb, sb) and mV is honestly computed according to the verifier’s pro-
cedure of the protocol resSZK having in input prover’s message mP (mP

corresponds to the concatenation of all messages played by the prover so
far) using randomness frb

(cb).
Λtrap: trapdoor theorem (true only for sub-protocol b). The pair (cs, b) ∈ Λtrap

if there exists s such that cs = SBCom(b, s).
ΛSHCom: validity of the opening (proved by V). The pair (cs, m) ∈ ΛSHCom if there

exists s such that cs = SHCom(m, s). Note that for a statistically hiding
commitment scheme, any pair (cs, m) is actually in ΛSHCom. Nevertheless, V
proves this theorem using the argument of knowledge resSZK.

Protocol simresWIAoK consists of two phases (see Fig. 1). In the first phase, P
and V generate the random tapes that they will use to run the sub-protocols.
P sends V the commitments cr0 , cr1 of two random strings r0, r1 and the com-
mitment cs of a random bit b. This message is the determining message on
which V applies a PRF to generate a pseudo-random tape (to be used to exe-
cute the sub-protocols). The second phase consists of a parallel execution of π0

and π1 (see Fig. 2). P runs each sub-protocol on theorem x, randomness r0, r1,
and the witnesses for computing the rZAPs as inputs (i.e., the opening of the
commitments of the determining message). V runs each sub-protocol using the
pseudo-random tapes determined by the determining message received from P .
Each sub-protocol is resettable WI, while only one of the two sub-protocols is
resettably-sound and a resettable AoK. Since V accepts the proof only if both
executions are accepting, the final protocol is also a resettably-sound resettable
AoK.

Protocol simresWIAoK

Inputs: common input x ∈ HC.
P ’s input: witness y, randomness ω. V’s input: randomness r.

P: b
$← {0, 1}; r0, r1, s0, s1

$← {0, 1}n.
Send cr0 ← SBCom(r0, s0), cr1 ← SBCom(r1, s1), cs ← SBCom(b, s).
Run in parallel πP

0 (x, y, r0, s0); πP
1 (x, y, r1, s1).

V : upon receiving dm = (cr0 , cr1 , cs) from P .
RV0 ← fr(x||cr0 ||cs); RV1 ← fr(x||cr1 ||cs);
Run in parallel πV

0 (x, RV0); πV
1 (x, RV1).

Fig. 1. Simultaneously Resettable Argument of Knowledge

The sub-protocol πd is described in Fig. 2. We omit the first round of the rZAP
and the first round of the statistically hiding commitment scheme SHCom. rZAPs
are computed with independent randomness. We stress out that the determining
message for V is the first prover’s message: dm = (cr0 , cr1 , cs). The determining
message for P is the first verifier’s message: (c0, c1).



538 C. Cho et al.

Sub-protocol: πd = 〈πP
d (x, y, rd, sd), πV

d (x, RVd)〉.
Inputs: common input: x (∈ HC). P ’s input: witness y for RHC; witness (rd, sd) to
prove rZAP’s consistency theorem. V’s input: randomness RVd. Protocols BL [6] and
resSZK [20] are used as sub-protocols.

– V: Pick challenge for BL protocol: chd
$← {0, 1}n. Send cd ← SHCom(chd) to P .

– P : upon receiving cd (this is the determining message for P):
1. Generate randomness RPd ← frd(x||cd).
2. Compute the step BL1 for the instance x using randomness RPd. Let us

denote the output as mBL1d.
3. Send mBL1d to V along with the rZAP for theorem: ((x,mBL1d, crd , cd) ∈

ΛBL1 ∨ (cs, d) ∈ Λtrap).
– V: if rZAP is accepting send chd to P .

Prove theorem (cd, chd) ∈ ΛSHCom using resSZK protocol. Let md
Prszk

be the
prover’s message of sub-protocol resSZK (sent by V to P) and md

Vrszk
be the

verifier’s message of resSZK (sent by P to V):
1. (P → V) at each round of the protocol resSZK, upon receiving md

Prszk
from

V, P computes md
Vrszk

using randomness RPd and sends md
Vrszk

to V along
with an rZAP for the theorem ((md

Prszk
, md

Vrszk
, crd , cd) ∈ ΛV ∨ (cs, d) ∈ Λtrap).

2. (V → P) at each round of the protocol resSZK upon receiving md
Vrszk

from
P , if rZAP is accepting V computes the next resSZK’s prover message and
sends it to P . Otherwise it aborts.

– P : upon successfully completing the resSZK protocol compute step BL3 and
send the message mBL3d to V.

– If mBL3d is the correct third message of BL protocol V outputs accept, else
outputs abort.

Fig. 2. Sub-protocol πd = (πP
d (·), πV

d (·))

2.2 Security Proof

In this section we provide the high-level proof of the simultaneous resettable
witness indistinguishability property and the resettable argument of knowledge
property of the protocol depicted in Fig. 1.

Resettable-soundness. Towards showing resettable soundness we start with the
following observations. Recall that by dm we denote the determining message
sent by P∗ in the first round consisting of the commitment of two random seeds
and the commitment of a bit (let us call the bit committed b).

1. The randomness used by V depends on dm. In a resetting attack, malicious
prover P∗ activates V by selecting theorem and randomness, denoted by
(x, j) which forces V to run with the same randomness rj among several
executions. However, the randomness actually used by V at each session is
determined by the output of the PRF on seed rj and input (x, dm). Thus,
even if activated with the same random tape rj , when receiving a new de-
termining message, V executes the protocol with a fresh pseudo-random tape.
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Note that, due to the computational indistinguishability of the PRF, sound-
ness holds against a computationally bounded adversary.

2. In sub-protocol πb, the resetting power of P∗ is effective since P∗ can hon-
estly prove the trapdoor theorem of the rZAP. Therefore, P∗ is not forced
to use the randomness committed in the determining message among mul-
tiple resetting attacks. Specifically, P∗ can mount the following attack. P∗

initiates a session labelled by (x, j, dm). In the sub-protocol πb, upon the
reception of challenge chb from V , P∗ resets V (while keeping the same de-
termining message) back to the second round (the point after V has sent
the commitment of the challenge). Then, P∗ changes the message mBL1b

according to the challenge chb previously seen. This is possible using the
trapdoor theorem, therefore P∗ does not need to stick with the randomness
committed in the determining message. Since the determining message is the
same as before the reset, V will use the same challenge in the sub-protocol
πb. Thus, in this sub-protocol, P∗ can prove any theorem by obtaining the
challenge in advance and thus πb is not resettable sound.

3. In sub-protocol πb̄, the trapdoor theorem is always false, thus resetting V
is ineffective. Indeed, in order to provide an accepting transcript, P∗ must
provide an rZAP that only exists when the “consistency” theorem is true, that
is, each of P∗’s message is honestly computed according to the randomness
committed in the determining message. By the statistically binding property
of SBCom (there exists only one opening for the commitments cs and crb̄

) and
the soundness of rZAP (any unbounded P∗ cannot prove a false theorem),
P∗ must be consistent with the randomness committed in the determining
message. Therefore, πb̄ is resettably sound.

Assume that there exists a PPT malicious prover P∗ and a pair (x, j) such that
V accepts x with non-negligible probability for some x /∈ HC. By observation
1, such a transcript is indexed by determining message dm. Thus, the accepting
transcript can be labelled by triple (x, j, dm). By observation 2, for the same
determining message dm, there are polynomially many distinct transcripts for
sub-protocol πb (P∗ can reset V polynomially many times and change the proto-
col messages). All these (partial) transcripts of πb can be accepting for x /∈ HC
since soundness does not hold for πb. However, by observation 3, for a fixed triple
(x, rj , dm), there exists only one possible accepting transcript for sub-protocol
πb̄ since P∗ is forced to honestly follow the BL protocol according to the ran-
domness committed in the determining message. Therefore the soundness of BL
is preserved when P∗ resets V in πb̄. Since V accepts if and only if the executions
of both sub-protocols are accepting, protocol simresWIAoK is resettably sound.

Resettable argument of knowledge. To prove resettable argument of knowledge we
show an expected PPT extractor that extracts the witness from any malicious
prover P∗ with probability that is negligibly close to the probability that P∗

convinces an honest verifier. Let (x, j, dm) be the label of the session in which P∗

provides an accepting proof. The goal of the extractor is to obtain two accepting
transcripts with the same BL1 message and two distinct challenges (for at least
one sub-protocol) for the same label.
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Our extractor consists of two phases. In the first phase it follows the honest
verifier procedure. When P∗ has completed its execution, if there exists an ac-
cepting session labeled by (x, j, dm) that we call “target session”, the extractor
proceeds to the second phase. In the second phase, the extractor obtains a dis-
tinct accepting transcript for the target session by cheating in the “opening” of
the commitment by sending a challenge that is distinct from the one sent in the
first phase and simulating the zero knowledge proof given by the verifier.

The crucial step of this phase is to detect the sub-protocol in which P∗ is stuck
with the randomness committed in dm and must follow the protocol honestly.
Indeed, in such sub-protocol, the extractor can use the stand-alone simulator
and open the statistically hiding commitment to any challenge. Note that the
non-black-box simulator of the protocol resSZK takes as input the code of the
malicious verifier. Thus, in order to use the simulator, the extractor must care-
fully prepare a machine which internally handles the interaction with P∗ and
forwards to the simulator only the messages belonging to the resSZK protocol
played in one of the sub-protocol. One of the tasks of such machine is detecting
the sub-protocol in which P is forced to be honest. Once the right sub-protocol
has been detected, by the statistically-hiding property of SHCom, and by the
statistical zero-knowledge property of protocol resSZK run by V instead of the
opening, we are guaranteed that upon each rewind, P∗ provides another accept-
ing transcript for the target session with the same probability of the first phase.
Finally, by the proof of knowledge property of Blum’s protocol, collecting two
distinct transcripts allows the extractor to compute the witness. The actual ex-
tractor requires an intermediate estimation step (as shown in [14]) in which the
probability of having another accepting transcript for the label (x, j, dm) is esti-
mated. More details on the formal description of the extractor, the augmented
machine and the formal proof can be found in the full version of this work.

Resettable witness indistinguishability. Recall that the protocol mainly consists
of a single message from P to V , the determining message (cr0 , cr1 , cs), and the
parallel execution of π0 and π1. Such protocol can be seen as a parallel repetition
of (Π0, Π1) where Πb is the protocol πb augmented with the message (cs, crb

)
sent from P to V and b = 0, 1.

Assume that there exists a resetting PPT distinguisher V∗ for (Π0, Π1). That
is, V∗ distinguishes whether P runs both protocols using witnesses sampled from
distribution Y0 = {ȳ0(x̄)}x̄ or from distribution Y1 = {ȳ1(x̄)}x̄. Let us denote by
H0,0 the experiment in which P uses witnesses sampled from Y0 when running
both protocols (Πb, Πb̄), where b is the bit committed in cs, and by H1,1 the
experiment in which P uses witnesses sampled from Y1 in both (Πb, Πb̄). We
prove by hybrid arguments that experiments H0,0 and H1,1 are computationally
indistinguishable. Let n denote the number of theorems and t the bound on the
prover’s random tapes. Consider the following hybrids.

H1,0: In this hybrid, in each session, P uses witnesses sampled from Y1 to run
protocol Πb and the bit b is committed in the determining message in such
session. The only difference between experiment H1,0 and H0,0 is in the
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witness used in Πb. Assume that there exists a distinguisher between hy-
brids H0,0 and H1,0 then it is possible to construct an adversary V∗

BL for
the WI property of sub-protocol BL of Πb. Note that, when b is the bit
committed in the determining message, the trapdoor theorem is true in Πb.
V∗

BL, on input (x̄, Y0, Y1), runs V∗ as sub-routine and honestly executes the
protocol Πb̄ using the witness belonging to Y0. Instead for the execution of
Πb it forwards the messages received from V∗ and belonging to BL protocol
to the external prover, while it simulates the remaining messages belong-
ing to Πb. The first difficulty in such reduction seems to be the fact that
V∗ can mount a reset attack asking the prover of Πb to run with the same
randomness while changing the challenge of BL protocol. Instead, V∗

BL can
only mount a concurrent attack against the external BL’s prover. Neverthe-
less, V∗

BL can replicate the same attack of V∗ for the following reasons. The
randomness of the honest prover executing protocol Πb is computed on the
determining message (the commitment of BL’s challenge) received from V∗.
Due to the pseudo-randomness of PRF, when V∗ changes the determining
message the prover of Πb plays with fresh randomness. By the resettably-
sound argument of knowledge property of the resSZK protocol and by the
computational binding property of SHCom we have that V∗ can not maintain
the same determining message and query the prover with two distinct BL’s
challenges. Thus the resetting power is suppressed and V∗

BL can replicate the
same attack as V∗. The second difficulty is that for each protocol message
the honest prover of Πb is required to send a rZAP proving that the messages
are consistent with the randomness committed in the determining message.
However, in the reduction V∗

BL forwards the messages received by an external
prover of BL’s protocol, therefore it can not prove the consistency with the
determine message. Nevertheless, since we are in the case in which the trap-
door theorem is true, V∗

BL can forward the external messages and computes
the rZAPs using the witness of the trapdoor theorem. Due to the resettable
WI property of rZAP such deviation from the honest prover is not detected
by any PPT V∗. Then, by the WI of BL protocol hybrids H0,0 and H1,0 are
computationally indistinguishable.

Hi,j
0,1 (with 1 ≤ i ≤ n, 1 ≤ j ≤ t): In hybrid Hi,j

0,1, in session (i, j), P runs protocol
Πb̄ using the witness sampled from Y1, while protocol Πb is run by using a
witness sampled from Y0, and b is the bit committed in the determining
message of such session. The only difference between experiment Hi,j

0,1 and
Hi−1,j−1

0,1 is that in experiment Hi,j
0,1, in session (i, j), the witness is sampled

from Y1 in the sub-protocol where the trapdoor theorem is false. Note that
H0,0

0,1 = H1,0. Assume that there exists a distinguisher between Hi,j
0,1 and

Hi−1,j−1
0,1 then it is possible to construct an adversary for the hiding of the

commitment scheme SBCom. The reduction works as follows. A playing in
the hiding experiment obtains the challenge commitment C. Then it runs V∗

as sub-routine and simulates the honest prover P as in experiment Hi−1,j−1
0,1 ,

except that in session (i, j) it proceeds as follows. It computes cr0 , cr1 as the
honest prover, while it sets cs = C, and sends the first round to V∗. Then
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A uniformly chooses a bit b and executes the protocol πb using a witness
sampled from distribution Y1 and protocol πb̄ using the witness sampled from
distribution Y0. Note that A can run both sub-protocols without knowing
the opening of C since also the honest P never uses such witness in the
protocol execution. When V∗ terminates its execution, A hands the output
of V∗ to the distinguisher and outputs whatever the distinguisher outputs.
If C is a commitment of b then the experiment simulated by A is distributed
identically to experiment Hi−1,j−1

0,1 . Else if C is a commitment of b̄ then the
experiment is distributed as experiment Hi,j

0,1. By the computational hiding
of SBCom we have that experiments Hi,j

0,1 and Hi−1,j−1
0,1 are computational

indistinguishable.
H1,1: In this hybrid, P uses a witness sampled from Y1 to run protocol Πb

and the bit b is committed in the determining message. The only differ-
ence between experiment Hn,t

0,1 and experiment H1,1 is in the witness used
to run sub-protocol Πb. By the same arguments put forth in proving the
indistinguishability of hybrid H1,0 and H0,0, experiments Hn,t

0,1 and H1,1 are
computational indistinguishable. This completes the proof.

Theorem 1. If trapdoor permutations and collision-resistant hash functions ex-
ist, then the protocol shown in Fig. 1 is a Simultaneously Resettable Witness
Indistinguishable Argument of Knowledge.

3 Application in the BPK Model

Here we show that by combining two instances of simresWIAoK we obtain the
first constant-round simultaneously resettable ZK AoK (simresZKAoK) in the
BPK model.

High-level overview of protocol and proof. The construction is very simple since
it takes advantage of the properties guaranteed by the protocol simresWIAoK.
We use it twice, once for a proof given by the verifier and once for a proof
given by the prover. First, the verifier uses simresWIAoK to prove knowledge of
its secret key (one out of two possible sets of pre-images of a OWF), then the
prover commits to its witness and finally uses simresWIAoK to prove that the
committed message is either a witness for the theorem x ∈ L or a secret key. The
intuition of why the protocol works is the following. First of all, the secret key of
the verifier is protected by the one-wayness of the OWF, by the rWI property
of the simresWIAoK given by the verifier and by the resettable argument of
knowledge of the simresWIAoK given by the prover. Indeed, we will be able to
prove that the witness extracted from the proof given by the prover can only
be a witness for x ∈ L, otherwise we break either the hardness of the OWF or
the rWI property of simresWIAoK. Instead, the security for the prover comes
from the existence of a simulator against any resetting verifier. Indeed, we can
design a simulator as follows: the simulator starts a main thread that is always
updated with new messages until the simulator is stuck. This event happens when
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the simulator is supposed to commit to a witness and to then play the second
simresWIAoK. At this point, the simulator suspends the main thread and starts
some rewinding threads in order to extract the secret key used by the adversarial
verifier in that session. Once this is done, the simulator continues the main thread
since it is not stuck anymore (i.e., it can simply commit to the extracted secret
and use it as witness in the second simresWIAoK). Since the number of identities
of possible verifiers in the BPK model is polynomially bounded, we have that the
simulator has to start only an expected polynomial number of rewinding threads,
and thus its expected running time is polynomial. The indistinguishability of the
view comes from the hiding of the commitment scheme and the rWI property of
the second simresWIAoK. Instead the resettable argument of knowledge of the
first simresWIAoK (i.e., the one given by the verifier) is helpful for guaranteeing
the expected running time of the simulator. The commitment played in between
the two executions of the simresWIAoK plays an important role in breaking a
possible malleability attack of the malicious sender.

The formal description of the protocol is provided in Fig. 3. For underlying
primitives, we use a non-interactive statistically binding commitment scheme,
denoted by SBCom, and a one-way function g : {0, 1}∗ → {0, 1}∗. In the protocol
we use the following two NP relations: 1) a pair ((y, g), x) ∈ RΛow if x is such
that y = g(x); 2) a pair ((c, m), r) ∈ RSBCom if the string r is such that c =
SBCom(m, r).

Theorem 2. If trapdoor permutations and collision-resistant hash functions ex-
ist, then protocol simresZKAoK is a constant-round simultaneously resettable
zero-knowledge argument of knowledge in the BPK model.

For lack of space, the formal proof can be found in the full version of this paper.

4 Simultaneously Resettable Identification Schemes

In this section, we present the second application of our main protocol, the first
construction of a simultaneously resettable identification scheme. Identification
schemes represent one of the most successful practical applications of crypto-
graphic protocols. The basic goal of an identification scheme is to prevent an
adversary A from impersonating a honest user P to another honest user V .
However, this is not sufficient for some applications. Indeed, consider the case
in which V provides a service to P , and the service is restricted only to a small
community controlled by V . Then, P could give to another party T that is not in
the small community, some partial information about his secret that is sufficient
for T to obtain the service from V , while still T does not know P ’s secret. The
proof of knowledge property allows us to do secure identification as well as pre-
venting the attack described above. When the identification protocol is a proof
of knowledge, the sole fact that T convinces V is sufficient to claim that one can
extract the whole secret from T . This implies that T obtained P ’s secret key cor-
responding to his identity, and this is unlikely to happen in scenarios where the
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Protocol simresZKAoK

Ingredients: One-way function g, statistically binding commitment scheme
SBCom, sub-protocol simresWIAoK.
Key-Registration Phase:
V chooses a pair of secrets (sk0, sk1) where skb ∈ {0, 1}n and b ∈ {0, 1}. Then
V generates the corresponding public key (pk0, pk1) such that pkb = g(skb) for
b ∈ {0, 1}. V publishes (pk0, pk1) in public file F and stores skb as its secret trapdoor
information with b

$← {0, 1}. We assume that the i-th verifier V has public key
(pki

0, pki
1) and secret key ski

b.
Main-Execution Phase:
Common input: NP-statement x ∈ L and the verifier’s identity i. Hence, prover
P knows public key (pki

0, pki
1) in F, chosen by V.

Input for P: Witness w such that (x, w) ∈ RL and randomness rP .
Input for V: Randomness rV , secret key ski

b.

– P : Obtain a sufficiently long pseudo-random tape r
′
P ← frP (x||pki

0||pki
1). From

now on, P uses r
′
P for the execution in the rest of protocol. For convenience,

we assume that r
′
P consists of four partitions, r

′
P (1), r

′
P (2), r

′
P (3) and r

′
P (4).

– (V → P): V proves, by using simresWIAoK, the following statement:
There exists ski

b such that ((pki
0, g), ski

b) ∈ RΛow ∨ ((pki
1, g), ski

b) ∈ RΛow .
For the execution of simresWIAoK, P uses random tape r

′
P (1).

– (P → V) : If the above proof is rejecting, then P aborts. Otherwise, P commits
to w and 0n as c0 ← SBCom(w, r

′
P (2)) and c1 ← SBCom(0n, r

′
P (3)). Then, P

sends c0 and c1 to V.
– (P → V): P by using simresWIAoK and random tape r

′
P (4) proves to V the

following statements:
1. ∃ (w, r) such that (x, w) ∈ RL ∧ ((c0, w), r) ∈ RSBCom OR
2. ∃ (sk, r) such that ((pki

0, g), sk) ∈ RΛow ∧ ((c1, sk), r) ∈ RSBCom OR
3. ∃ (sk, r) such that ((pki

1, g), sk) ∈ RΛow ∧ ((c1, sk), r) ∈ RSBCom.
– V: output "accept" if and only if the proof provided by P is accepting.

Fig. 3. Constant-Round Simultaneously Resettable ZKAoK in the BPK Model

same secret key is used for other critical tasks such as digital signatures. As dis-
cussed in the introduction, our simultaneously resettable identification scheme
follows the above proof of knowledge paradigm. This extends the previous work
of Bellare et al. [5] to a setting in which every party can be reset. We emphasize
that our simultaneously resettable identification scheme is easily obtained from
our main protocol simresWIAoK, so achieving a constant round complexity.

Identification protocols secure against reset attacks. We introduce the notion of
Reset-Reset-1 security as a generalization of the Concurrent-Reset-1 CR1 notion
introduced in [5]. CR1 considers an adversary I, called impersonator, that plays
in two phases. In the first phase, it interacts with a prover as a resetting verifier
(Reset phase). In the second phase, it has no access to the prover anymore, but
it tries to impersonate such a prover to an honest verifier (Concurrent phase).
In the second phase, I is not allowed to reset the verifier. In our new definition
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Reset-Reset-1 (RR1) the impersonator is allowed to reset in both phases. The
formal definition is a straightforward extension of the one given in [5] and can
be found in the full version of this work.

The protocol ID. Let f : {0, 1}n → {0, 1}∗ be a one-way function, let n be
the security parameter. The public key of P is the pair (pk0, pk1), the secret
key is xd for a randomly chosen bit d, such that pk0 = f(xd) ∨ pk1 = f(xd).
The protocol simply consists in P running the simresWIAoK protocol with V
to prove that it knows the preimage of either pk0 or pk1. Formally, let ΛID be
the following language ΛID = {(y0, y1): there exists x ∈ {0, 1}n s.t. y0 = f(x) ∨
y1 = f(x)}, then the identification scheme consists of P proving the statement
(pk0, pk1) ∈ ΛID using simresWIAoK.

Theorem 3. If a constant-round simultaneously resettable WIAoK protocol ex-
ists and one-way functions exist, then the above protocol is constant-round and
secure in the RR1 setting.

Proof. Let pk = (pk0, pk1) be the public key of a player P . Assume that there
exists a PPT adversary I playing the RR1 experiment, that succeeds in imper-
sonating an honest P with non-negligible probability. This means that I is able
to prove to an honest V that her identity is pk = (pk0, pk1). Then we show
that I can be used to construct an adversary against the one-wayness of f , or a
distinguisher for the resettableWI property of the simresWIAoK protocol. The
resettable argument of knowledge property of simresWIAoK protocol is crucial
to put forth both reductions.

Recall that, in the RR1 game, I plays the first phase interacting as a resetting
verifier V∗ with P and in the second phase interacts as resetting prover P∗ with
V trying to impersonate P .

First we show an adversary A that breaks the one-wayness of f . A has in
input a challenge y that is the output of f(x) for some unknown x. The reduction
works as follows. A picks d ∈ {0, 1}, xd ∈ {0, 1}n and computes pkd = f(xd)
and pkd̄ = y. Then it runs I as subroutine, in the first phase A simulates the
honest prover playing the simresWIAoK protocol with witness xd. In the second
phase, A simulates the honest verifier to I. If I provides an accepting proof,
then A runs the extractor of the simresWIAoK protocol and, by the resettable
argument of knowledge property, except with negligible probability, it obtains
the witness used by I in the proof. In order to run the extractor, A prepares an
augmented machine that internally contains all messages belonging to the first
phase so that they can be internally played with I, while the messages sent by
I in the second phase are forwarded to the extractor. Now note that during the
extraction process the extractor rewinds the machine several times changing the
protocol messages (of the second phase), therefore I could change her messages
accordingly. Note that however, since there is a separation between the first
phase and the second phase, this does not require to re-play messages of the first
phase. Since, by assumption f is a one-way function, the probability that the
witness extracted corresponds to a pre-image of y is negligible.
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Now, assume that the witness extracted from I is xd. Then we can construct
a distinguisher AWI for the resettable witness indistinguishability property of
simresWIAoK. AWI works as follows. It computes pk0 = f(x0), pk1 = f(x1)
and activates an external prover for the simresWIAoK protocol with inputs
((pk0, pk1), (x0, x1)). In the first phase, when I runs as a verifier, AWI for-
wards all messages to the external prover of the simresWIAoK. In the second
phase, when I runs as a prover, AWI follows the procedure of the honest veri-
fier. Then, if I provides an accepting proof, then AWI runs the extractor of the
simresWIAoK protocol. Finally by the resettable argument of knowledge prop-
erty, except with negligible probability, it obtains the witness used by I in the
proof, i.e. it obtains x0 or x1. Now notice that in the previous experiment, when
we tried to invert the one-way function, the witness extracted corresponded to
the one used in the first phase, while I was verifying the proof. Since this second
experiment is identical to the previous one, it is again true that the extracted
witness corresponds to the one used by the prover. Since the prover now is the
external prover of simresWIAoK, we have that the above adversary AWI breaks
the rWI property of simresWIAoK. By the rWI property of simresWIAoK, this
event happens with negligible probability only and thus I wins the RR1 game
with negligible probability.
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