
Sadhana, Vol. 22, Part 1, February 1997, pp. 5-32. © Printed in India. 

Single- and multiobjective optimization problems in robust 
parameter design 

AMIT MATHUR and KRISHNA R PATTIPATI 

Department of Electrical and Systems Engineering, University of Connecticut, 

Storrs, CT 06269, USA 

e-mail: [amit,krishna] @sol.uconn.edu; amit@teamqsi.com 

Abstract. This paper reviews the evolution of off-line quality engineering 

methods with respect to one or more quality criteria, and presents some recent 

results. The fundamental premises that justify the use of robust product/process 

design are established with an illustrative example. The use of designed exper- 

iments to model quality criteria and their optimization is briefly reviewed. The 

fact that most design-for-quality problems involve multiple quality criteria mo- 

tivates the development of multiobjective optimization techniques for robust 

parameter design. Two situations are considered: one in which response sur- 

face models for the quality characteristics can be obtained using regression 

and considered over a continuous factor space, and one in which the prob- 

lem scenario and the experiment permit only discrete parameter settings for 

the design factors. In the former scenario, a multiobjective optimization tech- 

nique based on the reference-point method is presented; this technique also 

incorporates an inference mechanism to deal with uncertainty in the response 

surface models caused by finite, noisy data. In the discrete-factors scenario, an 

efficient method to reduce computational complexity for a class of models is 

presented. 

Keywords. Multiobjective optimization; off-line quality engineering; Taguchi 

methods; robust product/process design. 

1. Introduction 

The primary goal of a quality program in the manufacturing industry is to design and 

implement a production process geared towards satisfying the customer. It concerns itself 

with all aspects of the process, from conceptualization through design, to production and 

operations. Besides the need for an environment of total quality management built on a 

concurrent engineering foundation, the quality engineering tools needed to evaluate and 

optimize physical quality characteristics are paramount to the success of a quality program. 

Development of some of these tools is the focus of this article. 
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Quality engineering deals with a methodology for maintaining (controlling) and im- 

proving product quality. It addresses two main types of problems: on-line quality-control, 

and off-line design of products and processes for quality. The on-line techniques have gen- 

erally been researched and applied under the rubric of statistical process control (SPC), 

where the popular tools are various types of control charts (Montgomery 1991a). The off- 

line design-for-quality problem has aroused widespread interest in the West only since the 

eighties with the popularization of Taguchi's methods of parameter design using designed 

experiments (also known as robust design, Phadke 1989). While SPC aims at maintaining 

the quality of a production process at prescribed levels with the tacit assumption that the 

design has been optimized prior to production and that no further design improvement is 

necessary, off-line product development uses the tools of experimental design to obtain 

models for the various quality metrics of interest, which are then optimized with respect 

to the design variables (factors). In both exercises, however, the ultimate objective is to 

ensure that the production system performs as close to the targeted levels and with as little 

variability as possible. 

The prerequisites for a robust product/process-design exercise are the identification 

of suitable metrics or performance measures that can summarize quality, and the specifi- 

cation of targets for these measures. The objective then is to obtain values of the various 

product and process parameters that bring these measures to their targets. Manufactur- 

ing processes almost always require consideration of several individual quality criteria, 

whose physical relationships to the control parameters or design variables, as well as with 

each other, are not always known. The problem, therefore, involves modelling all quality 

characteristics with respect to the control parameters (input variables) and simultaneous 

optimization of these quality criteria. Since the same settings of control parameters, in gen- 

eral, cannot optimize all objectives, a trade-off or compromise is inevitable. The formal 

methodology for doing so, viz., multiobjective optimization (also termed multiple-criteria 

decision-making or multiobjective programming), has been a subject of extensive research 

in the area of resource management and planning for more than two decades (Zeleny 1982; 

Chankong & Haimes 1983; Steuer 1989). On the other hand, quality engineering has con- 

cerned itself mainly with the statistical and modelling aspects of the problem with the 

underlying expectation that the number of optimization variables would be small and that 

the concomitant optimization problem would be solvable via ad hoc methods. With the 

need for increasing sophistication in product design and process improvement in modem 

manufacturing, it is important to incorporate a formal methodology in quality engineering 

that integrates both statistical modelling and optimization into a single framework. This 

is especially so as the number of quality criteria and the number of variables affecting the 

process or product performance increase, rendering visual/graphical tools cumbersome 

or ineffective. Multiobjective optimization methods can be applied to quality engineering 

problems with only a few conceptual extensions. 

This paper reviews the evolution of off-line quality engineering methods for single 

and multiple objectives, and introduces some recent results. Since the focus is on the 

engineering tools (also known as the CAE (computer-aided engineering) tools, Boza et al 

1994), the issue of how to identify appropriate quality characteristics and the factors of 

interest in a production system is ignored - those objectives are best accomplished via 

extensive brainstorming by the quality team (Bendell et al 1989; Boza et al 1994). In the 
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remainder of this article, we first give a general overview of experimental design techniques 

and the notion of robust design attributed to Taguchi. The optimization of quality metrics 

with respect to continuous factors is addressed first and then the optimization problem 

with respect to discrete factors is considered. For the case of continuous design factors, 

we also examine the optimization problem for the single as well as the multiple objective 

cases in presence of uncertainty in models estimated from experimental data. We present 

a strategy for design improvements that account for the uncertainty in regression models. 

All concepts and methods are illustrated by examples. 

2. Overview of off-line design 

2.1 Qualim metrics and experimental design 

The goal of Taguchi's design-for-quality approach is to choose levels (or settings) of 

factors (or design parameters) that minimize the variability of a product's function while 

achieving the target (Taguchi 1987; Phadke 1989; Nair 1992). This is in contrast with the 

traditional (and uneconomical) approach of 'accept-reject,' where products not satisfying 

the specifications within a tolerance are rejected. Taguchi's philosophy is based on the 

premise that quality can be built into a product by a proper choice of design settings to 

lower the inherent variability, and thus to lower the cost of producing quality products. This 

cost first needs to be quantified by a quality loss function. A simple quality loss function 

for a quantitative quality characteristic (or response) y, which is targeted to have a value 

T, is the quadratic loss function 

L(y) = ko(y - T) 2. 

Figure 1 plots the quadratic loss function in relation to the step loss function that corres- 

ponds to the tolerance-based approach; 3 is the tolerance limit about the target T, and A0 

is the cost incurred in rejecting a product. Thus, the objective with respect to the quadratic 

loss function is to achieve product response as close to the target as possible by choosing 

appropriate parameter settings and without modifying the product technology itself. On the 

other hand, the step loss function attributes no loss of quality to a product whose response 

lies within :1:3 of the target T, and hence no attempt is made to bring product response 

as close to the target as possible. Quality loss can be reduced in this approach only by 

improving technology - a more expensive alternative to parameter design. 

Let x = [x j, x2 . . . . .  XK] be a vector denoting the values of K (controllable) factors 

which affect the product response y, and whose levels can be fixed by design. Since the 

ko = 

T - 6  
Figure 1. 

I.(~.~y, Quadratic loss function 

~ ep function 

'Y 
T T+6 

Quality loss functions. 
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response y(x) at the factor settings x varies randomly from sample to sample, resulting in 

a distribution of loss function values, an average (over the entire product population) of 

the loss function should be considered. For the quadratic loss function, the average loss 

function (assuming k0 = 1) is the mean squared-error, 

MSE (x) = E[L(y(x))] = tr2(x) + (/z(x) - T) 2, 

where E is the expectation operator, and/z(x) and o2(x) are, respectively, the mean and 

variance of the response y parameterized by x. For the mean squared-error type quality 

metric, quality is optimized by minimizing MSE(x) with respect to x taking values in a 

set E (factor space). 

Taguchi has proposed quality measures, called signal-to-noise ratios, for three different 

types of quality characteristics (e.g., Taguchi 1987; Phadke 1989). For a smaller-the-better 
type quality characteristic, where the target T to be achieved by the characteristic y is zero, 

it is defined as 

SNs(x) = - 10 lOgl0 E[y2(x)]. 

For a nominal-the-best type characteristic, it is defined as 

SNT (x) = 10 logl0[~2(x)/trE(x)], 

and for the larger-the-better type characteristic, it is defined as 

SNL(X) = -101ogl0 E[1/y2(x)]. 

Taguchi's assertion is that maximization of these signal-to-noise ratios with respect to x 

would result in minimization of variability. For the nominal-the-best characteristics, he 

suggests identification of signal factors which affect the mean of y, but not its SNT; the 
signal factors can be used to bring the mean to the target following the maximization 

of SNr. Statisticians have devoted extensive effort to justify Taguchi's measures and his 

two-step approach, but have found only very special scenarios in which their use can be 

validated (Le6n et al 1987; Box 1988). Where the quadratic loss function is appropriate, 

the use of the mean squared-error (MSE) would be ideal, provided it can be empirically 

modelled using experiments. The fact that signal-to-noise ratios have been reported to have 

worked in several case studies demonstrates that there is room for significant improvement 

in many currently used manufacturing processes and that even ad hoc methods can realize 

some of that improvement. 

2.2 The scope for robust design 

To demonstrate that variability can indeed be reduced by parameter design, consider the 

following illustrative example (taken from Boza et al 1994). 

A circuit example: Consider the simple AC circuit shown in figure 2, where the power 

source g is known to operate at a tightly toleranced frequency f of either 50 or 60 Hz, and 

an rms value of 100 VAC with a tolerance of -I-10%. It is desired that the rms current I be 

as close to 10 amperes and with as little variability as possible. The design parameters are 
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Figure 2. An AC circuit. 
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the nominal values of the resistance R and the inductance L, which are also toleranced at 

-4-10% about their nominal values. It is assumed that C, R and L are independent random 

variables with means at their nominal values and the (4-10%) tolerances at 3or limits from 

nominal, e.g., the nominal value R0 of R is such that 

3aRo = 0.1R0. 

The frequency f is assumed to have zero variance about a nominal of either 50 or 

60 Hz. 

Using the Taylor series expansion about the nominal values of the circuit parameters, 

the current I can be expressed as 

a-~ o O l o --OTL o I = I 0 +  Ol A C +  ~-~ A R +  AL 

aI  o + ~ A f  + - - .  (higher-order terms), (1) 

where the subscript zero on I and the partial derivatives denotes their evaluation at the 

nominal parameter values Eo, Ro, Lo and fo ($o = 100 VAC, fo = 50 or 60 Hz), and 

A £ = £ - - £ 0 ,  A R = R - R o ,  A L = L - L o ,  A f = f - - f o .  

Using the assumptions that the parameters are independent and that the terms of third and 

higher orders are negligible, taking the expectation of I in (1) gives the mean value of the 

output current as 

1 ( 021 021 
#I(£O, fo, Ro, Lo)= Io + ~.. - ~  a2o + - ~  ~2 o 

\ 0 0 

) 
+ 0 4 0  + o + "  

1 ( 0 2 I  0 a21 O'~o ) .  (2) 
= I 0 + ~  ~-~  cr20+~--~O 

In obtaining (2), we have also used the facts that (02I/0C 2) - 0 and a~ ~_ O. For the 

nominal values being considered, the bias E(I) - Io is negligible (less than O. 1%), and so 

the variance of I can be obtained as 
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, ,  rO,'l:o.: ro , ] :  : f ,l=o o 
rrT(£0, f0, R0, L0) = 13£3o ~o + [ 1o % + LOL.lo 

(3) 

With the choice of £0 and fo not in the designer's control, the mean squared-error 

MSE/(Ro, Lo) = cr2(Ro, Lo) + (/zl (R0, LO) - Tt) 2, 

(where T / =  10A is the target for I) can be minimized with respect to the nominal values 

Ro and Lo of the series resistance and inductance to obtain a robust circuit design. Using 

the functional relationship between I and the circuit parameters given in figure 2, the 

following partial derivatives can be derived: 

31 I 
~--~ = ~;  

31 13R 
OR £2 ' 

I3L 
31 (2off)2 • 
3L - -  £ 2  ' 

321 
= O; 

0C2 

32I 13{3R2I 2 ) 
£: 1 ;  

3 L 2321 _-z-413 \{ 3(2yr f)2 L ) = ( 2 r r f ) 2  _ - 1  . 

0.01~ 

o.~)f 

n0(n) 

• , . ,  G ° 

: O . 0 1 S  . . . .  ~ . . . . . . .  : . . . . . . . . . . .  

' ~  : t l ~  1 Z 4 1  

i . . . . .  o . 0 1  . . . . . . .  i . . . . .  . . . . .  : . . . . .  i . . . . . . .  

y = 60Hz. 

~ t $  0 
9 10 3 6 

Figure 3. Contour-plots of MSEz versus R0 and L0 at 50 and 60 Hz. The ' . '  marks our 
final design, the 'x '  marks the design obtained by Boza et al (1994), and the 'o's mark the 
individual optima of MSEz for the two frequencies. 

The contours of the mean squared-error versus the nominal values of R and L are shown 

in figure 3 for both nominal frequencies. It can be seen that the surface has ridge-like 

behaviour, and, hence, for large ranges of R and L values, the mean squared-error is very 

close to its minimum. 

Boza et al (1994) assumed an initial design setting of (R0, L0) = (5f2, 0.02H), and ob- 

tained a final design of (R0, L0) = (8f~, 0.017H). Their objective, however, was only the 

minimization of the variability or/2 which was a sufficient goal as the customer-specified 

tolerance of 2.5 amperes on the targeted I was not violated. However, to achieve good 

robustness at both nominal frequencies, figure 4 suggests a design near (R0, L0) = 

(9.43~, 0.01H), when at both frequencies an MSE = 0.21A 2 is achieved• 

Table 1 gives a summary of the circuit's performance at the initial design, the design 

obtained by Boza et al (1994), the designs at which MSE is optimum at either frequency, 
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Figure 4. MSE profiles versus R0 at two fixed values of L0; the dashed line indicates the 
minimum achievable MSE under either frequency scenario. 

and at our suggested design. Table 1 also gives the values of the capability index Cpt at 

either frequency for each parameter design. Cpk is defined as (e.g., Montgomery 1991 a), 

Cpk = min [ 3-o: ' 3o- ' 

where USL and LSL are respectively the upper and lower specification limits for the 

response (for this example, USLt = 12.5A and LSLI = 7.5A). If the above expression 

returns a negative number, Cpk is taken to be zero. For Six-Sigma Quality (pioneered 

by Motorola Inc; Harry 1988), a Cpk value should be greater than or equal to 1.5. For 

this example, robust design has indeed achieved this goal. Further performance gains are 

possible only by technological improvement, e.g., by improving the component tolerances. 

The above example demonstrates that in order for the product to function equally well 

under two frequency scenarios, a compromise design should be used. While this compro- 

mise design was relatively easy to obtain using the contour plots of  figure 3 and the MSE 

profiles in figure 4, a visual approach is not possible if the number of design factors or the 

number of objectives exceeds two. The problem of  multiple objectives is examined in the 

next section. 

2.3 Experimental response modelling 

In the example considered in the previous sub-section, a physical relationship between 

the response of interest and the design factors was available. In a general manufacturing 

Table 1. Performance of AC circuit for different parameter designs. 

f = 50Hz f = 60Hz 

R0 (~) L0(H) /xt (A) or1 (A) MSEI (A 2) Cpk /zt (A) ~rl (A) MSEt (A 2) Cpk 
5 0.02 12.458 0.513 6.302 0.03 11.058 0.462 1.333 1.04 
7.1 0.0225 9 . 9 8 4  0.408 0.166 2.03 9.06 0.371 1.053 1.39 
7 0.019 10.874 0.446 0.962 1.22 9 . 9 8 8  0.408 0.166 2.03 
8 0.017 10.4 0.435 0.349 1.61 9 . 7 5 9  0.401 0.219 1.88 
9.43 0.01 10.069 0.452 0.210 1.79 9 . 8 5 4  0.436 0.211 1.80 
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process, this would rarely be the case. Consequently, empirical models for the metrics 

are obtained. An experiment consists of a systematic variation of the factors and record- 

ing of the response(s) defining the quality metric(s) to enable reliable estimation of the 

models. For an experiment of N runs, the procedure involves obtaining (noisy) measure- 

ments y(x) of a response at N distinct values Xl, x2 . . . . .  XN in the space ~ of the design 

factors. In Taguchi experiments, since the objective of interest is an aggregate measure, 

such as the signal-to-noise ratio of a product/process characteristic, which summarizes the 

variability of quality characteristic for a given combination of design-factor settings, an 

experiment involves variation of not only the design factors, but also a systematic vari- 

ation of noise factors that contribute to the variability in the product's response. Noise 

factors are variables that are uncontrollable in the real environment but can be manipu- 

lated in the experimental set-up. Thus, a Taguchi experiment consists of (i) an inner array 
which lists the design factor-level combinations, and (ii) an outer array that lists the noise 

factor-level combinations for each design factor-level combination. If m is the number of 

combinations of noise factors chosen for an outer array, an experiment yields m replicate 

measurements for each of the N runs. What the best placement of the points Xl, x2 . . . . .  XN 

should be depends on the assumed model-type for r/(x) (e.g., linear, quadratic etc.), and 

on practical considerations. The problem of design of experiments has been extensively 

researched during this century by applied statisticians, and there exists a rich body of lit- 

erature documenting numerous design types and approaches (see, for example, Box et al 
1978; Montgomery 1991b, and the bibliographies therein). In this article, we shall sidestep 

this issue by assuming that, for a given problem, an appropriate design has been identified. 

However, for the purposes of this paper, we mention one useful and frequently used design- 

type: the fractional-factorial design. Most of the orthogonal-array designs compiled and 

recommended by Taguchi are of the fractional-factorial type. For example, consider an 

experiment involving the study of the effects of three factors x l, x2 and x3 on the response 

y. If each factor is constrained to take only two fixed levels, denoted by 1 and 2, during 

the experiment, the maximum number of distinct runs N is 8, so that all combinations of 

the levels of each factor are tested. This arrangement, shown in the array L8 in figure 5, is 

a two-level full-factorial design. If only four of the eight possible combinations are run, 

L8 

Run Factor 

no.  x I z2 x3 y 

1 1 I I I11 

2 I I 2 

3 1 2 1 Ya 

4 1 2 2 Y4 

5 2 I 1 Ys 

6 2 1 2 Ys 

7 2 2 I 

8 2 2 2 ys 

L4 

Run Factor 

RO. Xl X2 Z3 

1 1 I 1 

2 1 2 2 

3 2 2 1 

4 2 I 2 

Y 

Yl 

Y2 

Y3 

Y4 

Figure 5. Two orthogonal factorial designs. 
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as in the array L4 in figure 5, the resulting design is of the fractional-factorial type. A 

useful feature of fractional-factorial designs is their orthogonality, i.e., the analysis of data 

with respect to each factor can be done using only the column(s) corresponding to that 

factor. Orthogonal arrays (which include some fractional-factorial designs) also possess 

the following key features: 

• each level of a factor appears in an equal number of runs (factor-level combinations); this 

is called the balancing property - it ensures unbiased estimation of all column effects; 

• the effects measured by any two columns are mutually orthogonal (uncorrelated); 

• the effect measured by a column may be aliased (confounded) with the combined effect 

(interaction) of two or more columns. 

Orthogonal arrays are normally used in Taguchi's off-line design procedure for the inner 

array which determines the combinations of the design factor-levels. In addition, their use 

has also been recommended in the outer array which determines the combinations of noise 

factor-levels, even though the statistical implications of doing are debatable (Montgomery 

1991a). 

2.4 Data analysis for orthogonal-array experiments 

In this sub-section, we briefly review the common data analysis techniques for experimental 

data: analysis of means, analysis of variances (ANOVA), and multiple linear regression. 

These techniques are used to estimate the functional relationship between the factors and 

a response, and to assess the statistical significance of the estimated relationship. While 

ANOVA and regression are the common tools of choice, the analysis of means is often 

convenient for measuring factor effects when an orthogonal-array experiment is used. 

The following results are given with respect to analysis of experimental data using an 

orthogonal array. 

If a trial (or run) corresponds to the level combination (Xl, x2 .. . . .  XK) of the K factors 

(denoted by x), then we shall assume that a response y can be expressed as 

y (x) = 0 (x) + e, 

where 0 (x) is an unknown deterministic function - -  the mean response corresponding to 

this factor-level combination, and e is a zero-mean random noise with variance tr 2. Here, 

the response y is used to denote measurements of either the quality characteristic or any 

suitable loss function derived from it, e.g., the MSE or a signal-to-noise ratio. In either 

case, we assume that e is independent with constant variance over all experimental runs. 

The task of experimental modelling is eventually to estimate the functional relationship 

rl(x). 

2.4a Analysis of  means and variances : Consider a balanced experiment in which each 

factor-level combination appears in an equal number of trials, and, consequently, each 

of the Lk levels of factor Xk appears in an equal number, nk, of trials, i.e., nkLk ---- N. 
The number of trials N need not be equal to the total number of possible factor-level 

combinations, but in a factorial design, for example, N must divide I-IX= 1 Lk. We assume 
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that we take m replicates per trial and, hence, have Nm observations of the response 

variable:  Yi j ,  i = 1, 2 . . . . .  N, j = 1, 2 . . . . .  m (note that if y denotes an aggregate or 

summary measure such as an MSE or a signal-to-noise ratio, we would have m = 1 since 

replicated measurements of the quality characteristic would already have been used to 

compute y). Now, the following sample averages and sums of squares may be defined: 

1 U ~  
Y = -~m ~ Yij, (4) 

z = l j = l  

1 m 
Y i = m  ~ y i j '  i = l  . . . . .  N, (5) 

1 m 
-- ~ Y~Yij, k=  1,2 . . . . .  K; I-- 1,2 . . . . .  L k ,  (6) 

Yk,l -- nkm {i:tk=l}j=l 

N m 

S = ~ ~ ( Y i j  - y)2, 

i=1 j = l  

Lk 

Sk = mnk Y~.(Yk,I - y)2 ,  

l=l 

N m 

Se = Z Y~(Yij -- yi)2,  

(7) 

k = 1, 2 . . . . .  K, (8) 

(9) 

i = l j = l  

K 

Sr : S - y ~  S k : S e --}- S L O F ,  (10) 

k=l 

where y is the overall mean, Yi is the average response in the ith trial, Yk,l is the average 

response due to factor k taking level l, {i : lk = l} is the set of indices denoting trial numbers 

in which factor k takes level I. S is the overall sum of squares (corrected for the mean), 

Sk is the sum of squares contributed by the variation due to changes in the levels of factor 

k, and Se is the sum of squares due to pure random error (it accounts for the within-run 

variations). St, known as the residual sum of  squares, accounts for the contribution SL o F tO 

the variability in y due to lack of fit (unaccounted-for effects, e.g., interactions), and due to 

pure random error (Se). The first three of the above set of  equations constitute the analysis 

of means (ANOM) which enables measurement of effects of factors. The remaining four 

equations are used for ANOVA, which enables the identification of significant factor effects 

that should be included in the model for 7. In (6), the mean responses have been computed 

only for each of  the factors taking a given level (main effects) assuming a linear (additive) 

model for 17. But a factorial design and some orthogonal arrays may permit estimation 

of not just the main effects but also interaction effects that measure the combined effect 

of two or more factors on the response. A two-level factorial design, for example, can 

measure as many effects (main or interaction) as the number of columns in the array. The 

computation of  these effects is similar to that given in (6) since exclusive (orthogonal) 

columns in the array can be assigned to measure these effects provided N is large enough 

to accommodate their estimation (see Box et al 1978; Montgomery 1991b). In general, if 

p (main and interaction) effects can be measured by an orthogonal array (p < N - 1), a 
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prediction equation for rj can be obtained as, 

P 

~(/1,12 . . . . .  IK) = y + ~_,(?i,l, -- .~), (11) 
i=1 

where ~(/1,12 . . . . .  lK) is the estimated response at the factor-level combination 

(li, 12 . . . . .  IK) of the K factors; the levels of  the interaction effects are determined from 

those of the corresponding interacting factors. The goodness of fit of the model can be 

measured by the R 2 value defined as 

The maximum possible R 2 is (S - Se)/S; if the number of  replications m = 1, the 

maximum possible R 2 is 1. 

2.4b Multiple linear regression : An ANOVA is usually accompanied by least-squares 

regression to estimate the response-surface model for rl. ANOVA gives the significant 

effects that can be included in a polynomial model for ~7. That is, 0 (x) is assumed to have 

the functional form 

where 

O(x)=O'z(x), 

2 . . . ] !  z(x) = [1 xl  . . .  xk x~ . . .  xk x l x 2  

is a p × 1 vector containing 1 as the first element, and powers and cross-products of 

xl ,  x2 . . . . .  xk, that are found significant from ANOVA, as the remaining p - 1 elements. 

Assuming m --- 1, if z(xi)',  i = 1 . . . . .  N, corresponding to the N runs, constitute the 

rows of the N x p matrix X, and i fy  = [Yl . . . . .  yu] t denotes the vector of N independent 

measurements of the response, least-squares regression gives the estimates (Anderson 

1984), 

0 = ( x ' x ) - ~ X ' y ,  ( t2)  
^ !  

~(x) = 0 z(x), (13) 

for the model coefficients and the response surface. 

2.4c M responses: Multiple linear regression can be extended in a straightforward 

manner to the case of simultaneous modelling of M responses using design matrix X. 

Now M vectors of coefficients, represented as the M columns of the p × M matrix ® in 

the model, 

y(x) = ®'z(x) + e, 

where ® = [01 . . .  OM] are to be estimated, the measurements y and the noise ¢ are M- 

vectors, and ¢ is assumed to be zero-mean with M x M covariance matrix E. Now, based 

on the measurement data 
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Y = X ® + E ,  

where Y and E are N x M, and X is N x p, the least-squares estimates are 

(9 = ( X ' X ) - l  x ' y ,  (14) 

0(x) = (15) 

The least-squares estimates satisfy the following statistics (Anderson 1984) 

E(07) = Oj (unbiased) 

Cov(0i, bj  ) = tTij( Xt X) -I 

E(0(x)) = ®tz(x) = ~(x) (unbiased) (16) 

Cov(i/(x)) = z(x)'(X'X)-1z(x)12. (17) 

trij is the ijth element of 12 (crjj = a:). Also, 

= [1/(N - p)]Y'[IN -- X ( X f X ) - I x ' ] Y ,  (18) 

where IN is the N x N identity matrix, and E is the unbiased estimator of I2 provided Y 

is of rank M (M < N - p). 

Under norniality assumptions, the estimates are distributed according to the following 

two independent (multivariate) distributions 

^ /  ^ f  ^ f  l 
(o1 02""0M) , t • .. OM) ,12. (X'X)-]), (19) 

(N - p )E  --, W(12, N - p), (20) 

where E • (X'X) -1 is a scalar product of the two matrices (an mp x mp matrix with each 

element of E multiplied by the matrix (X 'X)-] ) .  In (20), W(12, N - p) is a Wishart dis- 

tribution with (N - p) degrees of freedom, parameterized by the matrix 12 (see Anderson 

1984). The diagonal elements of a W(12, N - p)-distributed matrix are chi-squared dis- 

tributed random variables with N - p degrees of freedom. 

In the rest of this article, the use of prediction models, obtained either from least-squares 

regression or analysis of means, for optimizing quality criteria will be considered. 

3. Multiobjective optimization 

Consider now the robust design of a product/process with respect to M quality metrics. 

Ignoring for now their estimation using experimentation, suppose the response functions 

r/(x) = [01 (x) 02(x) • .- OM(X)]' are perfectly known. The design problem then involves 

obtaining the process variable settings x* ~ U, that simultaneously result in the most desir- 

able compromise of the m responses. As against single-objective optimization, in which 

the optimum response is a unique value (maximum or minimum response), 'optimiza- 

tion' with respect to multiple objectives refers to the attainment of any one solution in 

a set termed the nondominated solution set. A solution is said to be nondominated (or 

Pareto-optimal, or noninferior) if no other solution is at least as good as this solution 

with respect to every objective and better than this solution with respect to at least one 
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Figure 6. 

Reference point 
• q 

: a ' y  
Pl 

Trade-off surface 

(nondominated set) 

Feasible set ft 

The concept of nondominated solutions (in a two-dimensional objective space). 

objective (see Chankong & Haimes 1983). One can use the partial ordering available in 

the M-dimensional objective space RM to identify the nondominated set by eliminating 

each of those feasible points that is definitely worse than at least one other feasible point 

(with respect to all M objectives). The concept of nondominated points is illustrated in 

figure 6 for the case of maximization of two objectives (M = 2), where the set of attainable 

(feasible) objective-pairs is shown as a closed set f2. Seven points in this set: a, b, e, d, 

e, Pl and P2, are also marked for the purpose of illustration. Point a dominates c and e 

since a is better than c as well as e with respect to both objectives, 01 and 02. Similarly, b 

dominates d and e. Points a, b, Pl, P2, and all other points on that segment of the boundary 

of the feasible region f2 between Pl and P2, are nondominated, while c, d, e, and all other 

points inside the feasible region are dominated. 

The concept of domination or partial ordering in an M-dimensional objectives space 

RM can be mathematically defined using the concept of a positive cone D (any closed, 

convex, proper cone): 

ql ,  q2 E T~ M, ql  < q2 4 ',- q2 -- ql  E D.  

In figure 7, since the point q2 --  ql is in D, q2 dominates ql, and since both individually lie 

in D as well, both dominate the zero-vector 0. A nondominated objective (or D-maximal 
or Pareto-optimal objective) {~ in f2 is defined by 

6 [2 is D-maximal ~. .~ f2 N (~ + 3 )  = 0. 

The selection of any particular nondominated solution from the set of all nondominated 

solutions in f2 must be qualified by the preferences of the decision-maker (process- or 

quality-engineer), for the choice of any one nondominated point over the others implies 

a trade-off of one or more objectives for a gain in another objective. There exist several 

different, but closely related, methods of incorporating a decision-maker's preferences to 

search for the final solution (see, for example, Zeleny 1982, Steuer 1989). In one such 

method, calledthe method of reference points (Wierzbicki 1980), a reference point (a 

vector of desired objectives) is specified by the decision maker. The method maximizes 
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Figure 7. Positive cone D in a two- 
dimensional (M = 2) objectives space 7¢ 2. 

a scalarizing function called the achievement function that guarantees a nondominated 

solution. This is introduced in the next section. 

4. M u l t i o b j e c t i v e  o p t i m i z a t i o n  o f  r e s p o n s e  s u r f a c e s  

Most designed experiments enable estimation of models for the quality metrics over a con- 

tinuous region F, using least-squares regression. In this case, response surface models (Box 

& Draper 1987) are available for optimization, and nonlinear programming methods can 

be used. For multiobjective optimization, the reference point method can be applied by 

maximizing a scalarizing function (called the achievement function) of the M response 

models over the feasible space. One possible scalarizing function is (Lewandowski et al 

1989) 

M 

s(q, ~) = min oti(qi --~i)+flZOtj(qj --'qj), (21) 
ie{1,2 ..... M} j=l 

defined for a general point q in the objectives space S2 C 7~ M, and for a reference-point 

q. fl and c~i, i = 1 . . . . .  M are positive constants, whose values are to be fixed by the 

decision-maker. 

Figure 8 illustrates the concept of the achievement function in (21) in a two-objectives 

space, where the two objectives ql and q2 are to be maximized subject to the constraint that 

they lie in the set f2 of attainable objective-pairs. The reference point { that is chosen in 

this figure is unattainable; in general, it could lie inside f2 and the reference-point method 

would still return a nondominated solution. The 'ideal' point (Khuri & Conlon 1981), 

whose coordinates are the maxima of the individual objectives, is also shown, denoted 

here by qt.  (In an example that we have considered later in this section, the ideal point is 

chosen as the reference point.) The contours of the achievement function in (21) are shown 

for two values: s = 0, and s = s2 (s2 < 0). The shape of these contours is also the shape 

of the chosen domination cone Dt~, e.g., all points right of the contour corresponding to 

s = 0 dominate the reference point q- The boundary ~ of the attainable set g2 indicated 

by the thick line comprises the nondominated set, i.e., no other point in f2 dominates a 

point in this set with respect to both objectives. The point q* is the multiobjective optimum 

solution obtained by the maximization of the chosen achievement function over q ~ f2 (the 
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q2 = Reference point 

q* = Multiobjective optimum (s(q, ~) maximized 

qt = 'Ideal point' 

s = 0  
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ft: Set of attainable objective-peirs (ql, q2) 

Figure 8. Concepts of reference point and achievement function for a two-objective max- 
imization case. 

s-contour is tangent to the set f2 at q*). fl is related to the angle 0 as shown in figure 8. It 

determines the order that a decision-maker wishes to assign to points that do not dominate 

one another. The parameters oq and o~2 determine the slope of the dividing plane between 

the two piecewise-linear regions for s. 

The optimization problem can now be expressed as 

max s (q, q) (22) 
q~f2 

or, using q = r/(x), 

max s (r/(x), 4). (23) 
xEE 

When a unique, deterministic mapping r/ :  F, ~ 7~ M is not known, and response surface 

models have to be used, one may instead maximize 

M 

s(C/(x), q) = min O/i(~i(X) -- q i )  q- ~ ~ O~j (~j(X) -- q j ) .  (24) 
i~{1,2 ..... M} j = l  

The issue that the objectives are no longer deterministic, but involve modelling uncertainty, 

can be handled as follows (see Mathur & Pattipati 1995). 

The maximum position x* of s(~/(x), q) is declared as the 'multiobjective optimum' 

but, in addition, a region similar to a confidence region is associated with it. This region is 

obtained via Monte Carlo simulations about the estimated models using the least-squares 

estimates and their distributions. Since, from (19), 
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^! ^! ! 

(0' 10~ . . -0~)  t -  (0t 102. . .0M) "~.Af(O,]~.(XtX)-I), 

the model coefficients 01, 02 . . . . .  0M may be generated using the normal distribution, 

^f ^l ^! I 

.Af((0102... OM) , ~ • ( x t x ) - I ) ,  (25) 

which is parameterized by E instead of the (unknown) E. Also, since (N - p ) ~  is itself 

distributed as a Wishart distribution W(E, N - p) (see, for example, Anderson 1984), one 

might generate matrices using W (E, N -  p) and use these to parameterize the above normal 

distribution. The multiobjective optima of the models so generated can then be obtained 

for all the runs and plotted on a scatter plot to visualize the region of distribution of the 

optima. For cases involving more than two or three input variables, where visualization of 

such a region is not easy, a Monte Carlo significance test procedure (Barnard 1963) may 

be used to compute a boundary for this region. 

Monte Carlo significance test: Let xi, i = 1, 2 . . . . .  Ns, be the positions of the optima 

obtained from Ns independent Monte Carlo simulations. Let these points be realizations 

of independent random vectors with distribution p(x) which is unknown. Let t (x) be a 

test criterion for the hypothesis that the true optimum is distributed according to p(x). We 

denote these statistics by q,  t2 . . . . .  iNs for the Ns runs. Now, for a level of significance u 

(0 < ot < 1), the region in which the true optimum lies can be obtained as 

{x : t(x) < t(LNs(t_a)j) }, (26) 

where t(j) is the statistic of rank j obtained after sorting {ti} in ascending order, and 

[.Ns (1 - a)J is the largest integer less than or equal to Ns(1 - or). We shall refer to the 

region defined by the set in (26) as the 'significance region.' 

The choice of a statistic t depends on the distribution p(.) of the xi, which is unknown. 

The ideal (but intractable) approach would be to obtain a nonparametric estimate of the 

distribution function based on the Ns measurements xi. However, for some applications, it 

is possible to obtain reasonably good approximate regions based on a statistic that utilizes 

the sample estimates of the first few higher-order statistics: mean, covariance, (multivariate) 

skewness, kurtosis, and so on. Let ~ be the sample mean, and S be the sample covariance 

matrix. In addition, defining ui = S-~(xi  - ~ ) ,  where ui = (Uil, Ui2 . . . . .  UiK) t, let 

rlmn, l, m ,  n = 1, 2 . . . . .  K, be the Imnth element of the sample third-order cumulant 

(skewness) tensor: 

1 Ns 
= - - ~ _ ,  rlmn Ns UilUimUin' 

i=l 

and let Xlmnp, l, m, n, p = l, 2 . . . . .  K, be the Iranpth element of the sample fourth-order 

cumulant (kurtosis) tensor: 

Ns 

1 E UilUimUinUip -- (~lmt~nP -t- t~Int~mp + t~lp~mn), 
Klmnp ~ -~s i=1 
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Table 2. Experimental design and measured response data (example). 

Design (original) Design (coded) Responses 

Run Xl (raM) x2 (mM) xl x2 yt(kg) Y2 Y3 Y4 (ram) 

1 8.0 6.5 - 1 - 1 2.48 0.55 1.95 0.22 
2 34.0 6.5 i - 1 0.91 0.52 1.37 0.67 
3 8.0 25.9 - 1 1 0.71 0.67 1.74 0.57 
4 34.0 25.9 1 1 0.41 0.36 1.20 0.69 

5 2.6 16.2 -1.414 0 2.28 0.59 1.75 0.33 

6 39.4 16.2 1.414 0 0.35 0.31 1.13 0.67 
7 21.0 2.5 0 -1.414 2.14 0.54 1.68 0.42 
8 21.0 29.9 0 1.414 0.78 0.51 1.51 0.57 
9 21.0 16.2 0 0 1.50 0.66 1.80 0.44 

10 21.0 16.2 0 0 1.66 0.66 1.79 0.50 
11 21.0 16.2 0 0 1.48 0.66 1.79 0.50 
12 21.0 16.2 0 0 1.41 0.66 1.77 0.43 
13 21.0 16.2 0 0 1.58 0.66 1.73 0.47 

mM = millimolar 

where ~ij • 1, if i ----- j ;  otherwise, it is zero. Higher.order cumulants can similarly be 

computed. If the skewness, kurtosis, and higher-order cumulants are negligible, it may 

suffice to use the statistic 

q ( x ) = ( x - ~ ) ' S - 1 ( x - ~ ) = u ' u .  (27) 

In general, a statistic based on the likelihood function involving the higher-order terms in 

an Edgeworth expansion (see, for example, Kolassa 1994) could be used: 

t2(X) =- -qb(U)  1 + ~ rlmnHlmn(U) 
l,m,n=l 

) q- -~ Z tClmnpHlmnp(U ) + . . .  , (28) 
l,m,n,p=l 

where 4~ (u) is the K-variate standard Gaussian density function (for mean 0 and covariance 

matrix I). Hlmn (U) and Hlmnp (u) are, respectively, the third-order and fourth-order K- 

dimensional Hermite polynomials defined as 

( - -1)  3 O3q~(u) 

Hlmn(U) 
4~(u) OulOumOun 

= UlUmU n -- (~ImUn q- ~mnU l -~- ~nlUm) , 

and 

(--1)  4 O4tb (U) 

H l m n p ( U ) -  ~b(u) OUlOUmOlgnOU p 

UlUmUnUp -- (~)npUlUm -1- • • • -'1- ~mpUlUn) 

+ (~lrnt~np ~ ~ln~mp -~- ~lp~mn). 
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Figure 9. Regions corresponding to non- 
dominated solutions and dominated solu- 
tions with respect to all four responses 
based on the estimated models (example). 

The higher-order polynomials have similar extensions. 

To summarize the above, the procedure involves the following steps: 

(1) Using the experimental data for the responses, obtain regression models and estimates 

of the covariance matrices of the model coefficients using (15) and (18); 

(2) Compute the achievement function (24) over the region ,7, using the predicted responses 

and the reference point input by the user; obtain the multiobjective optimum settings 

by maximizing the achievement function over the region E; 

(3) Obtain several independent sets of models by Monte Carlo simulations using the 

least-squares estimates of the statistics in the generating distribution (25); for each 

realization, repeat step 2 to obtain a sample of points {xi }; 

(4) Apply the statistic in (28) (or (27) if adequate) to the sample optima {xi } of step 3 to 

obtain a region of the form (26). 

The feasible region F~ in the factor space is recommended to be (two or three times) larger 

than the experimental design region in order to ensure that the sample points obtained 

Table 3. The second degree regression models (example). 

Model term Regression coefficients 

Yt Y2 Y3 Y4 

int. 1.526 0.660 1.776 0.468 
xl -0.575 -0.092 -0.250 0.131 
x2 -0.524 -0.010 -0.078 0.073 
x~ -0.171 -0.096 --0.156 0.026 

x 2 -0.098 -0.058 -0.079 0.024 
XlX2 0.318 -0.070 0.010 -0.083 

R 2 0.95 0.98 0.98 0.95 
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Figure 10. Distribution of the dual-objective optimum (for y2 and Y3) for the example; the 
'+'s show the positions of the optima of the individual (estimated) responses. The region 
of significance is obtained using the statistic t] in (a) and t2 (with the first four orders of 
moments) in (b). 

via simulations lie inside U, (see Mathur & Pattipati 1995); for if a large number of such 

points lie on the boundary of E, the estimation of the moments (and cumulants) used in 

the statistic t could incur large errors. In the final analysis, all inferences can be confined 

to the experimental region. The region of significance should be interpreted as follows: 

if it includes the design centre (current settings), there is not enough evidence to suggest 

a change in the factor settings; if it does not, but is large compared to the size of the 

experimental region, or if it lies outside the experimental region, further experimentation 

is needed. 

4.1 Example 

The following example was originally discussed by Khuri & Conlon (1981) (also see 

Mathur & Pattipati 1996). In this case study of a dialyzed whey-protein-concentrate (WPC) 

gel system, the effects of two inputs: concentrations of cysteine (x]) and calcium chloride 

(x2), on four responses measuring the textural and water-holding characteristics of the 

WPC gel were studied. The four texture characteristics are: hardness (Yl), cohesiveness 

(Y2), springiness (Y3), and compressible water (Y4). The goal of the problem is to max- 

imize the measures of all these characteristics. A 13-point rotatable central-composite- 

design experiment (Montgomery 1991 b) with five centre points (for uniform precision) 

was conducted to vary the input variables. The experiment design and the measured values 

of the two responses are recorded in table 2, reproduced from Khuri & Conlon (1981). 

The second-order regression parameters (corresponding to the coded design) for the two 

responses are tabulated in table 3. 
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Figure 11. (Example, two-response case) 
(a). Attainable objective pairs (of Y2 and 
Y3) based on estimated models. The '+ '  
marks the chosen reference point. (b). Scat- 
ter of the dual-objective optima obtained 
from 1000 Monte Carlo simulations of the 
models. 

Only Y2 and Y3 considered: Considering all four responses, it turns out that the current 

operating point x = (0, 0) is efficient (nondominated). That is, no further improvement in 

any response is possible without trade-off in at least one other response. In fact, a large area 

of the region Xl 2 +x22 _ 2 maps to the nondominated set in the objective space (see figure 9; 

this efficient set is based on the predicted responses). So, for illustrative purposes, we first 

consider only two of the four responses: Y2 and Y3. The choice of  ignoring responses 

Yl and y4 in particular was made because Yl and y4 have no global maxima (based on 

their least-squares models); their stationary points are saddle points which lie in opposite 

quadrants of the variable space, far from the design region. 

For this case, the efficient set (based on the response models) in the factor space is a curve 

connecting the two individual optima. We maximize the achievement function in (24) with 

aj  chosen as 1/dj, fl = 0.01, and the estimated ideal point ~ = [0.68 1.9] I as the reference 

point. While this choice of~j  is arbitrary, and while other choices are possible, it normalizes 
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Figure 12. Distribution of the multiob- 
jective optimum (for all four responses) for 
the example; the '+'s show the positions 
of the optima of the individual (estimated) 
responses. The region of significance is 
obtained using the statistic t2 with up to 
sixth-order moments. 

the achievement function against differences in the noise powers in the two responses, and 

also happens approximately to normalize for the different absolute scales. The estimates 

of a2 and a2 are 0.0005 and 0.0025 respectively. For maximization of s, a Simplex search 

method was used (Nelder & Mead 1965). The model optimum and its 'significance' regions 

obtained using the statistics of (27) and (28) (using up to fourth-order terms) are shown 

in figure 10. The multiobjective optimum is obtained at (x~, x~) = (-0.61,  -0.16) ,  and 

the predicted response vector at this point is (Y2, Y3) = (0.67, 1.88). At the individual 

model optima, the estimated response vectors are (Y2, Y3) = (0.68, 1.84) and (Y2, Y3) = 

(0.63, 1.9). The spread of the optimum, obtained from 1000 Monte Carlo simulations 

of the models, indicates the region in which the true optimum could lie assuming the 

quadratic model assumptions to be correct. The region enclosed by the solid line is that 

obtained from the Monte Carlo significance test for level 0.01; that is, the ten most extreme 

values were excluded from the region. For this example, the statistic in (27) seems to be 

adequate. The statistic t2 is a little better in following the shape of the scatter of optima as 

it accounts for the sample skewness and kurtosis. In any case, these regions indicate that 

both responses Y2 and Y3 can be improved by lowering the variable xt to a (scaled) value 

of approximately -0 .6 ,  while not altering the variable x2 from its current value. Since we 

are considering only two responses at this point, it is possible to view the attainable set 

in the objectives space, shown in figure 1 la. The scatter of the multiobjective optima is 

shown in figure 11 b. 

All four responses considered: We now apply our method to the multiobjective optimiza- 

tion of all four responses in this example. We again choose the reference point to be the 

ideal point [2.69, 0.68, 1.9, 0.72]'. The o~j's are again chosen to be 1/6j's, and/3 = 0.01 

(62 --- 0.0399 and 642 = 0.0017). The multiobjective optimum for these parameters was 

found at (0.37, -1.21) .  The scatter of the multiobjective optima obtained from the Monte 

Carlo simulations of the models is shown in figure 12. The shape of the region obtained 
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from the Monte Carlo significance test (for level 0.01) using the statistic t2 with up to 

sixth-order terms is also shown by the solid-line curves. The scatter reveals the extent 

to which uncertainty in the four models can affect the position of the (multiobjective) 

optimum factor settings: the best factor settings could lie anywhere in a band that stretches 

across the experimental design region from the vicinity of ( -1 ,0 .5 )  to the vicinity of 

(0, - 1.4). While maximizing the achievement function in each Monte Carlo run, we have 

deliberately not constrained the maximum to lie inside the circle x 2 + x~ < 2 (see the 

remarks following the introduction of our method). If the scatter of the global maximum 

of the achievement function lies mostly outside the experimental region, there is not much 

sense in fitting a region of significance, as a better interpretation might be to conduct more 

experiments in a new region outside the current design region. For fitting a region about the 

scatter of points in this example, the shape of the scatter demands that higher-order terms 

beyond the third- and fourth-order terms be included in the Edgeworth-series statistic t2. 

Figure 12 shows the region obtained by including up to sixth-order terms. Since the current 

operating point (the design centre) also lies inside the significance region, there is not a 

strong case for changing the current settings for multiobjective improvement of all four 

responses. 

5. Multiobjective optimization w.r.t, discrete factors 

When quantitative factors are constrained to take only a finite number of levels, or when 

the factors are qualitative (or categorical), the multiobjective optimization problem 

reduces to a combinatorial optimization problem. Here, the assumption is that the kth factor 

(k = 1 . . . . .  K) can only take one of Lk levels: xk ~ {Ik,1 . . . . .  Ik,Lk}; that is, the feasible 

set E is finite (with cardinality I-IK=1 L~), and so is the set f2 of feasible objectives. Using 

experimentation, a prediction model is obtained at all factor-level combinations. The solu- 

tion of the discrete (multiobjective) optimization problem (DMOP) requires an exhaustive 

search in a space of cardinality l-] g L k (which we will refer to as the size of the DMOP). 
k = l  

However, under the frequently occurring conditions of separability of  factor effects, the 

problem can be decomposed into problems involving much smaller search spaces. 

Let the mean Oj of the j th  response ( j  = 1 . . . . .  M) be related to the K factors by a 

relationship of the form 
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~Tj(x) -~ glJ)(xl) + g~J) (x2) + ' "  + g~J) (xK). 

Then, it is clear that the set of x~'s, k = 1 . . . . .  K, which optimize the respective g~J) 

would also optimize Oj. This approach can be extended in a straightforward way to the 

multiobjective optimization of all M responses, as shown by the following theorem (Song 

et al 1995). 

Theorem 1. Let the sets Bk C 7-~ M, k = 1 . . . . .  K and the set C, defined as 

C = {r/It / = gl + g2 + "'" + gg,  gk ~ B~}, 

have the same domination cone. Then, if gk is dominated in Bk for  at least one k, k = 

1 . . . . .  K, the point ('1 = P,1 + " "  + gI( is dominated in C. 

Proof  1. Assume that D is the domination cone, and ¢1 = g z + " "  +gK is a nondominated 

point in C. Then 

(¢/+ D) fq C = 0. (29) 

Suppose gk is dominated for some k. Then there exists a gk 6 Bk such that gk c gk + D. 

Since ( / =  (gl + " "  + (gK, we have 

=g l  +" 'q-g ,k  + ' "  +gK C gl + " "  +gk + ' ' ' + g K  + D. (30) 

Thus ~) E C and ¢/~ ~/+ D, which contradicts the assumption that ¢/is nondominated. 

The applicability of the above theorem to the discrete factors case can greatly reduce 

the complexity of the optimization problem, for it enables decomposition of the multiob- 

jective optmization problem into two stages: the first stage consists of K multiobjective 

optimization problems of sizes L l, L2 . . . . .  LK: (multiobjective) optimize ~ with respect 

to xk. The nondominated sets Bk obtained from the first stage can be used to construct the 

search space C for the second stage whose cardinality can be much smaller than 1-lK=l Lk. 

For example, if an experiment involves six three-level factors, the search space contains 

36 --- 729 combinations. If the low-level (first-stage) optimization problems (each of  size 

3) reduce the size of the nondominated sets even by one for each factor, the size of the 

search space for the second stage would be reduced to 26 = 64. Thus, the cost of the high- 

level optimization would be reduced ten-fold. If the effects of some factors do interact, 

the decomposition can still be done with respect to those factors that do not interact, and 

some reduction in complexity attained. 

Search for  the nondominated set: An explicit enumeration technique called the tech- 

nique o f  dominate approximations (TDA) (Majchrzak 1989) can be used to obtain the 

nondominated set from a discrete space f2. The technique can be illustrated using fig- 

ure 13. In iteration one, the method maximizes the performance measure ~1 to obtain the 

point d, and then rejects all points dominated by d to generate a dominated approximation 

~21 = {a, b, e, d, x, y, z}; in the second iteration, the method maximizes component 712 

(excluding d) to obtain a, and then rejects all points dominated by a to generate another 
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Table 4. Orthogonal design (Ll8) and summarized data. 

Factors Responses 

1 2 3 4 5 6 7 L W F S 

1 1 1 1 1 1 1 1 - 8 . 6  - 1 2 . 2  - 2 . 2  1.0 
2 1 1 2 2 2 2 2 - 10.3 -9.2 -5.7 1.0 
3 1 1 3 3 3 3 3 -15.9 -14.0 -8.5 1.33 
4 1 2 1 1 2 2 3 -2.2 -7.2 -1.1 1.0 
5 1 2 2 2 3 3 1 -13.0 -13.6 -7.4 1.0 
6 1 2 3 3 1 1 2 -10.2 -17.5 -14.7 1.33 
7 1 3 1 2 1 3 2 -13.3 -16.3 -7.7 1.5 
8 1 3 2 3 2 1 3 -14.3 -16.3 -10.4 1.0 
9 1 3 3 1 3 2 1 -16.9 -18.2 -14.2 2.33 

10 2 1 1 3 3 2 2 -12.0 -11.7 -2.5 1.0 
11 2 1 2 1 1 3 3 -15.8 -18.2 -11.1 1.0 
12 2 1 3 2 2 1 1 -17.1 -8.4 -12.2 1.67 
13 2 2 1 2 3 1 3 -18.1 -13.7 -9.7 3.0 
14 2 2 2 3 1 2 1 -5.6 -15.1 -7.8 1.33 
15 2 2 3 1 2 3 2 -16.1 -15.1 -11.8 3.0 
16 2 3 1 3 2 3 1 -11.4 -16.7 -12.5 1.83 
17 2 3 2 1 3 1 2 -12.1 -16.3 -11.0 1.33 
18 2 3 3 2 1 2 3 -6.3 -20.9 -12.5 2.0 

Factors 1: Injection pressure; 2: Injection speed; 3: Mould temperature; 4: Melt temperature; 5: Holding 
pressure; 6: Cool time; 7: Hold time 
Responses L: Length SNR; W: Width SNR; F: Flatness SNR; S: Surface quality 

dominated approximation ~2 = {a, b, c, d, z}. The process continues until all dominated 

points are eliminated. 

The above arguments are given with respect to perfectly known metric functions r/(x). 

When experimentation is used, prediction models for these relationships are obtained and 

used in place of  the true relationships. To identify the significant factor-effects, an analysis 

of  variance (ANOVA) is used. With the use of  orthogonal arrays, an analysis of  means 

may also be used for easy computation of  factor effects. The problem of  dealing with 

uncertainty in the models in the discrete-factors case would require a different formulation 

from that for the continuous-factors case of  the previous section. In the discrete-factors 

case, there would obviously be no region o f  significance about the estimated multiobjective 

optimum design, but rather a set of  probable designs with an associated discrete probability 

distribution. This problem will be addressed in future research. 

5.1 Example 

An experiment was conducted (Greenall 1989), for the optimization of  a manufacturing 

process for injection-moulded plastic housings. The experiment involved seven factors: 

injection pressure, injection speed, mould temperature, melt temperature, holding pressure, 

cool time, and hold time; the first factor was studied at two levels, and the rest of  the factors 

at three levels each. Four response variables were considered: overall housing length (L), 

overall housing width (W), flatness (F) ,  and surface quality (S). An L18 (2137) orthogonal 

array was used. Table 4 shows the orthogonal design and the summarized data for the 

four responses; the first three responses have been summarized into signal-to-noise ratios, 
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Table 5. Results of low-level optimization. 

Mean effects 

Factors Levels L W F S 

Injection pressure 1 - 11.63 - 13.83 -7.99 1.28 
2 -12.7 -15.1 -10.1 1.80 

Injection speed 1 - 13.28 - 12.28 -7.03 1.17 
2 - 10.87 - 13.70 -8.75 1.78 

Mould temperature 1 - 10.93 - 12.97 -5.95 1.56 
3 - 13.75 - 15.68 - 12.32 1.94 

Melt temperature 1 - 11.95 - 14.53 -8.57 1.61 
2 - 13.02 - 13.68 -9.20 1.70 
3 - 11.57 - 15.22 -9.40 1.30 

Hold pressure 1 -9.97 - 16.70 -9.33 1.36 
2 -11.90 -12.15 -8.95 1.58 
3 -14.67 -14.58 -8.88 1.67 

Cool time 1 - 13.40 - 14.07 - 10.03 1.56 
2 -8.88 - 13.72 -7.30 1.44 
3 - 14.25 - 15.65 -9.83 1.61 

Hold time 1 - 12.10 -14.03 -9.38 1.53 
2 - 12.33 - 14.35 -8.90 1.53 
3 -12.10 -15.05 -8.88 1.56 

while surface quality is an average o f  three independent  assessments  on a scale o f  1 to 3 

(see Greenall  1989, for the comple te  data and analysis). 

The  A N O V A  carried out by Greenall  (1989) on the signal- to-noise ratios showed that 

the additivity assumptions  are fairly well satisfied; so, the two-step approach  presented 

above can be applied. 

The mean  responses  can be computed  using an analysis o f  means  to obtain a predict ion 

equation o f  the fo rm (11). F rom table 4, it can be seen that a total o f  2 × 36 = 1458 

combinat ions  (and, therefore, 1458 per formance  predictions) o f  different factor-levels are 

possible.  A low-level opt imizat ion eliminates domina ted  points for  each factor based on 

the mean  effects (the results are shown in table 5). F rom table 5, it can be seen that the 

number  o f  combinat ions  f rom the remaining points is 23 × 34 = 648. The high-level 

opt imizat ion per formed on the set o f  648 reduces combinat ions ,  based on the predict ions 

o f  pe r formance  measures  using (11), resulted in 135 nondomina ted  solutions. The final 

choice  o f  one operat ing condi t ion should be made  by the design engineer. In practice, 

the design engineer  can use the reference point  approach  and h i s /he r  preferences  to find 

the mos t  preferred solution f rom this nondomina ted  set in an interactive manner.  Let  r be 

a reference point  specified by the user (decision-maker) .  A simple strategy would  be to 

find the closest  nondomina ted  point  q, f rom the already determined set o f  nondomina ted  

solutions (denoted PN C f2), to r such that q = arg{minlq - rl ,  q ~ PN}. 
For illustrative purposes,  each of  the seven r ecommended  designs obtained (Greenall  

1989) was chosen  as a reference point  and the nondomina ted  solution closest  to it obtained. 

The results are shown in table 6. refi (i = 1 . . . . .  7) in table 6 denotes  the i th solution 

in Greenall  (1989), and so l / deno te s  the Pareto-opt imal  solution found  by our  a lgor i thm 
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Table 6. Final results of optimization. 

Predicted performance measures 

L W F S Levels 

refl -8.91 -6.12 -0.99 1.03 1 1 1 2 2 2 2 
soil -8.91 --6.12 --0.99 1.03 1 1 1 2 2 2 2 

ref2 - 11.7 --8.83 -7.36 1.42 1 1 3 2 2 2 2* 
sol2 -10.8 -7.57 -5.92 1.75 1 2 1 2 2 1 1 

ref3 -10.0 -7.40 --3.12 1.55 2 1 1 2 2 2 2 
sol3 - 10.0 -7.40 --3.12 1.55 2 1 1 2 2 2 2 

ref4 --12.8 -10.1 --9.49 1.94 2 1 3 2 2 2 2* 
sol,, --11.8 -8.86 --8.06 2.27 2 2 1 2 2 1 1 

ref5 -9.83 -7.93 --3.94 0.59 1 1 2 2 2 2 2* 
sol5 -9.77 -7.08 --3.61 1.54 2 1 1 2 2 2 1 

ref6 -10.9 --9.22 --6.07 1.10 2 1 2 2 2 2 2* 
sol6 --10.8 --7.57 --5.92 1.75 1 2 1 2 2 1 1 

ref7 -- 10.4 -- 11.5 -- 11.2 2.55 2 2 3 2 2 2 2 
sol7 --10.4 --11.5 --11.2 2.55 2 2 3 2 2 2 2 

*Dominated solutions in Greenall (1989). 

using refi as the reference point. It can be seen that four of  the original solutions, marked 

b y . ,  are dominated by solutions found by our method. In other words, four of  the original 

solutions in Greenall (1989) are not Pareto-optimal. 

It is clear that an ad hoc approach, such as that used by Greenall (1989), can run into 

difficulties, if the search space of  the problem is very large. The two-step approach, on 

the other hand, successfully finds all 135 nondominated solutions and provides a sim- 

ple method for the engineer to specify preferences. The reference point itself may or 

may not be attainable; one can enter any point that reflects one's preferences, and the 

algorithm would always find the 'closest'  nondominated point. In the case when little 

knowledge or preference information is available for the problem (as would happen dur- 

ing the initial stage of  design and optimization), one can use the ideal point as the reference 

point. 

6. Summary 

This article has reviewed the use of  experimentation to determine the best operating points 

for a manufacturing process, or the best design for a product's parameters, so as to optimize 

one or more quality criteria. After illustrating the steps in robust design used to lower 

variability, it specifically examined the optimization problems arising when several models 

for quality characteristics are estimated from experimental data. In the case of  continuous 

factors, a new approach was discussed for dealing with the uncertainty associated with 

the use of  response surface models for the quality metrics. This approach prevents faulty 

inferences from the optimization step and gives the designer or process engineer a means for 

determining whether to conduct further experiments or to accept the optimization results. 

In the case of  discrete factors, an efficient search technique for the multiobjective optimal 
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design was presented. The problem of developing a scheme for dealing with uncertainty 

in the discrete-factors case is a potential subject for future research. 
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