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Abstract: Organic–inorganic lead halide perovskites materials have emerged as an innovative candi-
date in the development of optoelectronic and photovoltaic devices, due to their appealing electrical
and optical properties. Herein, mix halide single-layer (~95 nm) and multilayer (average layer
~87 nm) CH3NH3PbIBr2 thinfilms were grown by a one-step spin coating method. In this study, both
films maintained their perovskite structure along with the appearance of a pseudo-cubic phase of
(200) at 30.16◦. Single-layer and multilayer CH3NH3PbIBr2 thinfilms displayed leaky ferroelectric
behavior, and multilayered thinfilm showed a leakage current of ~5.06 × 10−6 A and resistivity of
~1.60 × 106 Ω.cm for the applied electric field of 50 kV/cm. However, optical analysis revealed
that the absorption peak of multilayered perovskite is sharper than a single layer in the visible
region rather than infrared (IR) and near-infrared region (NIR). The band gap of the thinfilms was
measured by Tauc plot, giving the values of 2.07 eV and 1.81 eV for single-layer and multilayer
thinfilms, respectively. The structural analysis has also been performed by Fourier transform infrared
spectroscopy (FTIR). Moreover, the fabricated CH3NH3PbIBr2 as an absorber layer for photoelectric
cell demonstrated a power conversion efficiency of 7.87% and fill factor of 72%. Reported electri-
cal, optical and photoelectric efficiency-based results suggest that engineered samples are suitable
candidates for utilization in optoelectronic and photovoltaic devices.

Keywords: perovskite; thin films; spin coating; methylammonium lead iodide bromide; ferroelectric;
IV measurements; FTIR

1. Introduction

Recently, optoelectronic devices have proven to be a special class of devices in re-
search, used to generate light by electric charge and work in a way comparable to LASER
and light emitting diodes (LED), or an electric current is generated by light to optimize
solar cells and optoelectronic devices [1]. Optoelectronic devices can further be divided
into light-generating and light-sensing devices which are their core features. In the past
decades, two-dimensional materials, such as transition metal dichalcogenides, boron ni-
tride, group-III and group-IV metal chalcogenides, black phosphorus, germanene and
related composites/thinfilms/single crystals/ceramics/heterostructures, were engineered
or fabricated to show extraordinary physical and chemical character for such devices [2].
In the present era of technology, rapid development in the efficiency of optoelectronic and
photovoltaic devices has been observed, and to serve this purpose, the development of
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new-type of materials is required. Hybrid organic–inorganic perovskite photovoltaic cells
display high efficiency above ~22%, which is due to the large carrier diffusion lengths,
high absorption coefficients and high carrier mobility of perovskite absorber layers [3].
The structure of photovoltaic cells has grabbed the attention of research scholars, for such
purposes as lead halide perovskites thinfilms deposited on different types of substrate,
which has gained importance [4,5]. The consumption of thinfilms in efficient photovoltaic
cells is proving to be the best energy source.

Lead halide perovskites (CH3NH3PbX3; X = Cl, Br and I) have provided a significant
interest for researchers to explore their electronic and optical properties for optical devices.
It is reported that these lead halide perovskites display high charge carrier mobility, a large
absorption coefficient over a broad-spectrum range and long carrier diffusion length [6,7].
Sariful et al. reported that CH3NH3PbBr3 possesses a cubic structure with space group
Pm3m crystal symmetry, while CH3NH3PbI3 possesses a tetragonal phase with I4/mcm
space group [8]. Ryung et al. reported that the mixed halide perovskite single crystals
(Br/I, 2:1) show the pseudo-cubic phase at room temperature [9]. Later, several research
reports demonstrated that solid state CH3NH3PbI3 perovskite solar cells exhibited ~10–11%
photo-electron conversion efficiency (PCE) with considerably better stability [10]. Better
crystalline quality, high charge carrier mobility, carrier diffusion length, and absorption
coefficient of the materials can play a vital role towards employment in efficient devices.
These factors can be improved by selecting appropriate substrates and introducing laser-
assisted synthesis protocols [11,12]. Afterwards, lead halide-based perovskite solar cells
gained attention in terms of their photo-electron conversion efficiency, after incredible
research reports on perovskite thinfilms deposition and interface engineering.

CH3NH3PbBr3 is another famous lead halide perovskite, which shows strong charac-
ter for electronic and optoelectronic devices. Heo et al. deposited dense CH3NH3PbBr3
perovskite thinfilms on a TiO2/FTO substrate, which exhibited high device efficiency of
~7.3% [11]. Huifang et al. fabricated perovskite CH3NH3PbBr3 thinfilms following the
vapor assisted solution method and revealed no structural phase transformation under
the heating process of 10–300 K [12]. Jyoti et al. reported that CH3NH3PbBr3 thinfilm
exhibited the ideality factor of ~2.37 in the dark and ~1.79 under illumination [13]. Wu et al.
reported a Au-CH3NH3PbBr3 hybrid structured thinfilm, which demonstrated angular
sensitivity of the fabricated thinfilm’s guided-wave surface plasmon resonance, as the
biosensor is much higher (278.5◦/RIU), ~110.2% greater than the conventional Au-based
surface plasmon resonance biosensor [14]. For the CH3NH3PbX3 (X = Cl, I and Br) halide
perovskites, cation, halide and metal composition all can play vital roles to modify the prop-
erties of the final material to be utilized in optoelectronic devices. Similarly, mixed cation
perovskites can exhibit promising behavior to enhance both the photo-electron conversion
efficiency and stability. Recently, dual halide perovskites such as CH3NH3Pb(ClxBr3-x) or
CH3NH3Pb(ClXI3-X) were reported to be utilized in photo-detectors, solar cells, light emit-
ting diodes and tunable lasers over a UV-NIR range [15]. Crystalline CH3NH3PbI3–xClx
thinfilms fabricated by solution process have shown the ability to convert 70% of absorbed
light into emitted light [16]. Similarly, a CH3NH3PbBr3–xClx semiconductor was tuned
from 2.42 to 3.16 eV to construct a light-emitting diode [17]. There exist several reports
on lead halide-based perovskite single crystals, composites, and single-layer thinfilms to
be utilized in photovoltaic and optoelectric devices. With the growing need of energy
reservation, there is a need to search for alternative directions to explore these existing
materials. Multilayered lead-halide perovskite thinfilms can produce significant interest
for researchers to investigate their electrical and optical properties to be utilized in such
devices. In this article a comparative study is presented between dual lead halide-based
perovskite single-layer and multilayered CH3NH3PbIBr2 thinfilms for the devices. How-
ever, there is still a need to perform more research to bring out the best properties from this
approach. Moreover, the employment of perovskite CH3NH3PbIBr2 as an absorber layer
for a photoelectric cell with 6.02% efficiency is still the highest in an inverted planar with
CH3NH3PbIBr2 structure, and is also comparable with a regular planar structure in PCE.
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In this study, lead dual-halide perovskite (CH3NH3PbIBr2) single- and multilayered
thinfilms were fabricated to observe the performance application of the material in the
photovoltaic cell. CH3NH3PbIBr2 as an absorber layer was employed for photoelectric cells
to observe the power conversion efficiency. The achieved results demonstrated the ability
of the engineered material for the utilization in photovoltaic and optoelectronic devices.

2. Experimental Section
2.1. Preparation of CH3NH3PbIBr2 Solution

Lead dual-halide perovskite (CH3NH3PbIBr2) single- and multilayered thinfilms were
grown by one step solution method. High purity lead (II) bromide (PbBr2 with 98% purity),
methyl-ammonium iodide (CH3NH3I with 99.8% purity), dimethyl-sulfoxide (DMS with
99.5% purity) and N,N-dimethyl-formamide (DMF with 99.8% purity) were purchased from
Sigma Aldrich (St. Louis, MO, USA). All salts and solvents were used as received without
any extra refinement. The 0.5 mL and 1.5 mL solvents of DMF and DMSO, respectively,
were prepared using micro pipette to make the combination of (1:3) in the viol. After that,
159 g/mol of CH3NH3I was added in the 2 mL of solvents and the whole solution was
stirred for 15 min at 50 ◦C by using magnetic stirrer. Finally, 367 g/mol of PbBr2 was added
and then again the whole solution was stirred for 5 min at 70 ◦C using a magnetic stirrer.
In this way, the dual-halide perovskite CH3NH3PbIBr2 solution was prepared.

2.2. Preparation of CH3NH3PbIBr2 Thinfilms

For the growth of CH3NH3PbIBr2 multilayered thinfilms, one-step spin coating tech-
nique was employed at the speed of 500 rpm for 10 sec and then at 3500 rpm for 40 sec.
Prior to the fabrication of thin films, glass substrates (0.02 × 0.02 cm2) were sonicated with
liquid detergent to remove dust particles from glass substrates for 15 min at 60 ◦C, then
rinsed with DI water, agitated in acetone for 15 min to remove impurity particles, then the
substrates were placed in isopropyl (IPA) to remove any remaining waste for 15 min in an
ultrasonic bath and dried in hot air. For the measurements of electrical properties, silver
(Ag) layer with thickness ~50–60 nm nm was deposited on the glass substrate (as bottom
electrode) using an HR Vacuum Chamber under pressure of 10−5 Torr with a deposition rate
3–5 Å/s. After deposition of the silver layer, lead dual halide perovskite CH3NH3PbIBr2
thinfilm layer was grown by using one-step spin coating technique. The thinfilm was dried
at 70 ◦C using hot plate. In a similar way (mentioned above), a Ag layer was deposited
on the first perovskite CH3NH3PbIBr2 layer, followed by the growth of second lead dual
halide perovskite CH3NH3PbIBr2. Three CH3NH3PbIBr2 layers alternative to the Ag layer
were grown, and finally a Ag layer was deposited on the top of the thinfilm which will
work as top electrode for electrical measurements.

Single-layered CH3NH3PbIBr2 thinfilm was grown by using a one-step spin coating
technique (500 rpm for 10 sec and then at 3500 rpm for 40 sec). Initially, the Ag (bottom
electrode) of thickness ~60 nm was deposited on the glass substrate (0.02 × 0.02 cm2)
using HR Vacuum Chamber under pressure of 10−5 Torr with a deposition rate of 3–5 Å/s,
followed by the growing of a single-layer CH3NH3PbIBr2 film (same CH3NH3PbIBr2
solution for single- and multilayered thinfilms). The thinfilm was dried at 70 ◦C using hot
plate. Finally, using the same conditions, a top Ag electrode was deposited on the film.

2.3. Device Fabrications

For the fabrication of a photovoltaic device, commercially available indium tin oxide
(ITO)-coated glass substrate with an active area of 0.04 cm2 was taken. These ITOs substrates
were washed by ultra-sonication with detergent soap, DI water, isopropanol, Aceton and
DI water, respectively, and each sonication step was 15 min long. These washed substrates
were then dried inside a thermal dryer for a whole night. For the device fabrication, these
washed substrates were put under UV ozone treatment for 15 min before transferring to
the nitrogen-filled glove box. A PTAA solution was prepared by dissolving 2 mg/mL in
Chlorobenzene which was stirred for a whole night at 60 ◦C and spin coated at 5000 rpm
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for 30 s on top of the ITO substrate. To obtain the CH3NH3PbIBr2 precursor solution,
PbI:CH3NH3Br2 (1:2 M) was dissolved in a 7:3 v:v DMF:DMSO solvent and stirred overnight
at 60 ◦C. This perovskite precursor solution was spin-coated in two steps at 1000 rpm for
10 s and 5000 rpm for 20 s, respectively. During the second step, Chlorobenzene (150 µL)
was dripped out onto the spinning substrate for 10 s at the end of the program. The
thinfilms were then annealed at 125 ◦C for 15 min. The PCBM solution was prepared by
dissolving 20 mg of PC60BM into Chlorobenzene, which was then stirred for whole night at
60 ◦C and spin coated on top of the perovskite layer at 2000 rpm for 30 s. Finally, a 100 nm
Aluminum (Al) electrode was deposited through thermal metal evaporation.

2.4. Characterization

X-ray diffraction was employed to monitor the structure of perovskite film using
XRD; DX-2700 via Cu-Kα radiation (λ = 1.5416 Å). Scanning electron microscopy (FE-SEM,
FEI Quanta 200, Hillsboro, OR, USA) was employed to examine the morphology of the
perovskite thinfilms. The ferroelectric properties (P-E loops) were tested by a ferroelectric
tester (aixACC TF Analyser 1000, aixACCT Systems GmbH, Aachen, Germany).

The electrical properties of the CH3NH3PbIBr2 single-layer and multilayered thinfilms
were studied using a two-point probe source meter technique (KEITHLEY Instrument
2420 Model, Leeds, UK). Optical absorption and transmittance spectra of CH3NH3PbIBr2
(single-layered and multilayered) thinfilms were recorded using single beam Shimadzu
UV-Visible Spectrometer 1900i (Kyoto, Japan).

3. Results and Discussion

XRD analysis for CH3NH3PbI3 thinfilm, (top), CH3NH3PbIBr2 (single-layer thinfilm),
CH3NH3PbIBr2 (multilayer thinfilm) and CH3NH3PbBr3 thinfilm (bottom) are demon-
strated in Figure 1a, measured at room temperature. All the samples have maintained
the pure perovskite phases. In the XRD measurements of the perovskite thinfilms, sharp
intensity peaks at 14.5◦, and 28.5◦, are associated with (110) and (220) diffractions of
CH3NH3PbI3 (top) confirming the perovskite structure for halide material. Two hump-
like peaks located at 28.2◦ and 28.5◦, are assigned to the (004) and (220) lattice planes
for the tetragonal I4/mcm phase [9,18]. Meanwhile, CH3NH3PbBr3 thinfilm (bottom),
CH3NH3PbIBr2 (single-layer thinfilm) and CH3NH3PbIBr2 (multilayer thinfilm) are crystal-
ized and indexed in a cubic structure with a Pm3m space group symmetry. Sharp intensity
peaks at 14.9◦, 30.16◦ and 37.8◦ are associated with (100), (200) and (211) lattice planes
of the cubic structure [19]. Herein, it is noticeable that for CH3NH3PbIBr2 (single-layer
thinfilm) and CH3NH3PbIBr2 (multilayer thinfilm), all the intensity peaks display obvious
shoulders, where diffraction peaks of both samples are symmetrical with the domination
of the cubic phase. The tetragonal phase of the pure CH3NH3PbI3 thinfilm is basically
a transition from the cubic phase by the slight rotation of PbI6 octahedra along the (001)
axis on the (001) plane while retaining their corner-sharing connectivity; that is why the
mix halides can be designated by a pseudo-cubic lattice [20]. Preferably, the perovskite
materials possess cubic symmetry, but whenever they are transformed to pseudo-cubic or
distorted cubic symmetry, either due to the grain size or to mixing the halides, this variation
in the structure brings substantial variations in the properties of perovskite [21].

The schematic illustration of single-layer and multilayered growth of thinfilms is
described in Figure 2, consisting of four alternating layers of Ag electrodes and three layers
of CH3NH3PbIBr2 on the glass substrate. Adhesion to the substrate surface is an important
requirement, especially in the outdoor environment, where the coating is performed, i.e.,
atmospheric agents and heavy cleaning treatments.
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along with the cross-sectional SEM images.

Herein, the cross-section SEM images of single-layer CH3NH3PbIBr2 thinfilm and
multilayered CH3NH3PbIBr2 thinfilm are illustrated. The overall single-layer thinfilm
thickness is ~340 nm, consisting of a pseudo-cubic CH3NH3PbIBr2 layer of ~95 nm, which
is superimposed between the Ag (bottom 63 nm and top 65 nm electrodes) layers. Similarly,
the thickness of the multilayered CH3NH3PbIBr2 thin film is ~585 nm with the average
same thickness size (~88 nm) of the perovskite layers. For the elemental analysis and the el-
emental distribution of the dual halide (Br, I), constituents of the multilayer CH3NH3PbIBr2
thinfilm surface FE-SEM analysis are taken and illustrated in Figure 3. Figure 3a is the SEM
surface image of CH3NH3PbIBr2 layer; the layer shows a loose and porous structure. Two
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dimensional elemental mappings of the surface states that Br and I elements possess the
higher degree of dispersion and uniformity throughout the surface (Figure 3b–d).
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Ferroelectric (P-E) loops of Ag/CH3NH3PbIBr2/Ag, single-layer and multilayer thin-
films grown on glass substrate are presented in Figure 4a, measured at 50 ◦C under the
frequency of 10 Hz. Both the films have shown a leaky capacitor characteristic, which
might be due to the presence of defects and high porosity (discussed in SEM analysis) in
thinfilms which create percolation paths for the current. It is reported that the ferroelectric
behavior in the tetragonal phased CH3NH3PbI3 propagates due to the ionic polarization
by the off-center shift of Pb in the PbI6 octahedral [22], which plays a vital role to estab-
lish the hysteresis in the dual halide peovskite materials, i.e., CH3NH3PbIBr2. Herein,
weak ferroelectric performance is observed in the Ag/CH3NH3PbIBr2/Ag single-layer
and multilayer thinfilms, but these are improved results as compared to previous reports.
Leakage current plays a vital role on the ferroelectric properties of the material. Figure 4b
presents the leakage current versus electric field plots of CH3NH3PbIBr2 single phase and
multiphase thinfilms, measured at 50 ◦C. A leakage current value of ~4.83 × 10−6 A has
been detected for the single-layer Ag/CH3NH3PbIBr2/Ag thinfilm at the electric field
of ~50 kV/cm. The value increased to 5.06 × 10−6 A for the multilayered thinfilm at the
same applied electric field. Moreover, in multilayer films, the particle size increased due to
reduced lattice mismatching. This increment in particle size reduces the grain boundaries
that produce better electron mobility in the multilayer thinfilms. The number of extra Ag
electrode layers in the multilayered thinfilms is another reason for this increment in the
leakage current. In addition, both of them exhibited ohmic contact with Ag as there was no
rectification on the contact region. Hence, they did not show diode-like behavior. Figure 4c
is the resistivity versus electric field plots of CH3NH3PbIBr2 single phase and multiphase
thinfilms. Single layer Ag/CH3NH3PbIBr2/Ag thinfilm presented a high resistivity of
1.87 × 106 Ω.cm at the applied electric field of ~50 kV/cm, and resistivity reduced for the
multilayered thinfilm to 1.60 × 106 Ω.cm, as was expected after following the trends of
ferroelectric and leakage current plots.
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Figure 5a shows the absorbance spectra for the wavelength range of 300–1100 nm mea-
sured at room temperature. Samples showed two different trends for the absorbance spectra.
Both films showed a decreasing trend of absorbance in the visible region (350–700 nm),
whereas the absorbance becomes lower for the infrared/near infrared (IR/NIR) region;
this decrease is due to lower production of excitation at the bandgap by the energy of both
samples. Furthermore, multilayered perovskite film showed the maximum absorbance
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in the wavelength range of 300–450 nm and then showed it reduced for the wavelength
range of 450–650 nm. Hence, it shows that for region 1, more absorbance is achieved
as compared to region 2, and later it decreased further with the increase in wavelength
650–1100 nm in the IR/NIR region 3. The absorbance behavior of multilayered perovskite
thinfilm produces the maximum quantum efficiency as compared to single-layer. Figure 5b
shows the transmittance spectra for the wavelength range 300–1100 nm measured at room
temperature. In IR/NIR region (650 nm to 1050 nm), the curve obtained for single-layered
thinfilm depicted 90% of the maximum transmittance of light. However, in the visible
region of light, the sample shows 80–85% transmittance with sharp absorbance. In contrast,
the multilayered (CH3NH3PbIBr2) thinfilm shows 45% of light transmittance in the IR/NIR
region, which varies from 650 nm–1050 nm. On the other hand, in the visible region starting
from 350 nm to 650 nm, it transmits 15–20% of the light. Hence, transmittance of light in
both samples increases with increasing wavelength and decreasing energy, because the en-
ergy of incoming photons does not produce excitations across the band gap. Single-layered
perovskite thinfilm exhibits maximum transmittance as compared to multilayered thinfilm
because of its minimum thickness.
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Figure 6 is the plot measured by Tauc plot method which is widely implemented for
the determination of the bandgap value of the materials. Herein, bandgaps of single-layered
and multilayered CH3NH3PbIBr2 thinfilms are calculated.
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For the band gap estimation the Tauc plot method is used, and the band gap for single-
layered thin films is 2.07 eV, which is consistent with the previous report [23]. Meanwhile,
the bandgap of CH3NH3PbIBr2 multilayered thinfilm is 1.81 eV. It shows that the bandgap
is dependent on the thickness of the thinfilms. Graphically, photon energy (hv) on the x-axis
and the other quantity (αhν)1/2 on the y axis can be written as:

(α.hv)
1
γ = B

(
hv − Eg

)
(1)

where ν is the photon’s frequency, Eg is the bandgap energy and B is a constant. The factor
γ relies on the nature of transitions of electrons with values 1/2, 3/2 or 3 for direct-allowed,
indirect-allowed, direct-forbidden and indirect-forbidden transitions [24]. A graph is
plotted for direct-allowed transitions.

In Figure 7, FTIR spectroscopy of single-layer CH3NH3PbIBr2 and multilayer
CH3NH3PbIBr2 thinfilms are presented for the wavenumber range 500–4000 cm−1. Both
films depicted similar behavior. FTIR is employed to observe the vibrational properties
of the synthesized material. The band between 3682 cm−1 and 3452 cm−1 belongs to
O-H stretching which may come from moisture in the films [25]. Peaks at 3186 cm−1

and 3126 cm−1 from N-H asymmetric stretching and N-H symmetric stretching, respec-
tively. Peaks from 2956 cm−1 and 2918 cm−1 appear due to C-H asymmetric stretching
and C-H symmetric stretching, respectively [26]. Similarly, the less intensity peaks at the
wavelengths 1585 cm−1, 1460 cm−1 and 1423 cm−1 are from asymmetric N-H bending, sym-
metric N-H bending and C-H bending, respectively [27]. Less intense peaks at 1255 cm−1

and 943 cm−1 belong to CH3-NH3+ rocking [28].
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Lastly the photovoltaic performance of fabricated dual halide perovskite material
CH3NH3PbIBr2 is observed as an absorber layer in the perovskite solar cells (Figure 8).
For this purpose, an inverted device structure is used, which is based on ITO/Poly (triaryl
amine) (PTAA) (10 nm)/CH3NH3PbIBr2 (perovskite layer)/(6,6)-Phenyl-C61-butyric acid
methyl ester (PCBM) (50 nm)/Al (100 nm). Here, PTAA and PCBM are employed as hole-
and electron-transport layers, respectively. Characteristic current–voltage (J-V) curve for
perovskite solar cells based on CH3NH3PbIBr2 is displayed in Figure 8, and PV performance
measured under AM 1.5G condition. The highest power conversion efficiency (PCE)
achieved with this absorber material was 7.87% along with a decent open circuit voltage
of 1.07 V, short circuit current density (Jsc) of 10.51 mA cm−2 and a fill factor (FF) of 72%.
The stability (J-V) of a perovskite solar cell based on a CH3NH3PbIBr2 absorber material
for 8 days is measured under a controlled and ambient environment at room temperature
with relative humidity of 45%, as shown in Figure 8b. The device decomposed 5% and 20%
under a controlled and ambient atmosphere, respectively. Wide band gap-based perovskite
absorber materials are an emerging area of research in perovskite photovoltaic. In this study,
we used an inverted planar structure of perovskite solar cells, which is lagging behind
regular planar and mesoporous structures in terms of efficiency. The main advantages of
this inverted structure are the blockage of ion migration and better stability as compared to
other structures. As per our knowledge, 7.87% efficiency is still the highest in an inverted
planar with CH3NH3PbIBr2 structure and also comparable with a regular planar structure
in PCE. Figure 8c,d are the J-V behaviors of a solar cell based on a CH3NH3PbIBr2 absorber
material under the light and dark environment.
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layer and its PV performance measured under AM 1.5G condition, (b) the stability (J-V curves)
of perovskite solar cell based on CH3NH3PbIBr2 absorber material for 8 days, (c,d) the J-V curve
behaviors in light and dark.

Here, a final comparison is made bwteen the perovskite solar cell based on a
CH3NH3PbIBr2 absorber material (this work), shown in Table 1, and the previously re-
ported different materials-based solar cells. The reported material showed better perfor-
mance than all other mentioned materials.

Table 1. Performance of solar cells.

No Materials JSC
(mA/cm2)

VOC
V

PCE
% Ref.

1 HNO3/PFSA/Gr/oxide/n-Si 32.46 0.521 10.44 [29]
2 MoS2 (monolayer CVD)/p-Si 22.36 0.41 5.23 [30]
3 Bilayer graphene/MoS2/n-Si 21.4 0.51 5.98 [31]
4 Trilayer graphene/MoS2/n-Si solar cell 33.4 0.56 11.1 [31]
5 MoS2/h-BN/GaAs (AuCl3 doped) 20.8 0.64 7.15 [32]
6 MoS2/h-BN/GaAs (AuCl3 doped) Vgate = −1.0 V 21.1 0.76 9.03 [32]

7
Glass/FTO/compact-TiO2/mesoporous-
TiO2/CH3NH3PbI3/MoS2/Spiro-OMeTAD/Au
solar cells

21.5 0.93 13.3 [33]

8
ITO/Poly (triaryl amine)
(PTAA)/CH3NH3PbIBr2/(6,6)-Phenyl-C61-butyric acid methyl
ester (PCBM)/Al

10.51 1.07 7.87 This work

4. Conclusions

In this research study, single- and multilayered semiconductor CH3NH3PbIBr2 thin-
films were synthesized; XRD analysis confirmed the single-phase perovskite structure
of the films with the existence of pseudo-cubic phase (200) at 30.16◦. Leaky ferroelectric
behavior was depicted by both thinfilms, while multilayered thinfilm showed a leakage
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current of ~5.06 × 10−6 A and resistivity of ~1.60 × 106 Ω.cm for the applied electric field
of 50 kV/cm. Optical comparison showed that the multilayered perovskite thinfilms pro-
duced the maximum quantum efficiency as compared to single-layer. A Tuac plot reveals
the band gap calculation of 2.07 eV and 1.81 eV for single- and multilayered films, respec-
tively. Photovoltaic performance of the material as an absorber layer in the photovoltaic
cell was observed with the PCE of 7.87% and FF of 72%. The results illustrate the abilities
of the engineered material to be utilized in optoelectronic and photovoltaic devices.
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