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Abstract

Amajor challenge in developmental biology is to understand the genetic and cellular pro-

cesses/programs driving organ formation and differentiation of the diverse cell types that

comprise the embryo. While recent studies using single cell transcriptome analysis illustrate

the power to measure and understand cellular heterogeneity in complex biological systems,

processing large amounts of RNA-seq data from heterogeneous cell populations creates

the need for readily accessible tools for the analysis of single-cell RNA-seq (scRNA-seq)

profiles. The present study presents a generally applicable analytic pipeline (SINCERA: a

computational pipeline for SINgle CEll RNA-seq profiling Analysis) for processing scRNA-

seq data from a whole organ or sorted cells. The pipeline supports the analysis for: 1) the

distinction and identification of major cell types; 2) the identification of cell type specific

gene signatures; and 3) the determination of driving forces of given cell types. We applied

this pipeline to the RNA-seq analysis of single cells isolated from embryonic mouse lung at

E16.5. Through the pipeline analysis, we distinguished major cell types of fetal mouse lung,

including epithelial, endothelial, smooth muscle, pericyte, and fibroblast-like cell types, and

identified cell type specific gene signatures, bioprocesses, and key regulators. SINCERA is

implemented in R, licensed under the GNU General Public License v3, and freely available

from CCHMC PBGE website, https://research.cchmc.org/pbge/sincera.html.

This is a PLOS Computational Biology Software paper.

Introduction

Genetic and phenotypic heterogeneity among cells is a general phenomenon, associated with

the development of biological function and disease processes [1–3]. The epigenetic status, cell

cycle, microenvironment and intrinsic transcriptional ‘noise’ are all likely to influence the

extent of heterogeneity within a seemingly homogenous cell population within an organ [4–6].

Cell fate decisions during organ development are largely operative at the level of individual
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cells, wherein cell identity and function are determined by a unique combination of regulators

operating at transcriptional targets and via encoded proteins in each cellular environment.

While the analysis of whole organ RNA expression profiles together with cell lineage tracing

and gene targeting studies have provided an increasingly detailed framework for understanding

the processes and cell-cell interactions directing organ formation, the extent of cellular hetero-

geneity, transitional stages of differentiation, and dynamic changes in gene expression within

individual cells cannot be addressed using transcripts derived from whole organs or pooled cell

populations. Transcriptome analysis at single cell resolution provides new insights into the

genetic cellular response during health and disease.

Recent advances in microfluidics, robotics, amplification chemistries, and DNA sequencing

technologies provide the ability to isolate, sequence, and quantitate RNA transcripts from sin-

gle cells. Single-cell RNA-seq (scRNA-seq) can now be applied to study the individual tran-

scriptomes of large numbers of cells in parallel using techniques such as fluorescence-activated

cell sorting, microfluidics or optofluidic-based cell handling [7–10]. The combination of a

high-throughput cell isolation and sequencing at the single-cell level is crucial for identification

of transcriptional networks and molecular mechanisms controlling the formation of complex

organs at single cell resolution, providing new insights into the diversity of cell types, lineage

relationships, and gene expression patterns accompanying embryogenesis, organogenesis, and

disease pathogenesis [11–18]. Recent studies by Satija et al. [19] and Pettit et al. [20] combined

single-cell RNA-seq gene expression profiles with complementary in situ hybridization (ISH)

data to reveal the 3D expression patterns. Both relied on a spatial reference map to infer the

spatial location of cells from their scRNA-seq profiles via either a small set of known land-

marks’ in situ patterns or a pre-existing spatially referenced ISH atlas. These efforts addressed

spatial localization more directly and precisely than previous efforts using independent compo-

nent analysis (ICA) or principal component analysis (PCA) to approximate spatial location.

scRNA-seq has also been applied to isolated lung epithelial cells to characterize the epithelial

lineage during development and after injury [21,22], identified multi-potent epithelial progeni-

tors and progenitor cells responding to lung injury. Nevertheless, using scRNA-seq to charac-

terize heterogeneous cell populations from whole lung sample has not been reported.

While the future for single-cell next-generation sequencing based genomic studies is prom-

ising, it brings new and specific analytical challenges. Most of the current available methods

were designed for quantifying the mean behaviors of millions of cells by averaging the signal of

individual cells. Although some tools for analyzing RNA-seq and Microarray data from bulk

cell populations can be applied to scRNA-seq data, new analytic strategies and workflows are

required to address the unique issues associated with the single cell data including the identifi-

cation and characterization of unknown cell types, handing the confounding factors such as

batch and cell cycle effects, addressing the cellular heterogeneity in complex biological systems,

to name a few [23–27]. For cell type identification, most single cell studies used hierarchical

clustering or PCA-like methods or the combination of the two [21,28–31]. Recently, a number

of methods specifically designed for scRNA-seq analysis have been introduced including

SNN-Cliq [32], scLVM [27] and BackSPIN [33] for clustering; SAMstrt and Bayesian approach

for single-cell differential expression analysis [25,34,35]; Monocle [26] and SCUBA [36] for

extracting lineage relationships from scRNA-seq and modeling the dynamic changes associated

with cell differentiation. These advanced methods mostly focused on one aspect of the data

analysis. How to design the analytic workflow to process large amounts scRNA-seq data from

heterogeneous cell populations and reveal biological insights represent a substantial challenge

for most investigators.

The present study is motivated to design a top-to-toe tool set to the research community for

their practical usage. Here we present SINCERA, a computational pipeline for SINgle CEll
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Rna-seq profiling Analysis, to enable researchers to analyze RNA-seq data from single cells iso-

lated from whole organ preparations and/or sorted cells. Practically, the pipeline enables inves-

tigators analyzing scRNA-seq data using standard desktop/laptop computers to conduct data

filtering, normalization, clustering, cell type identification, gene signature prediction, transcrip-

tional regulatory network construction, and identification of driving force (key nodes) for each

cell type. In addition to providing the research community with a ready to use tool set, the pres-

ent work introduced a number of innovative approaches in several critical steps of the analytic

pipeline including logistic regression based ranking model to predict cell type specific signature

genes, automated “Cell Type Enrichment Analysis”, and rank aggregation based validation of

cell type identification, and integrative node importance ranking based on both disruptive and

centrality metrics to predict cell type specific transcriptional regulatory driving force. Through

the application of SINCERA to analyze RNA-seq data from single cells isolated from whole

fetal mouse lung at E16.5, we demonstrated its utility and accuracy. The computational pipe-

line generated by our work provides a valuable tool set for the analysis of single cell transcrip-

tome data in whole tissue during normal development and from various pathological states.

Design and Implementation

We developed a pipeline designed to enable analysis of scRNA-seq from heterogeneous cell

populations. Fig 1 depicts the schematic workflow of the pipeline consisting of three major

analytic components: (1) pre-processing, (2) cell type identification, and (3) gene signature and

driving force analysis. The pipeline takes RNA-seq expression values (e.g., FPKM [37] or TPM

[38]) from heterogeneous single cell populations as inputs. Functions related to obtaining the

RNA-seq expression values, such as sequencing data mapping, alignment, quantification, and

annotation, are not part of the pipeline; and they can be processed using widely available soft-

ware such as Tophat [39,40], BWA [41], Cufflinks [37], and RSEM [38]. Let us denote by E =

{Es |1� s�m} the input expression profiles to the pipeline, wherem is the number of samples

prepared. Each sample Es is represented as a two-dimensional real-valued matrix that encodes

the expression profiles of ns > 0 genes in qs > 0 cells. Es
ij represents the expression of gene i in

cell j of sample s, Es
i is a row vector encoding the expression profile of gene i in qs cells of s, and

Es
j is a column vector that represents the expression of ns genes in cell j of s. The pipeline sup-

ports unequal numbers of cells in different samples. The output of the pipeline includes a set of

refined cell clusters, differentially expressed genes for each cluster, and gene signature and driv-

ing forces of a given cell cluster. Each cluster is considered as a unique cell type with defined

biological functionality. Considering the heterogeneity of cell states at a given developmental

stage, sub-clusters are likely present in each major cluster. The procedures of cell type identifi-

cation, gene signature prediction, and driving force analysis can be iterated and refined to iden-

tify subpopulations of cells. The design of three main components in the pipeline is elaborated

in the sections below.

Pre-processing: Gene pre-filtering

The pre-filtering of genes is based on the gene expression abundancy and selectivity as

described below.

The expression filter selects genes with d
s

iðyÞ � N , where dsiðyÞ denotes the number of cells

in sample s with the expression of gene i no less than θ (measured in FPKM in the demonstra-

tion). This step filters out non- or low-expressive genes, as well as genes that are expressed in

less than N cells per sample preparation. In the demonstration section, we applied the expres-

sion filter of ds

ið5Þ � 2 to two independent single cell preparations from E16.5 mouse lung (i.e.,

gene i was selected if it expressed� 5 FPKM in at least 2 cells in sample s). We recommend
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addressing rare cell types that are not forming clusters with other cells by adjusting dsiðyÞ ¼ 1

in a separate study.

The cell specificity filter is defined by a cell specificity index tsi , which is modified from the

calculation of tissue specificity index in [42].

xsij ¼
Es
ij �minðEs

iÞ

maxðEs
iÞ �minðEs

iÞ

tsi ¼

XNs

j¼1
ð1� xsijÞ

qs � 1

ð1Þ

tsi denotes the cell specificity of gene i in sample s, Es
ij is the expression of gene i in cell j in s,

Fig 1. Schematic Workflow. The analytic pipeline consists of three main components: pre-processing, cell
type identification, and cell type specific gene signature and driving force identification.

doi:10.1371/journal.pcbi.1004575.g001
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qs is the number of cells in s, and Es
i encodes the expression of gene i in qs cells of sample s. In

the demonstration section, we chose genes with tsi � 0:7; 8s. The cell specificity filter removes

genes unselectively expressed across all cell types (many of these would be housekeeping genes

with extremely high expression levels); and thus, this step results in the selection of genes that

may be selectively expressed in certain cell types.

Pre-processing: Normalization and quality control

Normalization methods can be applied to reduce batch effect and enable expression level com-

parisons within or across sample preparations. The pipeline provides both gene level and cell

level normalizations. For gene level normalization, per-sample z-score transformation are

applied to each expression profile, i.e., zsij ¼ ðEs
ij � ms

iÞ=s
s
i , where z

s
ij denotes the z-score normal-

ized expression of gene i in cell j of sample s, ms
i and s

s
i represent the mean and standard devia-

tion of gene i in all cells of sample s. In the demonstration, this z-score normalized data were

used prior to clustering to reduce sample variations and facilitate the identification of major

cell types. For cell level normalizations, we use the trimmed mean. If starting with normalized

expression data (e.g., FPKM), cell level normalization is not always necessary. To assess

whether cell level normalization is needed for a specific dataset and to help understand the

quality of the RNA-seq data for further in-depth analysis, we utilized several quality control

checks, including MA plot [43], Q-Q plot [44], and inter-sample cell correlation and distance

measurements (S1 Text).

Cell type identification

Optimizing cell clusters. Cell type identification starts with a two-dimensional unsuper-

vised hierarchical clustering of the cells using pre-filtered expression profiles. Use of an unsu-

pervised hierarchical clustering approach does not impose prerequisite external biological

knowledge, nor does it require preset knowledge of the number of clusters; therefore, it is capa-

ble of discovering novel cell types. Centered Pearson’s correlation and average linkage are used

as default setting for the similarity measurement and linkage method, respectively. Pearson’s

correlation for similarity measurement is used because we consider that the trend of gene

expression among individual cells is more important than the absolute distance (e.g. Euclidean

distance) among the cell profiles. The use of average linkage takes the contribution of individ-

ual cells into account. Per-sample z-score gene-by-gene normalization is applied before the

clustering. In addition to the default cluster method, we also include consensus clustering

[45,46], tight clustering [47] and ward linkage for similarity measurement [48] as optional clus-

tering methods in the pipeline. When using hierarchical clustering for cell cluster identifica-

tion, users can select a distance threshold or the number of clusters to identify the cell clusters

along with visual inspection. If the distance threshold and the number of clusters are not pro-

vided, the algorithm finds a minimum distance that generates no more than a specified number

(γ) of singleton clusters. In the demonstration, we set distance threshold to 0.5 and γ = 0 to

obtain non-singleton cell clusters and identified 9 distinct cell clusters with this setting. A per-

mutation analysis (S2 Text) is provided for determining significance of clusters [21].

Detecting differentially expressed genes. To facilitate the mapping of major cell types to

the cell clusters, we identified differentially expressed genes for each cluster using a procedure

described as follows. Let C = {cl |1� l� k} be a clustering scheme that divides cells into k dis-

joint clusters. For each cluster cl 2 C, we calculated p-value of each gene based on a two-group

statistical test of gene expression between the cells in cl and the cells not in cl. If the expression

in the two groups can be assumed from two independent normal distributions, we use the one-

tailed Welch’s t-test [49], which is suitable for samples having unequal variances and different

A Single-Cell RNA-Seq Analytic Pipeline
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sample sizes. In the case of small sample sizes, we use the one-tailed Wilcoxon rank sum test

[50]. In the demonstration, we used Welch’s t-test when the sizes of both groups were greater

than 5; otherwise, Wilcoxon rank sum test was used instead. Since the differential expression

analysis involves multiple simultaneous tests, the Benjamini and Hochberg method [51] is uti-

lized to control the False Discovery Rate (FDR). In addition, we include a resampling based

method, SAMseq [35], as an optional method for identifying differentially expressed genes.

Matching major cell types to the corresponding cell clusters. Starting with differentially

expressed genes in each cluster, we use a combination of functional enrichment analysis, co-

expression with publically available gene sets, validation with known biomarkers using a rank

aggregation based algorithm, and expert curation to define the major cell type for each cluster.

Functional enrichment analysis. In the demonstration, we used ToppGene Suite [52]

(http://toppgene.cchmc.org), DAVID Bioinformatics Resources [1,53] (http://david.abcc.

ncifcrf.gov), MSigDB [54] (http://www.broadinstitute.org/gsea/msigdb), and Genecards

(http://www.genecards.org) for gene sets functional enrichment analysis. Cell type information

was extracted from EBI Expression Atlas (http://www.ebi.ac.uk/gxa), and co-expressed gene

information was obtained from ToppGene Suite [52] and MSigDB [54].

Cell type enrichment analysis. To our knowledge, there are multiple tools for gene sets

enrichment analysis but there is a lack of tools for cell type enrichment analysis. We are

unaware of any available tool or knowledge base that can be directly used to predict cell types

based on gene expression patterns. Information extraction and knowledge integration by an

expert is usually required for this step. To facilitate the general usage of the pipeline, we imple-

mented a cell type enrichment analysis based on gene expression and cell type association data

obtained from EBI Expression Atlas. Associations with significant positive experimental sup-

port (p-value<0.05) and without negative experimental evidence were used for cell type

enrichment analysis. One-tailed Fisher’s exact test was utilized to assert the significance of the

association between a specific cell type and the input gene list (cluster specific differentially

expressed genes). Data processing and algorithm design for cell type enrichment analysis are

described in S3 Text.

Known marker based cell type validation. Once major cell types are assigned to matched

cell clusters, biomarkers from the literature are collected and used to cross validate the assign-

ments. At single cell resolution, expression values of individual markers exhibit high intercellu-

lar variance, even within closely related cells. In addition, some markers are shared by multiple

cell types, such as Acta2 (actin, alpha 2, smooth muscle), commonly used as a marker of myofi-

broblasts, smooth muscle cells, and pericytes, while some markers are expressed in more spe-

cialized cell types, e.g., surfactant proteins are selectively expressed in lung epithelial type II

cells. Therefore, at single cell level, reliance on the expression of a single marker for cell type

identification is error prone. Using the expression patterns of multiple markers can provide a

more reliable validation of a given cell type assignment. In the pipeline, we designed a rank-

aggregation-based approach to quantitatively validate the performance of cell type assignments

using the collective expression patterns of multiple markers. The approach consists of three

steps to validate the assignment of each cell type. We use the validation of the assignment of

epithelial cells as an example to illustrate the approach. Let N be the total number of single

cells, n out of N cells were assigned as epithelial cells, andm known epithelial markers are used

for validation. The rank-aggregation-based approach first generatesm individual partial rank-

ings (based on the assumption that a cell with a higher expression of the known epithelial

marker is more likely to be an epithelial cell), then it aggregates them individual partial rank-

ings to produce a global ranking [55]. Cells with a high global ranking shall have high expres-

sion of multiple epithelial markers, and thus have high likelihood of being epithelial cells. The

last step of the approach is to validate the accuracy of cell assignment using Receiver Operating

A Single-Cell RNA-Seq Analytic Pipeline
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Characteristic curve (ROC curve). Specifically, the “n” defined epithelial cells are considered as

positive instances and the remaining cells are used as negative instances; then a ROC curve of

the global ranking can be generated, and the area under the curve (AUC) measures the consis-

tency between the cell type assignment and the global ranking. A high AUC indicates that the

cell type assignment is highly consistent with the global ranking of cells based on known mark-

ers, and therefore, represents a higher accuracy of the cell type assignment.

Cell type specific signature identification

Once we defined cell types, the analysis proceeds with the identification of cell type specific

gene signatures and driving forces (key factors that determine the cell identity and activity).

We define cell type specific gene signature as a group of genes uniquely or selectively expressed

in a given cell type. To identify the signature for each major cell type (i.e., cell cluster), we

designed a ranking system to rank genes based on their importance to the intra-cluster similar-

ity and inter-cluster dissimilarity. Four features were used to evaluate the specificity of genes

related to each cluster, including common gene metric, unique gene metric, test statistic metric,

and synthetic profile similarity metric. A logistic regression model was used to integrate the

features to predict the gene signature for each cluster. The features and their integration proce-

dures are described below.

Common gene metricml
c identifies RNAs shared by a given cluster of cells. We consider a

common gene (RNA) for a given cell cluster if it is expressed in at least δ percent of cells in the

cluster. Using δ percent of cells instead of all cells takes into consideration of the intra-cluster

heterogeneity among co-existing cells in the same cell cluster. In the demonstration, we used δ

= 80%. One can change the parameter to 100% when dealing with more unified cell clusters.

The result of this metric is a binary variableml
ci.

ml
ci ¼

1; if gene i is common for cluster cl

0; otherwise
ð2Þ

(

Unique gene metricml
u aims to find RNAs selectively expressed in a given cluster of cells.

We consider a gene as a unique gene for a given cell cluster if the mean expression of this gene

in the cluster cells is at least α times higher than the expression of this gene in η quantile of all

the other cells. Using the η quantile value instead of the max value allows the metric to tolerate

a small amount of exceptionally high expression (outliers). In the demonstration, we used α =

2 and η = 0.85. The result of this metric is a binary variableml
ui.

ml
ui ¼

1; if gene i is unique for cluster cl

0; otherwise
ð3Þ

(

Test statistic metricml
t identifies RNAs differentially expressed in a given cell cluster by

using a two-group statistical test of gene expression between cluster cells and all the other cells.

It assigns a test statistic metric valueml
ti 2 ½0; 1� to each gene i for each cluster cl. To obtain a

normalized and smoothened test statistic value, we defineml
ti as�logðpliÞ=maxf�logðpliÞg,

where pli is the p-value derived from the differential expression analysis of gene i in cluster cl
using either one-tailed Welch’s t-test or one-tailed Wilcoxon rank sum test. In the demonstra-

tion, we used Welch’s t-test when the sizes of both groups were greater than 5; otherwise, Wil-

coxon rank sum test was used instead.

Synthetic profile similarity metricml
s. For a given cluster cl, we construct X

�
l , a synthetic ref-

erence profile of gene expression in cl (S4 Text); and measure the synthetic profile similarity

A Single-Cell RNA-Seq Analytic Pipeline
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metric for gene i in cl asm
l
si ¼ ð1þ rðX i

l ;X
�
l ÞÞ=2, the Pearson’s correlation between X i

l (gene i’s

expression profile in cl) and X
�
l .

Model based cell type specific gene signature prediction. The four metrics are a mixture of

continuous and categorical variables and capture different features of gene expression profiles,

so we used a logistic regression model to integrate metrics for the prediction of cell type specific

gene signatures. Givenml
ci,m

l
ui,m

l
ti,m

l
si, the probability of gene i being a signature gene for clus-

ter cl is given by a logistic regression function as follows:

y
l

i ¼
eðb

l
0
þblcm

l
ci
þblum

l
ui
þbltm

l
ti
þblsm

l
si
Þ

1þ eðb
l
0
þblcm

l
ci
þblum

l
ui
þbltm

l
ti
þblsm

l
si
Þ

ð4Þ

Model parameters bl

0
, bl

c, b
l

u, b
l

t , and b
l

s are obtained using cell type specific training sets. In

each training set, positive instances are comprised of known signature genes and negative

instances are genes that are non-differentially-expressed (i.e., lowml
t) and are neither common

nor unique for the given cell cluster (i.e.,ml
ui ¼ ml

ci ¼ 0). We chose similar numbers of negative

and positive instances for the class balance of the training set. Once the ranking models are

established, they are used to predict cell type specific signature genes from the total number of

cluster specific differentially expressed genes.

Repeated random subsampling for validation of signature prediction. Lack of a gold stan-

dard (i.e. gene sets represent true positives and true negatives) for performance evaluation is a

general problem in bioinformatics. The paucity of cell type specific markers (especially for rare

or novel cell types) represents a major challenge in our analysis. To overcome this problem, a

repeated random subsampling approach was used to evaluate the performance of cell type spe-

cific signature prediction. In this approach, the validation of the signature prediction for each

cluster (e.g., cl) involves r repetitions; in each repetition, we randomly sample 80% of the cells

from cl, re-perform signature prediction for cl using those sampled cells, use the newly pre-

dicted signature to train k– 1 (k is the total number of cell clusters/cell types) binary classifiers

(each receives 80% of cells from cl and 80% of cells from one of the remaining k—1 clusters as

the training set, and learns to distinguish the cells from these two clusters), and measure the

performance of the signature prediction as the classification accuracies of the binary classifiers

on the remaining 20% of data; the accuracies are averaged over r repetitions. We demonstrated

the procedures of training, prediction, and validation of the gene signature ranking system for

each cell type in the Results and Discussion section.

Cell type specific driving force analysis

Identification of the key regulators controlling cell fate/activities is fundamentally important

for understanding complex biological systems. In the present study, we prioritize and identify

key transcription factors (TFs) regulating the expression of cell type specific regulatory target

genes. By utilizing a transcriptional regulatory network (TRN) approach, we establish the rela-

tionships between TFs and target genes on the basis of their expression-based regulatory poten-

tial and identify the key TFs for a given cell type by measuring the importance of each node in

the constructed TRN. Unlike traditional TRNs derived from whole-organ or whole-tissue data,

which inevitably target a mixed genomic response, we tailor TRN reconstruction using the

expression patterns of genes representing a specific cell type at a specific developmental time

point, and require that TFs be expressed with their potential regulatory targets in the same cell

type. Our approach enables the construction of high resolution TRN at single cell level. The

method consists of three main steps as illustrated in the following.

A Single-Cell RNA-Seq Analytic Pipeline
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(1) Identification of candidate TFs and regulatory targets for TRN construction. For cluster

cl, we first extract a candidate set of cell type specific regulatory targets G
l and a candidate set of

TFs Tl for network construction. Gl can be the differentially expressed genes or the predicted

signature genes identified from the previous steps. Tl consists of TFs that are either differen-

tially expressed in cl or common in cl (based on the common gene metric), and verified as a TF

or transcription cofactor by TF databases, e.g., MatBase (Release 9.1) of Genomatix (https://

www.genomatix.de) in our demonstration.

(2) Development of cell type specific TRN. Using the expression profiles of Gl and Tl in the

cells of cluster cl, we construct a TRNHl = hVl,Dli, where Vl� {Tl [ Gl} is the set of nodes in

the network and Dl � Tl × Gl is the set of edges in the network, representing the regulatory

interactions between Tl and Gl in the network. We focus on identifying the interactions

between TF-TF and TF-TG. The possible feedback regulation from target genes to TFs and TF

auto-regulations are not considered in the present work. Interactions are established based on

first-order conditional dependence of gene expression, adapted from the inference of first-

order conditional dependence Directed Acyclic Graph (DAG) in [56]. Let X l
i denote the

expression profile of gene i� {Tl [ Gl} in cells of cluster cl. The significance of a regulatory

interaction between i 2 Tl and j 2 Gl is evaluated via the first-order conditional dependence

between the two random variables X l
i and X

l
j given any other variable X l

k, where k 2 Tl and

k 6¼ i. Assuming linear dependence, the relation between three variables is formulated as

X l
j ¼ ml

ijk þ al
ijjkX

l
i þ alkjjiX

l
k þ Zlijk, where X

l
i and X

l
k are linearly independent, and errors are

under normal distribution and not correlated. The coefficients, alijjk and a
l
kjji, are estimated

using the Least Square estimator. The significance of an edge between i and j is measured by

Slij ¼ maxk 6¼i;k 6¼j;k2T l fplijjkg, where p
l
ijjk is the p-value derived from the one-sample t-test under

the null hypothesis “alijjk ¼ 0”. Slij represents the maximum probability of falsely rejecting the

null hypothesis if it is in fact true. The smaller the Slij, the more significant the edge (i, j) for Hl.

In the demonstration, we used 0.05 as the cutoff of Slij. Conditional dependence graphical mod-

els (e.g., Bayesian network) are widely used for constructing TRNs [57]. These models handle

noisy data sets robustly, can simultaneously model non-linear combinatorial relations, and

guard against over-fitting [58]. Since biological TRNs are known to be sparse [59], it is assumed

that the low-order conditional independencies fit well with the full conditional independence

structure between variables and can be accurately estimated with only a small number of obser-

vations [60].

(3) Identification of key TFs based on their critical roles in the network. Based on the con-

structed cell type specific TRN Hl, we identify TFs with high node importance inHl as cell type

specific driving forces. Network node importance is determined by measuring centrality and/

or disruption [61,62]. Degree centrality (DC) is the most commonly used node importance

metric in biological networks; however, it has its own limitations (e.g., the node importance is

measured using a local view of the network (1-hop) and does not take network elements

beyond 1-hop into consideration). To overcome the limitations, Borgatti raised the concept

that disruption-based centrality can be used to identity key players in a social network for the

purpose of disrupting or fragmenting the network by removing key nodes [63]. This concept

has been applied to the analysis of node importance in terrorist and social networks [61,64],

criminal networks [65], and food webs [66]. In this work, we introduce the integration of six

node importance metrics to identify cell type specific driving forces in a mammalian system.

The metrics we integrated for the driving force identification are described below.

• Degree Centrality (DC): the number of nodes that a given node is adjacent to. A node with a

high degree centrality can potentially influence many others (Hub).

A Single-Cell RNA-Seq Analytic Pipeline
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• Closeness Centrality (CC): the sum of geodesic distances from a given node to all others. A

node with high closeness centrality should be able to influence many others. The CC of node

i inHl is defined as CCl
i ¼ 1=

X

j2V l ;j6¼i
dlij, where d

l
ij is the length of shortest path between

node i and node j inHl.

• Betweenness Centrality (BC): the number of shortest paths that pass through a given node. A

node with high betweenness centrality connects many pairs of nodes via the best path. The

BC of node i in Hl is defined as BCl
i ¼

X

j;k2V l ;j6¼i;k 6¼i
ðgljkji=g

l
jkÞ, where g

l
jk is the number of

shortest paths between node j and node k inHl and gl
jkji is the number of those paths passing

through i other than j and k.

• Disruptive Fragmentation Centrality (DFC): the impact of the removal of a node on the frag-

mentation of the residual network. The DFC of node i in Hl is defined as

DFCl
i ¼ K l

i=ðN
l � 1Þ, where K l

i is the number of connected components inHl after remov-

ing node i and Nl is the total number of nodes inHl.

• Disruptive Connection Centrality (DCC): the impact of the removal of node i on the nodes

connection in the residual network. The DCC of node i inHl is defined

DCCl
i ¼ 1� ½

X

j;k
dliðj; kÞ�=½ðN

l � 1ÞðN l � 2Þ�, where dliðj; kÞ ¼ 1 if node j can reach node

k inHl after removing i; otherwise, dliðj; kÞ ¼ 0.

• Disruptive Distance Centrality (DDC): the impact of the removal of a node on the shortest

path between nodes in the residual network. The DDC of node i inHl is defined as

DDCl
i ¼ 1� f

X

j;k
½1=dli ðj; kÞ�g=½ðN

l � 1ÞðN l � 2Þ�, where dli ðj; kÞ denotes the length of

the shortest path from node i to node k inHl after removing i.

We collect the values of the six metrics for each TF in Hl, rank TFs in the descending order

of each metric (breaking ties by assigning lowest rank to every tied element), and take the aver-

age rank of a TF in six metrics as its node importance inHl.

Pipeline implementation

The entire pipeline is implemented in R. In addition to our own innovation, the pipeline incor-

porated several R and Bioconductor packages, including ROCR [67] for evaluating and visual-

izing classifier/prediction performance, RobustRankAggreg [55] for the rank aggregation in

validating cell type assignment using the expression patterns of multiple markers, igraph

(http://igraph.org) for the implementation of TF importance metrics, G1DBN [56] for the

implementation of expression-based regulatory interaction inference, Bioconductor::Biobase

[68] for data management, tightClust [47] and ConsensusClustPlus [46] for the implementa-

tion of alternative clustering methods for cell cluster identification, and samr for the imple-

mentation of SAMseq [35] as an alternative option for differential expression test.

Results and Discussion

Single cells were isolated from protease-dispersed mouse lung at E16.5. Cell suspensions were

loaded onto a Fluidigm C1 Single-Cell Auto Prep System. Two independent experiments of 96

chambers single cell RNA-seq have been performed; sequence alignment to the mouse genome

using Cufflinks [37]; quality controls were done in CCHMCDNA Core using standard proto-

cols. Fifteen cells were removed for the poor quality and resulted in developing transcriptomes

of a total of 148 individual lung cells (86 cells from sample 1 and 62 cells from sample 2). RNA
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expression values were calculated using the FPKM (Fragments Per Kilobase of transcript per

Million mapped reads) method [37]. We set FPKM = 0.01 as the minimal expression and con-

verted all expression values less than 0.01 to 0.01. The expression profiles of 36188 transcripts

in 148 cells constituted the input data to our analytic pipeline. The present study focuses on

pipeline development and demonstration of the application. Detailed sample preparation, data

analysis, and biological interpretations will be presented in a separate manuscript.

Pre-filtering

The specificity filter tsi � 0:7; 8s and expression filter dsið5Þ � 2; 8s were applied to the expres-

sion profiles of 36188 transcripts and divided the profiles into four sections (S1A Fig). 11180

profiles (Section 1 in S1A Fig) passed both filters and were selected for further analysis. At the

cell level, the pre-filtering step increased the correlation of data obtained from two independent

single cell preparations (biological replicates) (S1B Fig) and reduced the batch difference of the

two replicates (S1C Fig). At the gene level, the linearity of 11180 profiles passing the pre-filter-

ing in Q-Q plot suggests that the data follow a similar distribution after pre-filtering (S1D Fig).

MA plots were used for pairwise comparison of log-intensity of samples and identification of

intensity-dependent biases. The MA plots before and after filtering demonstrate the efficiency

of correction for intensity-dependent biases. Data from 11180 profiles are well balanced around

zero and straight across the horizontal axis in MA plots (S1E–S1I Fig). The results indicate

that the designed gene pre-filtering processing is useful in reducing batch effects of biological

replicates.

Major cell types

Using clustering and differential expression analysis described in the Design and Implementa-

tion section, we placed 148 cells into 9 clusters (Fig 2) and identified cluster specific

Fig 2. Identification of Major Lung Cell Types. Cells (n = 148) from two sample preparations from fetal mouse lung at E16.5 were assigned into 9 clusters
via hierarchical clustering using average linkage and centered Pearson’s correlation. Each color represents a distinct cell cluster, labeled as C1-C9. The
rectangles represent single lung cells from the first preparation and the ellipses consist of single cells from a second independent preparation. Connection
lines indicate the z-score correlation between the two cells > = 0.05. The blue lines connect cells within the same preparation, while the red lines connect
cells across preparations.

doi:10.1371/journal.pcbi.1004575.g002
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differentially expressed genes. A permutation analysis showed that the derived clustering

scheme was statistically significant (p-value = 1.69e-137, S2 Text). The overlap of differentially

expressed genes among different clusters was small (S2 Fig), indicating that the current cluster-

ing scheme achieved expected modularity and separation, and that the differential expression

analysis procedure was an effective approach. Differentially expressed genes in each cluster

were subjected to functional enrichment analysis and cell type mapping using ToppGene Suite

[52], DAVID Bioinformatics Resources [1,53], EBI Expression Atlas (http://www.ebi.ac.uk/

gxa), MSigDB [54], and Genecards (http://www.genecards.org). We identified the major lung

cell types at E16.5 (Fig 2), including (C1) proliferative fibroblast, (C2) myofibroblast/smooth

muscle-like cells, (C3) pericyte, (C5) matrix fibroblast, (C7) endothelial cells, (C8) myeloid/

immune cells, and (C9) epithelial cells, based on integrated information of most enriched GO

terms, mouse phenotypes, pathways, co-expressed gene sets, and transcription factor binding

sites (S3–S9 Figs and S1 Table). For example, Cluster C3 was defined as “pericytes” based on

the co-expression of gene markers (S10 Fig), including Pdgfrb (platelet derived growth factor

receptor, beta polypeptide), Dlk1 (delta-like 1 homolog), Rgs5 (regulator of G-protein signaling

5), Cspg4 (chondroitin sulfate proteoglycan 4),Mcam (melanoma cell adhesion molecule), and

Notch3 (notch 3) (literature support in S2 Table). To validate the cell type assignment, we col-

lected a set of known markers to serve as a training set based on their functional association

with lung development/diseases and their cell specific expression (S2 Table). Selective expres-

sion patterns of the representative gene markers of different lung cell types were shown in S11

Fig and Fig 3.

We used the cell type enrichment analysis to cross validate the cell type assignment for each

cluster. The most enriched cell types for the endothelial (C7), immune cell (C8), and epithelial

(C9) clusters (Fig 4 and S3 Table) were consistent with our cell type assignments. Results

related to four mesenchymal cell clusters were less clear. The most enriched cell types for clus-

ters C2, C3, and C5 (Fig 4 and S3 Table) largely overlapped and shared common annotations,

“mesenchymal cell” and “CD45-”, suggesting these cell types may be derived from common

progenitors and that the heterogeneity among cell clusters likely represents different transi-

tional stages of differentiation. The enriched cell types for Cluster C1 showed a high frequency

of annotations related to proliferation, stem cells, or progenitor cells (S3 Table), suggesting a

proliferative, less-differentiated state of the cells in Cluster C1. The lack of a high quality and

Fig 3. Validation of Cell Type Assignments using Known Biomarkers. (A) Expression patterns of representative known cell type markers were used to
validate the correct assignment of major lung cell types at E16.5. Expression levels were normalized by per-sample z-score transformation. (B) ROC curves
of the rank-aggregation-based validation showed a high consistency (AUC>0.8) between the cell type assignments and the expression patterns of known
cell type specific markers (S2 Table).

doi:10.1371/journal.pcbi.1004575.g003
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complete knowledge base for gene and cell type association directly influenced the quality of

cell type prediction using our method. The current version of pipeline used open source gene

expression data downloaded from EBI Expression Atlas (S3 Text) for cell type annotations;

bias and incompleteness from the collection of individual experimental sources are inevitable.

Nevertheless, it is the only freely accessible resource for us to run automated cell type predic-

tions. We recommend the use of the cell type enrichment analysis for initial screening, together

Fig 4. Prediction of Cell Types for Each Cluster using Cell Type Enrichment Analysis. Information on gene expression in certain cell types were
downloaded from EBI Expression Atlas (http://www.ebi.ac.uk/gxa). Results were obtained using differentially expressed genes as the input gene lists. The
lengths of the bars represent transformed p-value (−log10 (p)) of highly enriched cell types for each cell cluster, where p is the p-value calculated by one-tailed
Fisher’s exact test and represents the degree of a cell type enrichment in a given cell cluster.

doi:10.1371/journal.pcbi.1004575.g004
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with curation and knowledge integration by experts to refine the prediction. We foresee that

single cell transcriptome analyses will largely improve cell type prediction by providing a high

resolution and unbiased cell type separation for lung and other organs.

Cell type specific gene signature prediction and validation

After mapping the individual lung cell types, we predicted cell type specific gene signatures

using a logistic-regression model based ranking systems described in the Design and Imple-

mentation section. The training set collection is described in the Design and Implementation

section and the collected training instances are presented in S4 Table. As visualized in Fig 5,

Fig 5. Predicted Signature Genes for Major Lung Cell Types. (A) Heatmap shows that the predicted cell type specific signature genes are selectively
expressed in defined cell types. Gene expression was per sample z-score normalized. (B) The top 20 signature genes based on the ranking scores for each
lung cell type are listed. Genes in red are the knownmarkers that were used to train the signature prediction models.

doi:10.1371/journal.pcbi.1004575.g005
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predicted signature genes (S5 Table) were selectively expressed in defined cell types. Compara-

tive gene set enrichment analysis showed that logistic-regression model based signature predic-

tion enhanced cell type related functional enrichment compared to the use of the same number

of differentially expressed genes identified by applying t-test alone (S12 Fig), suggesting that

the logistic-regression model based approach represents a refinement of cell type specific signa-

ture gene identification. The repeated random subsampling validation (S13 Fig) showed a high

accuracy of the predicted cell type specific signature genes in distinguishing cells of the defined

cell types from other cell types, demonstrating the capability of the high-performance of the

logistic-regression-based ranking models for cell type specific signature gene prediction.

Epithelial specific driving force analysis

We identified the key TFs controlling the fate of lung epithelial cells at E16.5 by applying the

driving force analysis developed for the pipeline. We collected 140 TFs as potential regulators,

which were either differentially expressed (p-value<0.05) or commonly expressed (i.e.,

expressed in at least 80% percent of cells in the cluster) in the epithelial cells in Cluster C9, and

were verified as either a transcription factor or a transcription cofactor by MatBase (Release

9.1) of Genomatix (https://www.genomatix.de). Genes (n = 342) differentially expressed (p-

value<0.01) in epithelial cells were collected as epithelial specific regulatory targets. Potential

regulators (140 genes) and targets (342 genes) constituted the input nodes for epithelial specific

transcriptional regulatory network (TRN) construction. The construction was based on the

first-order conditional dependence approach described in the Design and Implementation sec-

tion with a cutoff of S9ij < 0:05. 348 nodes (including 108 TFs) and 432 edges passed this

threshold and became the main connected component of the reconstructed epithelial specific

TRN (Fig 6A). We then calculated the values of six TF-importance metrics, including Disrup-

tive Fragmentation Centrality (DFC), Disruptive Connection Centrality (DCC), Disruptive

Distance Centrality (DDC), Degree Centrality (DC), Closeness Centrality (CC), and Between-

ness Centrality (BC), for the 108 TFs and ranked them based on their node importance (aver-

age rank in the six metrics) in the main connected component of epithelial specific TRN. The

top 20 most important TFs in the lung epithelial cell network are presented in Table 1. The full

ranking of 108 TFs can be found in S6 Table.Hopx (HOP Homeobox) and Nkx2-1 (NK2

homeobox 1) were ranked at the top as key regulators in the epithelial cell cluster. Nkx2-1 is

known to be a core TF critical for early differentiation of pulmonary endodermal progenitors

and a key regulator of lung morphogenesis and maturation before birth [69–71].Hopx is

directly activated by Nkx2-1 and Gata6 (GATA binding protein 6); in turn, Hopx inhibits

Nkx2-1 and Gata6, providing a potential negative feedback loop to regulate expression of sur-

factant associated genes in the lung epithelium [72]. Loss ofHopx impaired normal pulmonary

maturation, causing respiratory failure at birth [73]. The prediction that known type I alveolar

cell markers including Pdpn (podoplanin) and Ager (advanced glycosylation end product-spe-

cific receptor) are regulated byHopx (Fig 6B) suggests a potential important role ofHopx as a

key regulator for the early differentiation of type I precursors at E16.5 [74]. Expression ofHopx

in type I alveolar epithelial cells was supported by Treutlein’s recent study [21]. Other top

ranked TFs, including Klf5, Etv5,Mecom, Bclaf1, and Sp1, have associations with lung-related

mouse phenotypes (MP:0005388) [75], indicating that they may play important roles in lung

development. We further performed a one-tailed Fisher’s exact test and demonstrated that the

top 20 most important TFs that we predicted have a significant functional association with

lung-related mouse phenotypes (p-value<0.05, S7 Table).

We used three disruption-based centrality metrics (DFC, DCC, and DDC) and three cen-

trality metrics (DC, CC, and BC) to measure node importance in a given TRN. To estimate the
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performance of individual metrics in the combined ranking, we designed two measurements:

sensitivity and relative power. Sensitivity is defined as the average tie width of a ranking gener-

ated by a metric. The width of a tie in a TF ranking is the number of TFs with the same rank.

The lower the sensitivity, the less likely that metric is capable of distinguishing the importance

of individual TFs. Relative power measures the relative contribution of each metric in the inte-

grated ranking system. The higher the relative power, the larger role the given metric may play

in the ranking. By using an integrated ranking system, we expect that each metric provides a

local view of the ground-truth ranking and is complementary to other metrics; as a conse-

quence, the integrated system takes into account of individual metrics and provides a global

view of the desired ranking. S14 Fig shows that no two metrics share the prediction of the com-

mon top 20 most important TFs. While each metric contributed to a similar degree to the con-

sensus prediction of the top 20 most important TFs in the lung epithelial TRN; the sensitivity

of the each metric is quite different: DDC, CC, and BC (measures the node importance at a

fine-grained resolution) were more sensitive than DFC, DCC, and DC (measures the node

importance at a coarse resolution, such as component, degree, or pairwise connection level).

While the metrics with high sensitivity measure the global importance of a node, metrics with

low sensitivity have advantages in capturing unique aspects of the node importance in sparse

TRNs; for example, DFC and DC measure the importance of a TF in a TRN from the perspec-

tive of the number of targets specific to the TF in the TRN. The computational design of the

sensitivity and the relative power measurements are elaborated in S5 Text.

Fig 6. Mouse Lung Epithelial Specific Transcriptional Regulatory Network. (A) Rank importance of transcription factors (TFs) in the main connected
component of epithelial specific transcriptional regulatory network (TRN). The sizes of the TF nodes are proportional to their average-ranked node
importance. The main connected component of epithelial TRN is comprised of 348 nodes and 432 edges. The nodes in red are the TFs and the nodes in grey
are differentially expressed genes (p-value<0.01) in epithelial cells and are not TFs. The edges were established using the first-order conditional dependence
approach described in the Methods section with a cutoff at 0.05. (B) The Hopx local network (the first hop is shown).Hopxwas the top ranked TF identified by
driving force analysis (Table 1).

doi:10.1371/journal.pcbi.1004575.g006
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Inferring TRNs from gene expression data is difficult because of the high number of genes

relative to the small number of samples/conditions, and the random noise presented in data.

Recent studies on TRN development and refinement support the concept that regulatory net-

work inference can be largely improved by integrating different types of data [76] and biologi-

cal knowledge [77]. Our pipeline is capable of constructing TRN based on the RNA expression

data alone (as demonstrated in epithelial specific TRN construction, Fig 6), as well as using

integrated data and knowledge resources for network refinement. We implanted a consensus

maximization framework [78] in the pipeline to integrate data, method, and external knowl-

edge for TRN construction at the decision level. As a demonstration, we applied this strategy to

improve the prediction of Nkx2-1 target genes in epithelial cells by integration of expression-

based predictions, Nkx2-1 ChIP-seq results [79] and literature evidence (S6 Text) to reach a

maximal consensus score. The ranks of known Nkx2-1 targets, including Cldn18 [80], Sftpb

[81–87], Sftpc [86,88,89], and Hopx [73], were largely improved via this optimization (Table 2

and S8 Table). Users can combine their own data resources (e.g., RNA-seq and ChIP-seq) for

the TFs of interest in the TRN or collect useful information from ENCODE (https://www.

encodeproject.org) and other public domains to optimize network and TF-TG predictions.

Methodologies comparison and evaluation

Cell type identification and characterization is a key and unique task for scRNA-seq analysis,

especially for single cells isolated from heterogeneous cell population or whole organ/tissue as

in the present study. Most single cell studies used hierarchical clustering or PCA-like methods

Table 1. Top 20 Predicted Key Transcription Factors for Lung Epithelial Cells at E16.5.

TF Name DFC DCC DDC DC CC BC Average
Rank

Hopx HOP homeobox 2 6 1 1 2 1 1

Dpf2 D4, zinc and double PHD fingers family 2 4 10 6 2 3 5 2

Eno1 enolase 1, alpha non-neuron 1 4 2 5 16 8 3

Rbpjl recombination signal binding protein for immunoglobulin kappa J region-like 7 14 7 2 7 3 4

Etv5 ets variant 5 7 14 10 5 4 10 5

Cdk7 cyclin-dependent kinase 7 4 2 3 11 20 17 6

Sp1 trans-acting transcription factor 1 2 6 4 2 39 9 7

Nkx2-1 NK2 homeobox 1 15 24 8 8 5 4 8

Klf5 Kruppel-like factor 5 7 14 13 5 29 12 9

Pcbd1 pterin 4 alpha carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear
factor 1 alpha (TCF1) 1

15 24 14 8 6 14 10

Morf4l2 mortality factor 4 like 2 15 24 19 11 25 19 11

Hmga1 high mobility group AT-hook 1 15 9 12 21 34 22 11

Bclaf1 BCL2-associated transcription factor 1 15 24 22 16 17 23 12

Mecom MDS1 and EVI1 complex locus 15 24 23 16 27 13 13

Taf9 TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor 15 24 28 37 8 15 14

Med13l mediator complex subunit 13-like 7 5 11 21 60 28 15

Hes6 hairy and enhancer of split 6 15 1 5 37 64 11 16

Elf3 E74-like factor 3 7 12 17 21 56 20 16

Id2 inhibitor of DNA binding 2 15 24 30 21 11 36 17

Hdgf hepatoma-derived growth factor 7 12 15 16 69 21 18

All ranks are in decreasing order of the TF importance metric values. TFs in bold font are associated with lung-related mouse phenotypes (http://www.

informatics.jax.org/mp/annotations/MP:0005388).

doi:10.1371/journal.pcbi.1004575.t001
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or the combination of the two [21,28–31]. Recently, a number of methods specifically designed

for scRNA-seq analysis have been introduced. SNN-Cliq employed a secondary similarity

based on the shared nearest neighbor in combination with the initial Euclidean distance simi-

larity, outperformed other clustering methods tested and predicted cell types or origins with

high accuracy [32]. scLVM (single-cell latent variable model), utilized a two-step approach to

address the effect of unobserved factors on gene expression heterogeneity (e.g., confounding

effects of the cell cycle), thereby the downstream analyses can be independent of the cell cycle

effect. Using this algorithm, the authors identified hidden subpopulations of cells that other-

wise cannot be identified [27]. BackSPIN, a divisive biclustering method based on sorting

Table 2. Top 20 Predicted Regulatory Targets ofNkx2-1 Identified from a Consensus among Expression based Prediction, ChIP-seq, and Litera-
ture Evidence.

Target Name Expression based
Prediction (EP)

ChIP-
seq

Literature
Evidence 1

Literature
Evidence 2

Consensus
Maximized Score
(CM)

Rank
by EP

Rank
by CM

Etv5 ets variant 5 1.53E-01 1 1 1 7.08E-01 22 1

Cldn18 claudin 18 1.34E-02 0 1 1 7.05E-01 6 2

Sftpb surfactant associated protein B 4.74E-01 1 1 1 7.05E-01 55 3

Shh sonic hedgehog 5.95E-01 1 1 1 7.04E-01 74 4

Sftpc surfactant associated protein C 5.11E-01 0 1 1 7.01E-01 62 5

Foxa1 forkhead box A1 7.87E-01 0 1 1 6.99E-01 112 6

Gata6 GATA binding protein 6 9.43E-01 0 1 1 6.97E-01 175 7

Pdpn podoplanin 9.98E-01 0 1 1 6.97E-01 296 8

Ager advanced glycosylation end
product-specific receptor

9.99E-01 0 1 1 6.97E-01 321 9

Abca3 ATP-binding cassette, sub-
family A (ABC1), member 3

5.06E-03 1 0 1 6.76E-01 4 10

Kras v-Ki-ras2 Kirsten rat sarcoma
viral oncogene homolog

2.20E-01 1 0 1 6.74E-01 30 11

Mia melanoma inhibitory activity 9.94E-01 1 1 0 6.73E-01 261 12

Slc6a14 solute carrier family 6
(neurotransmitter transporter),
member 14

9.98E-01 1 1 0 6.73E-01 292 13

Serpinb6b serine (or cysteine) peptidase
inhibitor, clade B, member 6b

9.21E-01 0 1 0 6.70E-01 163 14

Hopx HOP homeobox 9.89E-01 1 0 1 6.68E-01 237 15

Hmga2 high mobility group AT-hook 2 9.89E-01 1 0 1 6.68E-01 238 16

Foxp2 forkhead box P2 9.96E-01 1 0 1 6.68E-01 276 17

Grhl2 grainyhead-like 2 (Drosophila) 9.99E-01 1 0 1 6.68E-01 308 18

Muc1 mucin 1, transmembrane 9.97E-01 0 0 1 6.64E-01 283 19

Gadd45g growth arrest and DNA-
damage-inducible 45 gamma

8.90E-07 1 0 0 6.48E-01 1 20

Regulatory targets are ranked in the increasing order of “Rank by CM”. The full set of candidate targets for consensus maximization consisted of genes

that are differentially expressed in epithelial cells (p-value<0.01). Targets with bold font are known Nkx2-1 targets in lung epithelial cells. “Expression

based Prediction (EP)” is based on the first-order conditional dependence inference described in the Methods. “ChIP-seq” is based on the result of

previous Nkx2-1 ChIP-seq experiment: 1-represents the target has at least one predicted peak region; 0-means no predicted peak. “Literature Evidence 1”

and “Literature Evidence 2” encodes the literature support from Ingenuity IPA (http://www.ingenuity.com/products/ipa) and Genomatix (https://www.

genomatix.de), respectively. “Consensus Maximized Score (CM)” is the output of the consensus maximization. “Rank by EP” is the ranking of targets in

the increasing order of the values in “Expression based Prediction (EP)”. “Rank by CM” is the ranking of targets in the decreasing order of the values in

“Consensus Maximized Score (CM)”.

doi:10.1371/journal.pcbi.1004575.t002
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points into neighborhoods, can avoid unnecessary cluster fragmentation (common in hierar-

chical clustering) by simultaneously clustering genes and cells [33].

We performed a comparative evaluation of SINCERA with three recently available single-

cell RNA-seq analysis tools, SNN-Cliq [32], scLVM [27] and SINGuLAR Analysis Toolset

(https://cn.fluidigm.com/software), using three single cell data sets produced by different tech-

niques from a variety of contexts in human and mouse, including the E16.5 mouse lung single

cells (n = 148) used in the demonstration of the present work, human embryonic cells (n = 90)

from Yan et al. [28], and E18.5 mouse lung Epcam+ epithelial cells (n = 80) from Treutlein

et al. [21]. The functionality of the tools (SINCERA, SINGuLAR, SNN-Cliq, and scLVM) does

not totally overlap; SINCERA is the most comprehensive one. The common function shared

among all the tools is the cell cluster identification. We thereby compared the different

approaches for cell cluster identification using single cell datasets from three independent stud-

ies. Through the comparative analysis, we showed that SNN-Cliq achieved the best perfor-

mance in the human embryonic dataset [28], SINCERA achieved the best performance in

E18.5 mouse lung Epcam+ epithelial cells [21] and E16.5 mouse whole lung dataset. SINCERA

may not always be the best way, but it is generally applicable to different datasets to identify

biological meaningful major cell clusters from single cell RNA-seq data (see S7 Text for

detailed comparison).

In addition to clustering and cell type identification, SINCERA provides a more compre-

hensive toolset than current available tools for downstream functional analysis, network con-

struction and key nodes identification. Some of the functions are unique and novel for

SINCERA. For example, in contrast to most of RNA-seq studies identifying differentially

expressed genes using parametric or nonparametric test, we developed a logistic regression

based ranking model to predict cell type specific signature genes and we have shown that the

model out-performs traditional t-test. To our knowledge, there are multiple tools for Gene

Sets Enrichments analysis but a paucity of tools for cell type enrichment analysis. This moti-

vated us to build up an automated “Cell Type Enrichment Analysis” based on collected gene

expression information in certain cell types (S3 Text). For the network driving force predic-

tion, we introduced disruption-based centrality metrics in combine with commonly used

centrality metrics to predict cell type specific transcriptional regulatory driving force. For cell

type assignment validation, we designed a rank aggregation and ROC based approach to

quantitatively assess the accuracy of the cell type assignment using a panel of known cell type

markers.

Conclusion

Recent advances in single-cell next-generation RNA and DNA sequencing provide the oppor-

tunity to conduct the genomic/transcriptomic analysis of complex organs at single cell resolu-

tion. We have developed an analytic pipeline to facilitate processing single-cell RNA-seq data

from heterogeneous cell populations (using whole lung in the demonstration). The proposed

pipeline identified major lung cell types, cell type specific gene signatures, and key regulators

for specific cell types from the fetal mouse lung at E16.5. The pipeline provides a panel of ana-

lytic tools for users to conduct data filtering, normalization, clustering, cell type identification,

and gene signature prediction, TRN construction and important regulatory node identification.

The pipeline enables RNA-seq analysis from heterogeneous single cell preparations after the

nucleotide sequence reads are aligned to the genome of interest. SINCERA is under on-going

development in parallel with the expanding of the single cell studies generated by the CCHMC

LungMAP research center (http://lungmap.net). More complex tools will be developed to facil-

itate access/analysis/integration of the “omic” data.
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Availability and Future Directions

The source code of SINCERA with reproducible demonstrations can be found at CCHMC

PBGE website, https://research.cchmc.org/pbge/sincera.html, and we are in the process of sub-

mitting the package to Bioconductor as well. The source code is licensed under GNU General

Public License v3. The raw data have been submitted to GEO (http://www.ncbi.nlm.nih.gov/

geo/, Accession number GSE69761). The interpreted data from this study have been provided

to research centers and are publically available via our website (https://research.cchmc.org/

pbge/lunggens/default.html) and LungMAP website (http://lungmap.net).

Supporting Information

S1 Fig. Pre-filtering Reduced Batch Effects and Improved Correlations among Biological

Replicates. (A) The selection criteria divided the entire gene expression profiles into four sec-

tions: genes in Section 1 (red) passed both expression level and cell specificity filters, genes in

Section 2 (blue) passed expression filter but failed to pass the specificity filter, genes in Section

3 (green) did not pass the expression filter, and genes in Section 4 (black) passed the expression

filter for one sample but failed for the other. (B) Inter-sample cell correlation before (36188

profiles) and after (11180 profiles of Section 1) the pre-filtering. (C) Inter-sample cell distance

before (36188 profiles) and after (11180 profiles of Section 1) the pre-filtering. The calculation

of inter-sample cell correlation and inter-sample cell distance is elaborated in (S1 Text). (D)

Q-Q plot of the selected 11180 profiles. (E) MA plot of 36188 profiles, M (intensity ratio) and

A (average intensity). (F) MA plot of the selected 11180 profiles (Section 1). (G) MA plot of

profiles in Section 2. (H) MA plot of profiles in Section 3. (I) MA plot of profiles in Section 4.

In all MA plots, the M-value and A-value for a gene i is calculated by log
2
ð �X1

i Þ � log
2
ð �X2

i Þ and

0:5½log
2
ð �X1

i Þ þ log
2
ð �X2

i Þ� respectively, where
�X1

i represents the mean FPKM of i in the cells in

Sample 1 and �X2

i represents the mean FPKM of i in the cells in Sample 2.

(TIF)

S2 Fig. Overlaps of Cluster Specific Differentially Expressed Genes.

(TIF)

S3 Fig. Enriched Functional Annotations for Cell Cluster C1 Using Cluster Specific Differ-

entially Expressed Genes. The results were obtained using the ToppGene suite (https://

toppgene.cchmc.org) using differentially expressed genes in C1 (p-value<0.01) as the input

gene list.

(TIF)

S4 Fig. Enriched Functional Annotations for Cell Cluster C2 Using Cluster Specific Differ-

entially Expressed Genes. The results were obtained using the ToppGene suite (https://

toppgene.cchmc.org) using differentially expressed genes in C2 (p-value<0.01) as the input

gene list.

(TIF)

S5 Fig. Enriched Functional Annotations for Cell Cluster C3 Using Cluster Specific Differ-

entially Expressed Genes. The results were obtained using the ToppGene suite (https://

toppgene.cchmc.org) using differentially expressed genes in C3 (p-value<0.03) as the input

gene list.

(TIF)

S6 Fig. Enriched Functional Annotations for Cell Cluster C5 Using Cluster Specific Differ-

entially Expressed Genes. The results were obtained using the ToppGene suite (https://
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toppgene.cchmc.org) using differentially expressed genes in C5 (p-value<0.01) as the input

gene list.

(TIF)

S7 Fig. Enriched Functional Annotations for Cell Cluster C7 Using Cluster Specific Differ-

entially Expressed Genes. The results were obtained using the ToppGene suite (https://

toppgene.cchmc.org) using differentially expressed genes in C7 (p-value<0.01) as the input

gene list.

(TIF)

S8 Fig. Enriched Functional Annotations for Cell Cluster C8 Using Cluster Specific Differ-

entially Expressed Genes. The results were obtained using the ToppGene suite (https://

toppgene.cchmc.org) using differentially expressed genes in C8 (p-value<0.01) as the input

gene list.

(TIF)

S9 Fig. Enriched Functional Annotations for Cell Cluster C9 Using Cluster Specific Differ-

entially Expressed Genes. The results were obtained using the ToppGene suite (https://

toppgene.cchmc.org) using differentially expressed genes in C9 (p-value<0.01) as the input

gene list.

(TIF)

S10 Fig. Cluster C3 was Defined as “Pericyte” based on the Co-expression of Gene Markers.

The following pericyte markers were collected for the cell type assignment, including Pdgfrb,

Dlk1, Rgs5, Cspg4,Mcam, and Notch3 (literature support in S2 Table). (A) The collected peri-

cyte markers showed their highest mean expression levels in Cluster C3. (B) The collected peri-

cyte markers were differentially expressed in Cluster C3. P-values were obtained from

differential expression analysis described in the Methods section.

(TIF)

S11 Fig. The Expression Patterns of the Collected Cell Type Markers in 148 Lung Single

Cells. Expression levels were per-sample z-score transformed. Literature support is in S2

Table.

(TIF)

S12 Fig. Signature Prediction Enhanced Cell Type Related Functional Enrichment.White

bars represent the enrichment using top (n = 100) differentially expressed genes based on t-

test, and black bars represent the enrichment using top (n = 100) predicted signature genes

derived from the logistic-regression model. Gene set enrichment analysis was performed using

ToppGene suite (https://toppgene.cchmc.org). X-axis represents the Benjamini–Hochberg

adjusted p-values (-log2 transformed) of functional enrichments.

(TIF)

S13 Fig. Validation of Cell Type Specific Signature Prediction. The repeated random sub-

sampling approach described in Design and Implementation was used to validate the perfor-

mance of signature prediction. Each row represents the classification accuracy

(average ± standard error) of the predicted cluster specific signature in distinguishing the clus-

ter cells and the cells from each of the other clusters. For example, row 1 and column 2 means

that the predicted signature of cluster C1 achieved 91.9% accuracy (via the construction of a

binary classifier) on average (100 repetitions, standard error: 0.015) in distinguishing C1 cells

and C2 cells. Support vector machine was used as the binary classification models. 80% of cells

from each pair of clusters were used as train sets, and the remaining cells were used as test sets.
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The average accuracy is 96.5%.

(TIF)

S14 Fig. Evaluation of the Relative Contribution and Sensitivity of the Six TF-Importance

Metrics. (A) Mean-normalized relative power showed that all six TF-importance metrics

(DFC, DCC, DDC, DC, CC, and BC) provide similar degree of contributions to the prediction

of the top 20 key regulators listed based on the average ranking score. (B) Mean-normalized

sensitivity identified the differences in the granularity of the six metrics in distinguishing the

importance of each TF. The calculation of the relative power and sensitivity for each metric is

elaborated in S5 Text. (C) The overlapping of the top 20 TFs ranked by each metric is shown.

Each column represents one of the six metrics and each row represents a TF that was ranked as

the top 20 by at least one of the six metrics. TFs in bold were in the top 20 list by the average

ranking (Table 1). A black cell indicates the TF was ranked within the top 20 list by the metric

while a white cell indicates the TF was not ranked within the top 20 list by the metric e.g., Hopx

was commonly predicted by all six metrics as one of the top most important TFs in the E16.5

developing lung.

(TIF)

S1 Text. Calculation of Inter-Sample Cell Correlation and Inter-Sample Cell Distance.

(DOC)

S2 Text. Permutation Analysis for Determining Statistical Significance of Cell Clusters.

(DOC)

S3 Text. Cell Type Enrichment Analysis.

(DOC)

S4 Text. Construction of Cluster Specific Synthetic Reference Profile of Gene Expression.

(DOC)

S5 Text. Calculation of Relative Power and Sensitivity of TF-Importance Metrics.

(DOC)

S6 Text. Nkx2-1 ChIP-seq Peak Calling and Literature Evidence Collection.

(DOC)

S7 Text. A Comparative Evaluation of SINCERA.

(DOC)

S1 Table. Enriched Functional Annotations for Each Cluster Using Cluster Specific Differ-

entially Expressed Genes. The following categories of functional annotations are included:

GO: Biological Process, GO: Cellular Component, mouse phenotype, co-expressed gene sets,

pathway, and transcription factor binding site. The results were obtained using the ToppGene

suite (https://toppgene.cchmc.org) using cluster specific differentially expressed genes as the

input gene lists.

(XLSX)

S2 Table. Collection of Lung Cell Type Markers and the Associated Evidence.

(XLSX)

S3 Table. Enriched Cell Types for Each Cluster Using Cluster Specific Differentially

Expressed Genes. The enriched cell types for each cluster were ranked in the increasing order

of p-value of one-tailed Fisher’s exact test.

(XLSX)
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S4 Table. Training Sets for Cell Type Specific Gene Signature Prediction. In the training set

of each cell type, positive instances are comprised of known cell type markers, and negative

instances are genes that are non-differentially-expressed and are neither common nor unique

for the given cell type.

(XLSX)

S5 Table. Results of Cell Type Specific Gene Signature Prediction. The predicted signature

genes for each cell type were ranked in the decreasing order of "NORMALIZED PREDICTION

SCORE".

(XLSX)

S6 Table. Ranking of 108 Transcription Factors in the Main Connected Component of Epi-

thelial Transcriptional Regulatory Network.

(XLSX)

S7 Table. Evaluation of Lung Functional Association of the Top 20 Predicted Key Regula-

tors for Epithelial Cells. The lung mouse phenotype annotations were retrieved fromMGI

database at http://www.informatics.jax.org/mp/annotations/MP:0005388. The significance was

obtained using one-tailed Fisher’s exact test.

(XLSX)

S8 Table. Refined Prediction of Regulatory Targets of Nkx2-1. Targets are ranked in the

decreasing order of “Consensus Maximized Score (CM)”. The full set of candidate targets for

consensus maximization consisted of genes that are differentially expressed in epithelial cells

(p-value<0.01). “Expression based Prediction (EP)” is the output of the first-order conditional

dependence inference described in the Methods section. “ChIP-seq” is based on the results of a

previous ChIP-seq experiment. “Literature Evidence 1" encodes the literature support from

IPA. “Literature Evidence 2” encodes the literature support from Genomatix. “Consensus Max-

imized Score (CM)” is the output of the consensus maximization.

(XLSX)

S9 Table. Gene Symbols Used in the Manuscript.

(XLSX)

S1 Code. Source code and demonstration.

(ZIP)
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