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We study single and double β decay for N ≈ Z nuclei, using an extended P + QQ
interaction with four force strengths. The Gamov-Teller (GT) transition is examined using
the proton-neutron QRPA (pn-QRPA) in many j shells and using a single j shell model
calculation. First, we calculate the single β-decay strength. The integrated strengths of
N ≈ Z nuclei in the fp shell region are reproduced well by the pn-QRPA, although some
quenching factor is necessary for several cases. The model accounts for the experimental
observation that the GT strength increases with decreasing |N − Z|. The single j shell
model calculation indicates that the GT strength becomes very large at N = Z. Second, we
perform calculations for two-neutrino double β-decay transition strengths for 76Ge and 82Se.
The results suggest fairly good applicability of the extended P + QQ interaction to single
and double β decay.

§1. Introduction

There is presently interest in the theoretical study of unstable nuclei far from
the stability line, because of increasing experimental information owing to the de-
velopment of radioactive ion beam facilities. Single beta (β)- and two-neutrino
double-beta (2νββ)-decay strengths are fundamental properties to understand the
microscopic structure of such exotic nuclei. The Gamov-Teller (GT) transition of
proton-rich nuclei is important in studying nuclear astrophysics 1) as well as nuclear
structure. 2) - 6) We believe that p-n interactions play significant roles in the β and
2νββ decay of nuclei with N ≈ Z, because protons and neutrons involved in this
decay are in the same orbit and wave functions have large overlap. 7) The β-decay
transition of nuclei with N ≈ Z is thought to be enhanced by p-n correlations. It
has been shown that the calculated ratio of β decay 8) - 11) to 2νββ decay 12) - 16) is
extremely sensitive to the strength of p-n pairing correlations. The resulting halflives
are shorter than those obtained from calculations that ignore the isoscalar p-n pair-
ing.

There are mainly two nuclear models which are extensively used in the calcula-
tion of β- and 2νββ-decay processes: the proton-neutron quasiparticle random phase
approximation (pn-QRPA) method and the shell model. The pn-QRPA 8), 17) - 19) has
been the most popular theoretical tool and has been employed to calculate β- and
2νββ-decay strengths. The shell model method 20) - 22) is capable of handling much
larger configuration spaces now than a few years ago. Both methods reproduce quite
successfully the experimental β- and 2νββ-decay strengths, though quenching fac-
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220 K. Kaneko and M. Hasegawa

tors are necessary. 9), 10), 23) - 25) The pn-QRPA gives results comparable to the large
scale shell model. 27) Double β decay occurs whenever single β decay is forbidden due
to energy conservation or suppressed due to angular momentum mismatch. 2νββ
decay, which is a process consistent with the Standard Model of the electroweak
interaction, has been observed in some cases with lifetimes of 1019–1021 years. Var-
ious approaches to study 2νββ decay have been reviewed recently by Suhonen and
Civitarese. 26) It is pointed out 27) - 29) that the pn-QRPA solutions for realistic force
strengths are often close to the collapse point. To avoid this problem of collapse and
instability, the renormalized pn-QRPA has recently been investigated. 29) A large
scale shell model calculation free from the difficulty of the pn-QRPA was recently
performed for nuclei in the fp shell region. 27)

We have recently proposed 30) an interaction extended by introducing isovector
and isoscalar p-n forces to the conventional P + QQ force. The extended P + QQ
interaction, which is considered to be a simple but good approximation of realis-
tic effective interactions, 31) accurately reproduces various nuclear properties such as
binding energies, 32) energy levels, and E2 transitions. 30), 33) The extended P +QQ
model succeeds in describing the significant roles of p-n interactions in determining
various nuclear properties of N ≈ Z nuclei. 32) That study showed that our inter-
action is very useful to determine what types of interactions contribute to nuclear
properties under consideration.

In this paper, we apply the extended P + QQ model to the analysis of β and
2νββ decay in N ≈ Z nuclei in the fpg shell region. One purpose is to test the
applicability of our model to β and 2νββ decay. Another purpose is to analyze the
effects of p-n interactions on β and 2νββ decay, since these decay transitions are
expected to be good indicators to probe the p-n interactions, as mentioned above.
We also investigate β- and 2νββ-decay strengths in respective isotopes. We use
ordinary pn-QRPA, not the renormalized pn-QRPA, because our model does not
give rise to the collapse problem, as shown below.

Our paper is organized as follows. In §2, we briefly review the extended P +QQ
model. Section 3 presents the pn-QRPA formalism. Section 4 discusses single β decay
using the pn-QRPA in many j shells. The GT strength is analyzed using the single
j shell model. In §5, 2νββ decay is investigated. Section 6 presents conclusions.

§2. Model Hamiltonian

The extended P + QQ interaction we proposed in Ref. 30) is composed of an
isospin-invariant pairing plus QQ plus quadrupole pairing (P2) force and the J-
independent isoscalar p-n force Hτ=0

πν . The Hamiltonian can be rewritten in the
following form by the rearrangement of four nucleon operators in the QQ force
(c†cc†c) → (c†c†cc):

H = Hsp +Hint, (2.1a)

Hsp =
∑
αρ

εac
†
αρcαρ, (2.1b)
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Hint =
∑
a≤b

∑
c≤d

∑
Jτ

V (ab, cd; Jτ)
∑
Mκ

A†
JMτκ(ab)AJMτκ(cd), (2.1c)

with

A†
JMτκ(ab) = [c†ac

†
b]

τκ
JM/

√
1 + δab. (2.1d)

The single particle state α in the spherical shell-model basis denotes a set of quantum
numbers α = {na, la, ja,mα}. The symbols JM and τκ denote the angular momen-
tum and isospin of a nucleon pair, respectively. The interaction matrix element
V (ab, cd; Jτ) is given by

V (ab, cd; Jτ) = −1
2
g0δJ0δτ1δabδcd

√
(2ja + 1)(2jc + 1)− 1

2
g2δJ2δτ1q(ab)q(cd)

−5χ 1√
1 + δab

1√
1 + δcd

{q(ac)q(db)(−1)ja+jb−JW (jajcjdjb : 2J)

+(c ↔ d)} − k0δτ0δacδbd. (2.2)

Here p0(ab)=
√
(2ja + 1)δab and p2(ac)=q(ac)/b20=(a‖r2Y2/b

2
0‖c)/

√
5, where b0 is the

harmonic-oscillator range parameter. Our interaction has only four force parameters,
g0, χ, g2 and k0, which are, respectively, the strengths of the pairing, QQ, quadrupole
pairing, and J-independent isoscalar p-n forces.

As shown in Ref. 30), the J-independent isoscalar p-n force Hτ=0
πν is reduced to

Hτ=0
πν ≡ −k0

∑
a≤b

∑
JM

A†
JM00(ab)AJM00(ab)

= −1
2
k0

{
n̂

2

(
n̂

2
+ 1

)
− T̂ 2

}
, (2.3)

where the operator n̂ stands for total number of valence nucleons and T̂ for the total
isospin (i.e., n̂ = n̂p + n̂n =

∑
a(n̂ap + n̂an) and T̂ =

∑
a T̂a). The isoscalar p-n

force Hτ=0
πν is very important in determining the binding energy. 30), 32) As seen from

the form of Eq. (2.3), Hτ=0
πν is considered to correspond to the volume, surface and

symmetry energies in the liquid drop model. It is very important to note that Hτ=0
πν

does not change the wave functions determined by the P0 + P2 +QQ force. We see
this below in β- and 2νββ-decay transitions.

For numerical calculations, we adopt the model space (1f7/2, 2p3/2,1f5/2, 2p1/2,
1g9/2) for the N ≈ Z = 20 – 50 region. The lowest single-particle energy is deter-
mined as εf7/2

= B(41Ca) − B(40Ca) = −8.3633 MeV from experimental binding
energies. The other single particle energies are chosen so as to give the same level
spacings as those used by Kisslinger and Sorensen. 34) The pairing force strength g0

and the quadrupole force strength χ are adjusted to qualitatively fit the experimen-
tal odd-even mass differences and lowest 2+ energies of nuclei in the fpg shell region,
respectively:

g0 = 24A−1 (MeV), χ = 350A−5/3 (MeV/b40). (2.4)

The strength of the QQ force is somewhat larger than the value χ = 240A−5/3

used in the conventional P + QQ model. 35) The quadrupole pairing force strength
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222 K. Kaneko and M. Hasegawa

g2 is determined by the relation used by Hara et al., g2 = 0.2g0. 36) We fix 37) the
strength k0 of the isoscalar p-n force Hτ=0

πν so as to reproduce the average value of
the symmetry energy 38), 39) as follows:

k0 =
224
A

(1.0− 2.2/A1/3) (MeV). (2.5)

The isoscalar p-n force with this force strength also reproduces the double differences
of binding energies, as discussed in a previous paper. 37)

2.1. BCS plus QRPA

In this section, we present the QRPA based on the quasiparticle formalism. The
generalization of the usual proton-proton (p-p) or neutron-neutron (n-n) QRPA to
the p-n QRPA was carried out by Halbleib and Sorensen. 17) In the spherical shell-
model basis, the use of the quasiparticle representation implies that the main part
of the τ = 1, J = 0 pairing correlations is taken into account as the self-consistent
quasiparticle field. The quasiparticle creation and annihilation operators are defined
by the Bogoliubov transformation

cαρ = uaρaαρ + sαvaρa
†
−αρ, (2.6a)

c†αρ = uaρa
†
αρ + sαvaρa−αρ, (2.6b)

where ρ denotes a proton or a neutron, sα = (−1)ja−mα , and the coefficients uaρ and
vaρ satisfy u2

aρ + v2
aρ = 1. The Hamiltonian (2.1a) is transformed into

H = U0 +
∑
αρ

Eaa
†
αρaαρ+ : Hint :, (2.7)

where U0 is the BCS ground state energy and Ea the quasiparticle energy. The last
term, : Hint :, represents the residual interaction between quasiparticles. Here, the
symbol “: :” denotes the normal order product with respect to the quasiparticle
operators a†αρ and aαρ.

As discussed in the next section, the GT transition connects the 0+ ground
state of an even-even nucleus with any of the Jπ = 1+ states of neighboring odd-odd
nuclei. Let us now assume that the spin-J states are described by the one-phonon
states in the QRPA,

|λ; JM〉 = O
(λ)†
JM(ρρ′)|0̃〉, (2.8)

where |0̃〉 is the QRPA ground state defined by the relation O
(λ)
JM(ρρ′)|0̃〉 = 0. The

QRPA phonon O
(λ)†
JM(ρρ′) and its energy ωλ are determined by the QRPA equations

[H,O
(λ)†
JM(ρρ′)] = h̄ωλO

(λ)†
JM(ρρ′), (2.9a)

O
(λ)†
JM(ρρ′) =

∑
ab

(
ψλ

ab(ρρ′)[a
†
αρa

†
βρ′ ]JM − φλ

ab(ρρ′)[aαρ′aβρ]JM̃

)
, (2.9b)
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where [ ]JM̃ = (−1)J−M [ ]J−M , and ψλ
ab(ρρ′) and φλ

ab(ρρ′) are the forward and
backward QRPA amplitudes, which satisfy the orthonormalization conditions∑

ab

{
ψλ∗

ab(ρρ′)ψ
λ′
ab(ρρ′) − φλ∗

ab(ρρ′)φ
λ′
ab(ρρ′)

}
= δλλ′(1 + δρρ′), (2.9c)

∑
ab

{
ψλ

ab(ρρ′)φ
λ′
ab(ρρ′) − ψλ

ab(ρρ′)φ
λ′
ab(ρρ′)

}
= 0. (h̄ωλ > 0) (2.9d)

When ρ and ρ′ are both protons or both neutrons, O(λ)†
J=2M(ρρ′) is the conventional 2

+

phonon. This type of QRPA phonon describes the first 2+ states and B(E2) values
in a wide range of nuclei, 34) from which the QQ force strength χ can be determined.
As known from the interaction matrix element in Eq. (2.2), O(λ)†

J=2M(ρρ′) is created by
the p-p or n-n correlations of the QQ force.

On the other hand, when ρ is a proton and ρ′ is a neutron, O(λ)†
J=1M(ρρ′) is the pn-

QRPA phonon, and is often used in the study of β and 2νββ decay. The advantage
of the pn-QRPA is that it resolves the problem that the GT strength of single β
decay obtained by a simple shell model calculation is too large. The interaction
matrix element taken into account in the pn-QRPA equation is that of the τ = 0,
J = 1 p-n part of our interaction. The τ = 0, J = 1 p-n pairing in the QQ force
may affect both the β- and 2νββ-decay transitions. The other τ = 0, J = 1 p-n
pairing is the J = 1 component of the isoscalar p-n interaction Hτ=0

πν . As discussed
in a previous paper, 30), 32) however, Hτ=0

πν does not change the wave function in
isospin invariant systems. In the exact shell model calculation, the β- and 2νββ-
decay strengths do not depend on this interaction. We examine the dependence of
the β- and 2νββ-decay strengths on the force strengths in §§4 and 5.

§3. Single β decay

The GT+ strength in single β decay is defined as

|M (ν)
GT+

|2 = 1
2Ji + 1

∑
KMiMf

|〈f |T (+)
J=1,K |i〉|2. (3.1)

Here Ji denotes the total angular momentum of the initial state |i〉, and T
(+)
J=1,K is

the GT+ transition operator,

T
(+)
J=1,K =

∑
ab

β+(ab)B†
J=1,Kpn(ab), (3.2a)

with

β+(ab) =
1√
3
〈a||στ+||b〉, (3.2b)

B†
JMρρ′(ab) = [c†aρcbρ′ ]JM , (3.2c)

where 〈a||στ+||b〉 is the reduced matrix element of the GT+ transition operator. As
in the case of ordinary spin, τ+ is the isospin raising operator changing a proton into
a neutron (τ+|p〉 = |n〉), and σ is the usual Pauli spin operator.
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224 K. Kaneko and M. Hasegawa

We now use the pn-QRPA for evaluation of the GT+ strength. Since the operator
B†

JK(ab) is represented by the phonon operators O
(λ)
JM and O

(λ)†
JM as

B†
J,Kpn(ab) = uanvbp

∑
λ

(
φλ

abO
(λ)

JK̃
+ ψλ∗

ab O
(λ)†
JK

)

+ vanubp(−1)J
∑
λ

(
φλ∗

abO
(λ)†
JK + ψλ

abO
(λ)

JK̃

)
, (3.3a)

the GT+ strength for |0+〉 → |λ; J = 1,K〉 decay is

|M (ν)λ
GT+

|2 =
∑
K

|
∑
ab

β+(ab)
(
uanvbpψ

λ∗
ab − vanubpφ

λ∗
ab

)
|2. (3.3b)

The integrated strength is given as a sum of strengths over excited states:

B(GT+) =
∑
λ

|M (ν)λ
GT+

|2. (3.4)

It is easily shown that the Ikeda sum rule,

S− − S+ = 3(N − Z), (3.5a)

S∓ =
3∑

k=1

∑
f

|〈f |σkτ∓|i〉|2, (3.5b)

which has received much attention in the past years, holds in the pn-QRPA.
We calculated the single β-decay strengths for many j shells using the pn-QRPA

method. The integrated GT strengths B(GT+) for the Ti, V, Fe, Co and Ni iso-
topes are shown in Fig. 1. The integration was done for the states below 10 MeV.
Although the calculated values of B(GT+) are larger than the experimental ones
for all isotopes, our calculations accurately reproduce the behavior of the Fe and
Ni isostopes that the GT strength decreases as the neutron number N increases. It
should be noted that if one uses a quenching factor of 1/1.26, the large-scale shell
model and pn-QRPA calculations reproduce the experimental results quite accu-
rately. Our result is comparable to those of previous calculations. Thus, we can say
that the extended P +QQ model is useful in the analysis of single β decay. Quench-
ing is also observed in the Ikeda sum rule. One way to explain this missing strength
is to take account of the ∆-hole admixture. The QRPA calculations would agree
with the data if the axial-vector coupling constants were renormalized in nuclei to
give gA/gV = 1.0. However, recent experiments 40), 41) show that the GT strength
summed up to 50 MeV excitation energy is (93±5)% of the Ikeda sum rule value.
This suggests that the effects of the ∆-hole are as small as 10% and that most of the
quenching can be attributed to the admixture of the 2p-2h configurations.

It has recently been shown that the pn-QRPA may lead to an eventual collapse
of the ground state, and the realistic p-n force strength may be close to the crit-
ical strength where the pn-QRPA solution collapses. 11) - 16) We here examine the
dependence of the pn-QRPA solutions on the strengths of the QQ and isoscalar p-n
forces.
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Fig. 1. The integrated GT strength of fp shell nuclei as a function of the neutron number N .

The open symbols denote the calculated GT strengths, and the solid symbols the experimental

strengths.

Figure 2 displays the plots of the β-decay strength for the 56Fe nucleus: (a)
the three lowest energies of the final 1+ states in the neighboring odd-odd nucleus
56Mn, and (b) the integrated GT strength B(GT+) as a function of the QQ force
strength χ. The isoscalar p-n force strength k0 was fixed as k0 = 1.70 (MeV) from
Eq. (2.5), so as to reproduce the symmetry energy of 56Fe. Figure 2(a) indicates a
collapse at χcr, as expected. The integrated GT strength B(GT+) increases as χ
increases, and becomes singular at the critical point χcr. The increase of the GT
strength with increasing χ is notable. It has been discussed that the GT strength
depends on the deformation of nuclei. 42) - 44) Since the QQ force is strongly related
to the deformation, our result seems to give support to this argument. The three
lowest energies of the final 1+ states in neighboring odd-odd nuclei and the integrated
GT strength B(GT+) as a function of k0 are shown in Fig. 3, where the QQ force
strength is chosen as χ = 0.427 (MeV/b40) from Eq. (2.4). As discussed in the
previous section, if one performs an exact shell model calculation in an isospin-
invariant system, B(GT+) should be independent of k0. In fact, Fig. 3(b) exhibits
little dependence on the parameter k0 in the pn-QRPA treatment. At first sight,
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Fig. 2. The lowest three energies of the final

1+ states for 56Mn and the integrated GT

strength of 56Fe as a function of χ.
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Fig. 3. The lowest three energies of the final

1+ states for 56Mn and the integrated GT

strength of 56Fe as a function of k0.

this result appears to be opposite to the conclusion of Refs. 8)–11), that the β-decay
transition is sensitive to isoscalar p-n correlations. We should, however, note that
the QQ force includes an isoscalar p-n pairing component. Our result indicates that
the β-decay strength depends strongly on this isoscalar pairing. In this sense, the
result obtained here agrees with the the conclusions of Refs. 8)–11). The physically
acceptable values of the QQ and isoscalar p-n forces are χ = 0.427 (MeV/b40) and
k0 = 1.70 (MeV) (where both force strengths are determined so as to reproduce
the experimental first 2+ energy and the symmetry energy for 56Fe). Figures 2 and
3 show that the pn-QRPA solution is far from the critical point of collapse when
reasonable force strengths are used in our model.

We here analyze the characteristic behavior of single β decay using a single j shell
model. Though this shell-model space is tiny, the single j shell truncation makes it
easy to understand the mechanism of the behavior. In previous papers, 30), 32), 33), 37)

we performed the shell model calculation in a single j shell using the extended P+QQ
model to study the energy spectra and nuclear properties related to the binding
energy in f7/2 and g9/2. The calculations accurately reproduce the experimental data
for various properties, suggesting that single j truncation is sufficient for qualitative
investigation in nuclei where a subshell (f7/2 or g9/2) dominates. Figure 4 shows
the integrated GT strengths in the exact shell model calculation for even-even Ti
isotopes. In this calculation, we used the pairing force strength G = 0.59 (MeV)
and the QQ force strength χ = 1.29 (MeV/b40). The GT strength at N = Z = 22 is
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Fig. 4. The integrated GT strength of Ti iso-

topes as a function of the neutron number

N in a single j shell model calculation.
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Fig. 5. The integrated GT strength of N = Z

nuclei in a single j shell model calculation.

four times larger than that at N = 23. This can be attributed to the large spatial
overlaps between the single proton and neutron wave functions in N = Z nuclei,
since the Fermi energy for the proton is close to that for the neutron. The GT value
shows a sudden decrease when one neutron is added to the N = Z nucleus, and then
it decreases gradually as the neutron number N is increased. The calculated and
experimental GT strengths for Ni and Fe isotopes shown in Fig. 1 exhibit a tendency
similar to this. This behavior can be easily understood with the pn-QRPA in a single
j shell as follows: In a single j shell, the GT strength can be expressed as

|M (ν)
GT+

|2 ∝ | (unvpψ − vnupφ) |2. (3.6)

Here vn =
√

nn/(4Ω) and vp =
√

np/(4Ω), where nn (np) denotes the valence neu-
tron (proton) number, and Ω = j + 1/2. Since the dominant component of the
right-hand side (RHS) in Eq. (3.6) is the first term, |unvpψ|2, |M (ν)λ

GT+
|2 is approxi-

mately proportional to u2
n = 1− nn/4Ω. As a result, the GT strength decreases as

N increases.
In addition, we examine the single GT strength in N = Z even-even and odd-odd

nuclei. Figure 5 displays the single GT strength obtained by the exact shell model
calculation in a single j shell as a function of N = Z. We can see a staggered pattern
with respect to odd and even numbers of N = Z. The GT strengths of odd-odd
N = Z nuclei are larger than those of even-even N = Z nuclei. Though β decay
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of the J = 0, T = 1 ground states of odd-odd N = Z nuclei is dominated by the
Fermi-type transition to its analogue states, it is possible to observe this odd-even
staggering of the GT strength. In fact, the odd-even staggering of the GT strength
has been observed in Z = 38 – 48 nuclei. 45)

The measurement of β and 2νββ decay may be used to obtain information on
nuclear deformation. For instance, the study of GT β decay of highly deformed
N ≈ Z nuclei may be very valuable. 42) The role of deformation in β decay for nuclei
in the fp region has been examined, 43), 44) and it was pointed out that the GT
strength depends strongly on the shape of the parent nucleus. Since the QQ force is
intimately related to the deformation, this fact is quite interesting.

§4. Two-neutrino double β decay

2νββ-decay transitions can be described as second-order processes in the per-
turbative treatment of the Standard Model of the electroweak interaction. The GT
matrix elements describing 2νββ-decay transitions involve a summation over the 1+

states of the intermediate nucleus participant in the decay chain connecting the ini-
tial and final nuclei. The halflife of 2νββ decay connecting the 0+ ground states of
two even-even nuclei is given by

[T (2ν)
1/2 (0+ → 0+)]−1 = G2ν |M (2ν)

GT |2. (4.1)

Here G2ν is an integral kinematical factor, 46) and M2ν
GT is the double GT matrix

element defined by

M
(2ν)
GT =

∑
m

〈0+
f |T (−)

J=1,K |m〉〈m|T (−)
J=1,K |0+

i 〉
Em − Ei +∆

, (4.2)

where T
(−)
J=1,K = (−1)KT

(+)
J=1,−K and ∆ = (Ei − Ef )/2. The pn-QRPA has been

the most powerful tool in the study of 2νββ decay of medium weight and heavy
nuclei. Following the pn-QRPA approximation studied in the previous section, the
initial state |0+

i 〉 and final state |0+
f 〉 of even-even nuclei can be approximated by

the BCS ground states, and the intermediate state |m〉 in an odd-odd nucleus by
the one phonon states O(m)†|0̃〉. Furthermore, ∆ and Em − Ei can be respectively
approximated as ∆ → −(λp−λn) and Em−Ei → ωm+λp−λn, where λp (λn) is the
chemical potential for the proton (neutron). We calculated the 2νββ GT strength
for Ge and Se isotopes using the pn-QRPA. The behavior of the Jπ = 1+ energies
and |M (2ν)

GT | depending on χ and k0 is similar to that of the GT strength shown in
Figs. 2 and 3, though we omit the plots of this behavior. The pn-QRPA in our model
does not give rise to the collapse problem. Figure 6 shows the calculated 2νββ GT
strength |M (2ν)

GT | for Ge and Se isotopes as a function of the neutron number N .
The experimental values for 76Ge and 82Se are also shown in Fig. 6. The two data
sets are fit very well by the calculations. We can see the characteristic behavior
of the calculated 2νββ GT strengths. Namely, the calculated results display the
tendency that the strengths |M (2ν)

GT | decrease with increasing N , except for N = 38.
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Fig. 6. The 2νββ-decay strength of Ge and Se isotopes as a function of neutron number N . The

open symbols are the calculated strengths and the solid symbols the experimental strengths.

The behavior at N = 38 is believed to be due to the shell structure, where the
last neutron occupies the p1/2 orbital. The calculated halflives of the 2νββ decay
for 76Ge and 82Se are 1.26 × 1021 years and 1.01 × 1020 years, respectively. These
values are compared with the experimental values, 1.80 × 1021 years for 76Ge and
0.80×1020 years for 82Se. This result is consistent with those of the Caltech pn-QRPA
calculation. 27) The extended P+QQ force seems to be applicable to the study of the
double β decay. However, the calculated strength for 76Ge is smaller than that found
experimentally. It is known that the ground state correlations induced by the spin-
isospin interaction reduce the value of |M (2ν)

GT | in comparison with the independent
quasiparticle case. 8), 28), 29) The spin-isospin correlations causing such effects possibly
affect the present results.

§5. Conclusion

We studied single and double β decay of N ≈ Z nuclei in the fpg region using
an extended P + QQ model proposed recently by the present authors. The GT
transitions were examined using the pn-QRPA in many j shells and also using the
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single j shell model calculation. We calculated the single β-decay strength for the
Ti, V, Fe, Co, and Ni isotopes. The integrated strengths are reproduced quite
well with our model within the pn-QRPA, although quenching factors are necessary
for several cases. Our calculation shows that the GT strength decreases, being
proportional to the neutron number N . This observed behavior agrees well with the
experimental results. The same behavior was also obtained with the exact single j
shell model calculation. We analyzed this behavior using the pn-QRPA. In addition,
we performed the calculations of halflives of 2νββ decay for the Ge and Se isotopes.
The results obtained agree well with the experimental halflives of 76Ge and 82Se.
It should be, however, stated that the spin-isospin interaction which suppresses the
2νββ-decay transition may not been sufficiently included in the extended P + QQ
force. The calculated 2νββ-decay strengths exhibit some systematic pattern with
respect to neutron number N . This can be understood by the pn-QRPA in a single
j shell. In this paper, however, we did not apply the pn-QRPA for many j shells
to N = Z nuclei, because the usual BCS approximation is not good. A generalized
BCS treatment is necessary, 7) since the p-n interaction is quite strong for N = Z
nuclei. The single j shell model calculation showed that the GT strength becomes
large at N = Z, and decreases with increasing N . Particularly, the GT strength for
N = Z nuclei is very strong for odd-odd nuclei and exhibits an odd-even staggering.
We examined the pn-QRPA solution and the sensitivity of the β-decay transition
with respect to the strengths of the QQ and isoscalar p-n forces. We found that
the p-n part of the QQ force is very important for the β-decay transition. This is
consistent with the results of Refs. 8)–16). By contrast, the β-decay transition has
little dependence on the J-independent isoscalar p-n force Hτ=0

πν . This is reasonable,
because Hτ=0

πν does not change the wavefunctions. 30), 32) Thus we can conclude that
the extended P+QQ interaction is a promising tool to study β and 2νββ decay as well
as various nuclear properties, such as the binding energy 32) and energy spectra 30), 33)

investigated previously.
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