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Single-atom-alloy catalysts (SAACs) have recently become a frontier in catalysis research.

Simultaneous optimization of reactants’ facile dissociation and a balanced strength of

intermediates’ binding make them highly efficient catalysts for several industrially important

reactions. However, discovery of new SAACs is hindered by lack of fast yet reliable prediction

of catalytic properties of the large number of candidates. We address this problem by

applying a compressed-sensing data-analytics approach parameterized with density-

functional inputs. Besides consistently predicting efficiency of the experimentally studied

SAACs, we identify more than 200 yet unreported promising candidates. Some of these

candidates are more stable and efficient than the reported ones. We have also introduced a

novel approach to a qualitative analysis of complex symbolic regression models based on the

data-mining method subgroup discovery. Our study demonstrates the importance of data

analytics for avoiding bias in catalysis design, and provides a recipe for finding best SAACs

for various applications.

https://doi.org/10.1038/s41467-021-22048-9 OPEN

1Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia. 2Materials Genome

Institute, Shanghai University, Shanghai, P.R. China. 3Technische Universität Berlin, BasCat−UniCat BASF JointLab, Berlin, Germany. 4 Shanghai Advanced

Research Institute, Chinese Academy of Sciences, Shanghai, P.R. China. 5These authors contributed equally: Zhong-Kang Han, Debalaya Sarker, Runhai

Ouyang. ✉email: alex.mazheika@gmail.com; gaoyi@zjlab.org.cn; S.Levchenko@skoltech.ru

NATURE COMMUNICATIONS |         (2021) 12:1833 | https://doi.org/10.1038/s41467-021-22048-9 |www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22048-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22048-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22048-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22048-9&domain=pdf
http://orcid.org/0000-0002-4705-1804
http://orcid.org/0000-0002-4705-1804
http://orcid.org/0000-0002-4705-1804
http://orcid.org/0000-0002-4705-1804
http://orcid.org/0000-0002-4705-1804
http://orcid.org/0000-0001-6015-5694
http://orcid.org/0000-0001-6015-5694
http://orcid.org/0000-0001-6015-5694
http://orcid.org/0000-0001-6015-5694
http://orcid.org/0000-0001-6015-5694
http://orcid.org/0000-0001-5813-8473
http://orcid.org/0000-0001-5813-8473
http://orcid.org/0000-0001-5813-8473
http://orcid.org/0000-0001-5813-8473
http://orcid.org/0000-0001-5813-8473
mailto:alex.mazheika@gmail.com
mailto:gaoyi@zjlab.org.cn
mailto:S.Levchenko@skoltech.ru
www.nature.com/naturecommunications
www.nature.com/naturecommunications


R
ecently, single-atom dispersion has been shown to dra-
matically reduce the usage of rare and expensive metals in
heterogeneous catalysis, at the same time providing unique

possibilities for tuning catalytic properties1,2. The pioneering
work by Sykes and co-workers2 has demonstrated that highly
dilute bimetallic alloys, where single atoms of Pt-group are dis-
persed on the surface of an inert metal host, are highly efficient
and selective in numerous catalytic reactions. These alloy catalysts
are now extensively used in the hydrogenation-related reactions
such as hydrogenation of CO2, water–gas shift reaction, hydrogen
separation, and many others3–5. The outstanding performance of
SAACs is attributed to a balance between efficiency of H2 dis-
sociation and binding of H at the surface of metallic alloys2,6,7.

Using desorption measurements in combination with high-
resolution scanning tunneling microscopy, Kyriakou et al. have
shown that isolated Pd atoms on a Cu surface can substantially
reduce the energy barrier for both hydrogen uptake and sub-
sequent desorption from the Cu metal surface2. Lucci and co-
workers have observed that isolated Pt atoms on the Cu(111)
surface exhibit stable activity and 100% selectivity for the
hydrogenation of butadiene to butenes8. Liu et al. have investi-
gated the fundamentals of CO adsorption on Pt/Cu SAAC using a
variety of surface science and catalysis techniques. They have
found that CO binds more weakly to single Pt atoms in Cu(111),
compared to larger Pt ensembles or monometallic Pt. Their
results demonstrate that SAACs offer a new approach to design
CO-tolerant materials for industrial applications9. To date, Pd/
Cu10–12, Pt/Cu7–9,13–15, Pd/Ag12,16, Pd/Au12, Pt/Au17, Pt/Ni18,
Au/Ru19, and Ni/Zn20 SAACs have been synthesized and found
to be active and selective towards different hydrogenation reac-
tions. However, the family of experimentally synthesized SAACs
for hydrogenation remains small and comparisons of their cata-
lytic properties are scarce.

Conventional approaches to designing single-atom hetero-
geneous catalysts for different industrially relevant hydrogenation
reactions mainly rely on trial-and-error methods. However,
challenges in synthesis and in situ experimental characterization
of SAACs impose limitations on these approaches. With advances
in first-principles methods and computational resources, theore-
tical modeling opens new opportunities for rational catalyst
design6,21–48. A general simple yet powerful approach is the
creation of a large database with first-principles based inputs,
followed by intelligent interrogation of the database in search of
materials with the desired properties35,48. Significant efforts have
been made in developing reliable descriptor-based models fol-
lowing the above general approach6,21–35,48. In catalysis, a
descriptor is a parameter (a feature) of the catalytic material that
is easy to evaluate and is correlated with a complex target
property (e.g., activation energy or turnover frequency of a cat-
alytic reaction). A notable amount of research has been devoted
to searching for and using descriptors with a simple (near-linear)
relation to target properties22–30. For example, the linear rela-
tionship between the reaction energies and the activation energies
is known as the Brønsted–Evans–Polanyi relationship (BEP) in
heterogeneous catalysis29,30,45–47. Also, the linear correlation
between d-band center of a clean transition-metal surface and
adsorption energies of molecules on that surface have been stu-
died in great detail and widely applied22–24,36,44. In catalysis,
near-linear correlations between adsorption energies of different
adsorbates are referred to as scaling relations26,28,37. The advan-
tages of such correlations are their simplicity and usually clear
physical foundations. However, they are not exact, and there is an
increasing number of studies focused on overcoming limitations
imposed by the corresponding approximations6,31–34,38–41,48. The
nonlinear and intricate relationship between the catalysts’ prop-
erties and surface reactions at realistic conditions42,43 has held

back the reliable description of catalytic properties. Note that,
although the stability of SAACs is of no less significance in
designing a potential catalyst than their catalytic performance, it
hasn’t received the same level of attention.

In this work, combining first-principles calculations and
compressed-sensing data-analytics methodology, we address the
issues that inhibit the wider use of SAAC in different industrially
important reactions. By identifying descriptors based only on
properties of the host surfaces and guest single atoms, we predict
the binding energies of H (BEH), the dissociation energy barriers
of H2 molecule (Eb), the segregation energies (SE) of the single
guest atom at different transition metal surfaces, and the segre-
gation energies in the presence of adsorbed hydrogen (SEH). The
state-of-the-art compressed-sensing based approach employed
here for identifying the key descriptive parameters is the recently
developed SISSO (sure independence screening and sparsifying
operator)49. SISSO enables us to identify the best low-
dimensional descriptor in an immensity of offered candidates.
The computational time required for our models to evaluate the
catalytic properties of a SAAC is reduced by at least a factor of
one thousand compared to first-principles calculations, which
enables high-throughput screening of a huge number of SAAC
systems.

Results and discussion
The BEH for more than three hundred SAACs are calculated
within the framework of DFT with RPBE exchange-correlation
functional. This large dataset consists of BEH values at different
low-index surface facets including fcc(111), fcc(110), fcc(100),
hcp(0001), and bcc(110) and three stepped surface facets
including fcc(211), fcc(310), and bcc(210) of SAACs with twelve
transition-metal hosts (Cu, Zn, Cr, Pd, Pt, Rh, Ru, Cd, Ag, Ti, Nb,
and Ta). On each TM host surface, one of the surface atoms is
substituted by a guest atom to construct the SAACs. BEH for
pristine surfaces (where the guest atom is the same with the host
metal) are also included. H atom is placed at different non-
equivalent high-symmetry sites close to the guest atom (Supple-
mentary Fig. 1), and the BEH for the most favorable site is
included in the data set. Complete information on adsorption
sites and the corresponding BEH is given in Supplementary
Data 1. The BEH are further validated by a comparison with
previous calculations6,21.

To better understand the variation in BEH for different guest
atoms, we first investigate correlation between BEH and the d-
band center of the d orbitals that are projected to the single guest
atom for the alloyed systems. We find that this way of calculating
d-band center provides better correlation with other properties
than d-band centers for the d orbitals projected on (i) the single
guest atom plus it’s 1st nearest neighbor shell or (ii) the whole
slab50. The correlation is shown in Fig. 1a (Supplementary Fig. 2)
for different SAACs on Ag(110) host surface [Pt(111) host sur-
face]. According to the d-band center theory21,23,36,44, the closer
the d-band center is to the Fermi level, the stronger the BEH
should be. However, it is evident from Fig. 1a (Supplementary
Fig. 2) that the expected linear correlation, as predicted by the d-
band model, is broken for SAACs for H adsorption. This is due to
the small size of the atomic H orbitals, leading to a relatively weak
coupling between H s and the TM d-orbitals21. Furthermore, we
check the validity of the BEP relations between the Eb and the H2

dissociation reaction energy for SAACs (Fig. 1b), which is com-
monly used to extract kinetic data for a reaction on the basis of
the adsorption energies of the reactants and products29,45–47. As
shown in Fig. 1b, the highlighted SAACs inside the blue dotted
circle significantly reduce Eb while reducing reaction energy only
moderately. As a result, SAACs provide small reaction energy and
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low activation energy barrier, which leads to breaking BEP rela-
tions and thus optimized catalytic performance. The BEP rela-
tions are also found to be broken for other reactions catalyzed by
SAACs6.

Thus, the standard simple correlations (from d-band center
theory and the BEP relations) fail for H adsorption on SAACs.
Moreover, the calculation of the d-band center for each SAAC is
highly computationally demanding, considering the very large
number of candidates. These facts emphasize the necessity to find
new accurate, but low-cost descriptors for computational
screening of SAACs. In the SISSO method, a huge pool of more
than 10 billion candidate features is first constructed iteratively by
combining 19 low-cost primary features listed in Table 1 using a
set of mathematical operators. A compressed-sensing based
procedure is used to select one or more most relevant candidate
features and construct a linear model of the target property (see
Supplementary Methods for details on the SISSO procedure).

Note that the three primary surface features are properties of the
pure host surfaces (elemental metal systems). This is undoubtedly
much more efficient than obtaining the properties of SAACs
(alloyed metal systems). In the latter case, due to the interaction
between the single guest atom and its images, a large supercell of
the whole periodic system containing guest atom and host surface
needs to be computed. On the contrary, only smallest unit cell is
needed to compute the pristine surface features.

To test the predictive power of obtained models, we employ 10-
fold cross validation (CV10). The dataset is first split into ten
subsets, and the descriptor identification along with the model
training is performed using nine subsets. Then the error in pre-
dicting properties of the systems in the remaining subset is
evaluated with the obtained model51–53. The CV10 error is
defined as the average value of the test errors obtained for each of
the ten subsets. In SISSO over-fitting may occur with increasing
dimensionality of the descriptor (i.e., the number of complex
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Fig. 1 Correlation between simple descriptors and target properties. Correlation between a H-atom binding energy BEH and the d-band center and b the

H2 dissociation energy barrier Eb and the H2 dissociation reaction energy for Ag(110) based SAACs. Only most stable adsorption sites are included (the

hollow site for all systems on this plot). The SAACs inside the blue dotted circle in b significantly reduce Eb while reducing reaction energy only moderately.

Table 1 Primary features used for the descriptor construction.

System Class Name Abbreviation

Host Atomic Energy of the highest-occupied Kohn-Sham level H*

Energy of the lowest-unoccupied Kohn-Sham level L*

Electron affinity (Atomic radius) EA*(R*)a

Ionization potential IP*

Binding energy of H with single host metal atom EH*(EB*)a

(Binding energy of host metal dimers)

Binding distance of H with single host metal atom dH*(dd*)a

(Binding distance of host metal dimer)

Bulk Cohesive energy EC*

d-band center DC*

Surfaceb d-band center of the top surface layer DT*

d-band center of the subsurface layer DS*

Slab Fermi level F*

Guest atom Atomic Energy of the highest-occupied Kohn-Sham level H

Energy of the lowest-unoccupied Kohn-Sham level L

Electron affinity (Atomic radius) EA(R)a

Ionization potential IP

Binding energy of H with single guest metal atom EH(EB)a

(Binding energy of guest metal dimers)

Binding distance of H with single guest metal atom dH(dd)a

(Binding distance of guest metal dimers)

Bulk Cohesive energy EC

d-band center DC

aThe feature in parentheses is used for the model of segregation energy (SE), while the feature outside parentheses is used for the models of H binding energy (BEH) and H2 dissociation energy barrier

(Eb).
bThe host metal-based features are marked by *. The surface-based primary features were calculated using the slab unit cell consisting of one atom per atomic layer.
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features that are used in construction of the linear model)49. The
descriptor dimension at which the CV10 error starts increasing
identifies the optimal dimensionality of the descriptor (details of
the validation approach can be found in Supplementary Meth-
ods). For the optimal dimensionality, the same set of primary
features is found during CV10 in 9, 8, and 8 cases for the SISSO
models of BEH, Eb, and SE, respectively. The root-mean-square
errors (RMSE), together with the CV10 errors of the SISSO
models for BEH, Eb, and SE are displayed in Fig. 2a. The obtained
optimal descriptor dimensionalities for BEH, Eb, and SE of the
SAACs are 5, 6, and 6, respectively. Distribution of errors for the
best models versus RPBE results is displayed in Fig. 2b–d. The
RMSE and maximum absolute error (MAE) of the models are

also shown. The error distributions for all the lower-dimensional
models relative to the best ones are displayed in Supplementary
Figs. 4–6.

From the Table 2 one can see that the d-band center features
DC, DC*, DT, DT*, DS, and DS* appear in every dimension of
the descriptors for BEH and Eb, consistent with the well-
established importance of d-band center for adsorption at
transition-metal surfaces21,23,36,44. The cohesive energies of guest
(EC) and host (EC*) bulk metals are selected in each dimension
of the descriptor for SE. This is due to the fact that the segregation
is driven by the imbalance of binding energy between host and
guest–host atoms. Interestingly, most of the descriptor compo-
nents include only simple mathematical operators (+, −, ·, /, ||),

(a) (b)

(c) (d)
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Fig. 2 SISSO errors and their distribution for different target properties. a RMSE and the averaged RMSE of the 10 fold cross-validation. b–d Distribution

of errors for the best models versus RPBE results for BEH (b), Eb (c), and SE (d).

Table 2 The identified descriptors and the coefficients and correlations in corresponding SISSO models for BEH, Eb, and SE.

Property dm Descriptor Coefficient Correlation

BEH d51 (EA*+ 2 F*− EC) ∙DT* ∙ EH*/(EC*+ F*) 0.12653E+00 0.8964

d52

ffiffiffiffiffiffiffi

DC
3
p

∙H* ∙DT* ∙ (|EA*− EH*| − |EC− EC*|) −0.20440E−02 0.5891

d53 |EH*− L*− |EH− F*|| / (DC2+ EC ∙ EC*) −0.50891E+00 0.4850

d54 |EH− F*− EH* | −| EC*− EC− |DT*− F*|| 0.34705E−01 0.3849

d55 L ∙ EC ∙ (EA*+DS*− |H− EH| / |L*− EH*| −0.48772E−04 0.3862

Eb d61 ((IP*− L)− |EC*−DT* |)/ |EC/DC− L*/IP*| −0.87339E−01 0.7643

d62 (EA*+DC*+ |DC−DT*|)/(EA*+ EH*+ |L*− F*|) −0.19577E−01 0.5726

d63 (DC+ EH*) ∙ (EC*− F*) ∙ (|L− EC | − |EC− EH|) −0.13173E−01 0.4568

d64 (DT*− EH) ∙DC ∙ (H/EC+ EA*/L*)/EC* −0.19172E−01 0.4414

d65 eEC∙EH ∙DS*/((L*−DS*)+ |H*− EC*|) 0.33549E−01 0.3768

d66 DC2
∙ (EC*− F*)/(DT*− F*− EA+ EC) −0.14362E−02 0.3643

SE d61 (EC+ IP+ |F*−DT* |) / (IP*/R+H*/dd*) −0.82665E+00 0.8969

d62 |DC− EB*| ∙ (L−DC− EC)/EB2 0.30742E+00 0.5346

d63 ||EC*− L*| + |DC−DS*| − |DC− F*|− |EC− F*|| 0.11317E+00 0.5386

d64 |H− IP− L+ IP*| / ((DC/EC)+ (EC/H)) 0.17455E+00 0.3913

d65 (F*− EC) ∙ (L*−DT*− IP)/(F*− EB*) −0.51761E−02 0.3982

d66 EC* ∙DC ∙ (EB*− L) ∙ (L+ L*− EC−DS*) −0.80032E−03 0.3379
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indicating that the primary features already capture most of the
complexity of the target properties.

We employ the identified computationally cheap SISSO models
to perform high-throughput screening of SAACs to find the best
candidates for the hydrogenation reactions. The results for BEH,
Eb, and SEH (the segregation energy when surface H adatom is
present, where the H adatom induced segregation energy change
is included, see the “Methods” part for details) of the flat surfaces
are displayed in Fig. 3a–c (see Supplementary Fig. 7 for the results
for the stepped surfaces, the values of BEH, Eb, and SEH for all the
SAACs are given in Supplementary Data 1).

The choice of the screening criteria for the three properties
BEH, Eb, and SEH, which are related to the activity and stability of

SAACs, plays the central role in the screening processes and
determines the candidates to be chosen. Previous work demon-
strates that for the high performance in hydrogenation reactions,
SAACs should exhibit weaker binding of H and lower H2 dis-
sociation energy barrier simultaneously2. However, different cri-
teria are applicable for different reaction conditions. For example,
at low temperatures SAACs can maintain their stability for a
longer time. At higher temperatures H atoms will desorb from the
surfaces and larger energy barriers can be overcome, resulting in a
requirement for stronger binding and higher upper limit of the
dissociation barrier Eb. Keeping this variability in mind, we
consider temperature-dependent and pressure-dependent selec-
tion criteria (see “Methods” section below for details on the
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selection criteria). We have screened more than five thousand
SAAC candidates (including about the same number of flat and
stepped surfaces; the values of the primary features for all the
candidates can be found in the Supplementary Data 2) at both
low temperature (200 K) and high temperature (700 K) at partial
H2 pressure p= 1 atm. We find 160 flat-surface SAACs (Fig. 3d,
in green) and 134 stepped-surface SAACs (Supplementary
Fig. 7d, in green) that are both active and stable at a low tem-
perature (200 K). At a higher temperature (700 K), 102 flat-
surface SAACs (Fig. 3d, in blue and green) and 136 stepped-
surface SAACs (Supplementary Fig. 7d, in blue and green) are
classified as promising SAACs for hydrogenation reactions.
Moreover, we have identified the SAACs that are promising in a
wide range of temperatures (green squares in Fig. 3d for flat
surfaces and Supplementary Fig. 7d for stepped surfaces).

Note that, without the stability selection criterion based on
SEH, all experimentally established SAACs (Pd/Cu, Pt/Cu, Pd/Ag,
Pd/Au, Pt/Au, Pt/Ni, Au/Ru, and Ni/Zn) are predicted to be good
catalysts in the temperature range of 200 K < T < 700 K, which is
further confirmed by DFT calculations. However, some of these
systems (Pd/Ag and Pd/Au) are experimentally shown to have
low stability12,16. Thus, inclusion of the stability-related property
SEH is of immense importance for a reliable prediction of catalytic
performance, as is confirmed by our results. We note that a
machine-learning study on stability of single-atom metal alloys
has recently been reported54. However, our analysis takes into
account effects of adsorbates on the segregation energy, which has
not been considered previously. For example, the SE for Pd/Ag
(110) and Pt/Ag(110) systems are 0.33 eV and 0.46 eV, respec-
tively, implying that the Pd and Pt impurities tend to segregate
into the bulk of the Ag(110) systems. However, SEH for Pd/Ag
(110) and Pt/Ag(110) systems are −0.10 eV and −0.21 eV,
respectively, suggesting Pd and Pt impurities will segregate to the
surface in the presence of H adatom. These results are also
consistent with the experimental observations that the efficiency
of Pd/Ag single-atom catalysts towards the selective hydrogena-
tion of acetylene to ethylene was highly improved with the pre-
treatment of the samples under H2 conditions16.

We define an activity (or efficiency) indicator involving both
the free energy of H adsorption (ΔG) and the energy barrier (Eb)
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔG2 þ E2
b

p

to construct an activity-stability map. As shown in
Fig. 4, some of the new discovered candidates (bottom-left corner
of activity-stability map) are predicted to have both higher sta-
bility and efficiency than the reported ones, making them opti-
mized for practical applications (see Supplementary Fig. 8 for the
results for the stepped surfaces). As expected, stability and activity
are inversely related, which can be seen from the negative slope of
the general trend in Supplementary Fig. 8 (showing selected
materials) and Supplementary Fig. 9 (showing all explored
materials), as well as a cut-off in population of the lower left-hand
corner of these plots. Nevertheless, we have found several mate-
rials that are predicted to be better SAACs than the so-far
reported ones. Considering stability, activity, abundance, and
health/safety, two discovered best candidates Mn/Ag(111) and Pt/
Zn(0001) are highlighted in Fig. 4. The aggregation energies for
Mn/Ag(111), Pt/Zn(0001), and the experimentally established
SAACs are also tested and displayed in Supplementary Table 9.

Although the SISSO models are analytic formulas, the corre-
sponding descriptors are complex, reflecting the complexity of the
relationship between the primary features and the target properties.
While potentially interpretable, the models do not provide a
straightforward way of evaluating relative importance of different
features in actuating desirable changes in target properties. To
facilitate physical understanding of the actuating mechanisms, we
apply the subgroup discovery (SGD) approach55–60. SGD finds local

patterns in the data that maximize a quality function. The patterns
are described as an intersection (a selector) of simple inequalities
involving provided features, e.g., (feature1 < a1) AND (feature2 >
a2) AND… . The quality function is typically chosen such that it is
maximized by subgroups balancing the number of data points in
the subgroup, deviation of the median of the target property for the
subgroup from the median for the whole data set, and the width of
the target property distribution within the subgroup60.

Here, we apply SGD in a novel context, namely as an analysis
tool for symbolic regression models, including SISSO. The pri-
mary features that enter the complex SISSO descriptors of a given
target property are used as features for SGD (see Table 2). The
data set includes all 5200 materials and surfaces used in the high-
throughput screening. The target properties are evaluated with
the obtained SISSO models. Five target properties are considered:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔG2 þ E2
b

p

, SE, SEH, Eb, |ΔG|, and BEH. Since we are interested
mainly in catalysts that are active at normal conditions, ΔG is
calculated at T = 300 K. Our goal is to find selectors that mini-
mize these properties within the subgroup. Such selectors describe
actuating mechanisms for minimization of a given target prop-
erty. For SE, the following best selector is found: (EC* ≤−3.85
eV) AND (−3.36 eV < EC ≤−0.01 eV) AND (IP ≥ 7.45 eV). The
corresponding subgroup contains 738 samples (14% of the whole
population), and the distribution of SE within the subgroup is
shown in Supplementary Fig. 10. Qualitatively, the first two
conditions imply that the cohesive energy of the host material is
larger in absolute value than the cohesive energy of the guest
material. Physically this means that bonding between host atoms
is preferred over bonding between guest atoms and therefore over
intermediate host–guest binding. This leads to the tendency of
maximizing the number of host–host bonds by pushing guest
atom to the surface. We note that this stabilization mechanism
has been already discussed in literature61, and here we confirm it
by data analysis. In addition, we find that stability of SAACs
requires that the ionization potential of the guest atom is high.
This can be explained by the fact that lower IP results in a more
pronounced delocalization of the s valence electrons of the guest
atom, and partial charge transfer to the surrounding host atoms.
The charge transfer favors larger number of neighbors due to
increased Madelung potential, and therefore destabilizes surface
position of the guest atom.

Fig. 4 Stability vs. activity map for flat SAACs surfaces at T = 298 K and

p = 1 atm. The SEH on y-axis represents stability and activity parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔG2 þ E2b

q

is shown on x-axis. Experimentally established SAACs are

denoted with red solid spheres and the blue open circles represent new

predicted candidates.
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We calculate SEH using SISSO models for SE and BEH [see Eq.
(3) in the “Methods” section]. Therefore, SGD for SEH is per-
formed using primary features present in the descriptors of both
SE and BEH. The top subgroup contains features related to
binding of H to the host and guest metal atoms, e.g., (EB* <
−5.75 eV) AND (EH* ≤−2.10 eV) AND (EH ≥−2.88 eV) AND
(IP* ≤ 7.94 eV) AND (IP > 8.52 eV) AND (R ≥ 1.29 Å). However,
the distribution of SE for this subgroup is very similar to the
distribution of SEH, which means that the stability of guest atoms
at the surface is weakly affected by H adsorption when guest
atoms are already very stable at the surface. The important effect
of H adsorption is revealed when we find subgroups minimizing
directly SEH—SE (in this case only primary features that appear
in the SISSO descriptor of BEH are considered for SGD analysis).
The top subgroup we found contains 72 samples (1.4% of the
whole population) and is described by several degenerate selec-
tors, in particular (−2.35 eV ≤ EH* ≤−2.32 eV) AND (EC* >
−2.73 eV) AND (EC <−5.98 eV) AND (H ≥−5.12 eV). This is a
very interesting and intuitive result. Distributions of SEH and SE
for this subgroup are shown in Supplementary Fig. 11. The SE for
all materials in the subgroup is above 0 eV. However, SEH is much
closer to 0 eV, and is below 0 eV for a significant number of
materials in this subgroup. The conditions on the cohesive energy
of guest and host metals (very stable bulk guest metal and less
stable bulk host metal) are reversed with respect to SE, i.e.,
adsorption of hydrogen affects strongly the systems where guest
atom is unstable at the surface. This increases the reactivity of the
guest atom towards an H atom. The condition (EH* ≥−2.35 eV)
selects materials where interaction of H with a host atom is not
too strong, so that H can bind with the guest atom and stabilize it
at the surface. The condition (EH* ≤−2.32 eV) makes the sub-
group narrower, which further decreases median difference
SEH—SE but has no additional physical meaning. The condition
(H ≥−5.12 eV) has a minor effect on the subgroup.

One of the top selectors (among several describing very similar
data subsets) for minimizing

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔG2 þ E2
b

p

(calculated at T = 300
K) is: (−2.85 eV ≤ DC ≤ 1.95 eV) AND (DT* ≤−0.17 eV). The
corresponding subgroup contains 1974 samples (38% of the
whole population). The distribution of Eb within the subgroup is
shown in Supplementary Fig. 10. The selector implies that sys-
tems providing low barrier for H2 dissociation, and at the same
time balanced binding of H atoms to the surface are characterized
by (i) d-band center of the bulk guest metal around the Fermi
level and (ii) d-band center of the host surface top layer below the
Fermi level. This can be understood as follows. Condition (i)
implies that there is a significant d-electron density that can be
donated to the adsorbed H2 molecule, facilitating its dissociation.
A very similar (apart from slightly different numerical values)
condition appears in the selector for the best subgroup for Eb
target property alone [(−2.05 eV ≤ DC ≤ 1.46 eV) AND (EC* ≥
−6.33 eV)]. Condition (ii) implies that the surface d-band is more
than half-filled, so that additional electrons are available for
transferring to the H2 molecule for its activation without causing
excessive binding and therefore minimizing |ΔG| in accordance
with Sabatier principle. Indeed, several subgroups of surfaces
binding H atoms strongly (minimizing BEH) are described by
selectors including condition DT* >−0.17, which is exactly
opposite to condition (ii). Analysis of BEH and |ΔG| also shows
that the strong and intermediate binding of H atoms to the
surface is fully controlled by the features of host material.

We note that SGD is capable of finding several alternative
subgroups, corresponding to different mechanisms of actuating
interesting changes in target properties. These subgroups have a
lower quality according to the chosen quality function, but they
still contain useful information about a particular mechanism. In

fact, they can be rigorously defined as top subgroups under
additional constraint of zero overlap (in terms of data points)
with previously found top subgroups. Analysis of such subgroups
can be a subject of future work. We also note that quality function
used in SGD is a parameter and can affect the found subgroups. It
should be chosen based on the physical context of the problem.
Exploring the role of different factors in the quality function and
taking into account proposition degeneracy (no or minor effect of
different conditions in the selectors due to correlation between
the features) can significantly improve interpretability of the
selectors. The interpretability also depends crucially on our
physical understanding of the features and relations between
them. Nevertheless, in combination with human knowledge SGD
analysis allows for development of understanding, that would not
be possible without the help of artificial intelligence.

In summary, by combining first-principles calculations and the
data-analytics approach SISSO, we have identified accurate and
reliable models for the description of the hydrogen binding
energy, dissociation energy, and guest-atom segregation energy
for SAACs, which allow us to make fast yet reliable prediction of
the catalytic performance of thousands SAACs in hydrogenation
reactions. The model correctly evaluates performance of experi-
mentally tested SAACs. By scanning more than five thousand
SAACs with our model, we have identified over two hundred new
SAACs with both improved stability and performance compared
to the existing ones. We have also introduced a novel approach to
a qualitative analysis of complex SISSO descriptors using data-
mining method subgroup discovery. It allows us to identify
actuating mechanisms for desirable changes in the target prop-
erties, e.g., reaction barrier reduction or an increase in catalyst’s
stability, in terms of basic features of the material. Our metho-
dology can be easily adapted to designing new functional mate-
rials for various applications.

Methods
All first-principles calculations are performed with the revised Perdew-Burke-
Ernzerhof (RPBE) functional62 as implemented in the all-electron full-potential
electronic-structure code FHI-aims63. The choice of functional is validated based
on a comparison of calculated H2 adsorption energies to the available experimental
results64 (see Supplementary Table 1). Nevertheless, it is expected that, because of
the large set of systems inspected and the small variations introduced by the
functional choice, the main trends will hold even when using another functional
(see Supporting Information for more details on the computational setup). The
climbing-image nudged elastic band (CI-NEB) algorithm is employed to identify
the transition state structures65.

BEH are calculated using Eq. (1), where EH/support is the energy of the total H/
support system, Esupport is the energy of the metal alloy support, and EH is the
energy of an isolated H atom.

BEH ¼ EH=support � Esupport � EH ð1Þ

The surface segregation energy in the dilute limit, SE, is defined as the energy
difference of moving the single impurity from the bulk to the surface. In this work,
it is calculated using Eq. (2), where Etop-layer and Enth-layer correspond to the total
RPBE energies of the slab with the impurity in the top and nth surface layer,
respectively. The value of n is chosen so that the energy difference between Enth-layer
and E(n−1)th-layer is less than 0.05 eV.

SE ¼ Esurface � Enth�layer ð2Þ

The surface segregation energy when surface H adatom is present (the H is put
at the most stable adsorption site for each system), SEH, is calculated using Eq. (3).

SEH ¼ SEþ ΔEH; ð3Þ

where ΔEH = BEH-top-layer – BEH-pure is the H adatom-induced segregation energy
change.

Here BEH-top-layer and BEH-pure are the hydrogen adatom binding energies with
the impurity in the top layer and the BEH of the pure system without impurity.
Thus, the SEH can be derived from the models of SE and BEH.

Using first-principles inputs as training data, we have employed SISSO to single
out a physically interpretable descriptor from a huge number of potential candi-
dates. In practice, a huge pool of more than 10 billion candidate descriptors is first
constructed iteratively by combining user-defined primary features with a set of
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mathematical operators. The number of times the operators are applied determines
the complexity of the resulting descriptors. We consider up to three levels of
complexity (feature spaces) Φ1, Φ2, and Φ3. Note that a given feature space Φn also
contains all of the lower rung (i.e., n− 1) feature spaces. Subsequently, the desired
low-dimensional representation is obtained from this pool49. The details of the
feature space (Φn) construction and the descriptor identification processes can be
found in the Supplementary Methods. The proper selection of primary features is
crucial for the performance of SISSO-identified descriptors. Inspired by previous
studies31,38, we consider three classes of primary features (see Table 1) related to
the metal atom, bulk, and surface. The more detailed description and values of all
the primary features are given in the Supplementary Table 2, Supplementary
Table 3, Supplementary Data 1, and Supplementary Data 2.

The selection of the promising candidates at various temperatures and hydrogen
partial pressures is performed based on ab initio atomistic thermodynamics66. H
adsorption/desorption on SAAC surfaces as a function of temperature and H2

partial pressure (T, p) is characterized by the free energy of adsorption ΔG:

ΔG ¼ EH=support � Esupport � μH T; pð Þ ð4Þ

with the chemical potential of hydrogen μH ¼ 1
2 μH2

obtained from:

μH ¼
1
2

EH2
þ ΔμH2

T; pð Þ
� �

; ð5Þ

where ΔμH2
T; pð Þ ¼ μH2

T; p0ð Þ � μH2
T0; p0ð Þ þ kBT lnð p

p0
Þ.

Here T0 = 298 K and p0 = 1 atm. The frst two terms are taken from JANAF
thermochemical tables67. In the following, we set p= 1 atm.

According to Sabatier principle the optimum heterogeneous catalyst should bind
the reactants strong enough to allow for adsorption, but also weak enough to allow
for the consecutive desorption25. In this work, a BEH range is defined by the
conditions:

jBEH �
1
2
ðEH2

� 2EHÞ �
1
2
ΔμH2

Tð Þj<0:3 eV; ð6Þ

where EH2
� 2EH is the hydrogen binding energy of the hydrogen molecule. The

experimental value of −4.52 eV68 was used in this work.
The above conditions correspond to the free-energy bounds:

jΔGj<0:3 eV; ð7Þ

Conditions on energy barrier (Eb) are defined by considering Arrhenius-type
behaviour of the reaction rate on Eb and T. Assuming that acceptable barriers are
below 0.3 eV for T0 = 298 K, we estimate acceptable barrier at any temperature as:

Eb<
0:3T
T0

eV: ð8Þ

Similarly the bounds for SEH are determined by imposing a minimum 10% ratio
for top-layer to subsurface-layers dopant concentration by assuming an Arrhenius-
type relation with SEH interpreted as activation energy:

SEH < kBT ln 10ð Þ: ð9Þ

The subgroup discovery was performed using RealKD package (https://
bitbucket.org/realKD/realkd/). Each feature was split to 15 subsets using 15-means
clustering algorithm. The borders between adjacent data clusters (a1, a2,…) are
applied further for construction of inequalities (feature1 < a1), (feature2 ≥ a2), etc.
While final result might depend on the number of considered clusters, in our
previous study we found that relatively high numbers of considered clusters pro-
vide essentially the same result60. The candidate subgroups are built as conjunc-
tions of obtained simple inequalities. The main idea of SGD is that the subgroups
are unique if the distribution of the data in them is as different as possible from the
data distribution in the whole sampling. Here the data distribution is the dis-
tribution of a target property (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔG2 þ E2
b

p

, SE, Eb, |ΔG|, and BEH). The uniqueness
is evaluated with a quality function. In this study we used the following function:

Q Sð Þ ¼
s Sð Þ

s Pð Þ

med Pð Þ �med Sð Þ

med Pð Þ �min Pð Þ

� �

1�
amd Sð Þ

amd Pð Þ

� �

ð10Þ

with S—subgroup, P—whole sampling, s—size, med and min—median and
minimal values of a target property, amd—absolute average deviation of the data
around the median of target property. With this function the algorithm is searching
for subgroups with lower values of target properties. The search was done with an
adapted for such purposes Monte-Carlo algorithm59, in which first a certain
number of trial conjunctions (seeds) is generated. Afterwards, for each seed
(accompanied with pruning of inequalities) the quality function is calculated. We
have tested here several numbers of initial seeds: 10,000, 30,000, 50,000, and
100,000. The subgroups with the overall high quality function value were selected.

Data availability
All relevant data are available from the corresponding authors upon reasonable request.

Code availability
FHI-aims: https://aimsclub.fhi-berlin.mpg.de.
SISSO: https://github.com/rouyang2017/SISSO.
SGD: https://bitbucket.org/realKD/realkd/.
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