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We discuss the generation of a macroscopic entangled state in a single atom cavity-QED system. The
three-level atom in a cascade configuration interacts dispersively with two classical coherent fields inside a
doubly resonant cavity. We show that a macroscopic entangled state between these two cavity modes can be
generated under large detuning conditions. The entanglement persists even under the presence of cavity losses.
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I. INTRODUCTION

Quantum entanglement lies at the heart of quantum com-
puting and quantum information science. Cavity quantum
electrodynamics �QED� provides an important testing ground
for these ideas. For example, cavity QED can be used to not
only store quantum information but also to act as a source of
entanglement �1–8�. The generation of entanglement in cav-
ity QED has been studied by many authors including the
generation of entangled coherent state �1–3�, single photon
and vacuum entanglement �4�, and two-atom entanglement
�5�.

More recently, generation of macroscopic entangled states
via phase sensitive amplification has been discussed. Such
continuous variables entanglement offers many advantages
in quantum information processing �6�. For example, a quan-
tum secure communication protocol using continuous vari-
ables Einstein-Podolsky-Rosen correlations was proposed in
Ref. �7�. Conventionally, continuous variables entanglement
is produced in a parametric down-conversion process �8�.
Recently, based on the study concerning a two-mode corre-
lated spontaneous emission laser �CEL� �9�, it was shown
that a CEL can lead to two-mode entanglement even when
the average photon number can be very large �10,11�. The
scheme using CEL is the result of many-atom dynamics. The
scheme �12� with potential to produce macroscopic en-
tangled states is still for atomic cloud. On the other hand, a
one-atom laser, has been realized experimentally �13�. The
entanglement between single atom and its emitted photon
has been observed �14�. More recently, Morigi et al. �15,16�
put forward a scheme where a single trapped atom allows for
the generation of entangled light under certain conditions.

In this paper, we propose a scheme to produce a macro-
scopic entangled state using a single atom in a cavity QED
system. We show that a two-mode coherent squeezed state
can be generated from our system. In our scheme, a driven
three-level atom in cascade configuration dispersively inter-
acts with a two-mode field. We show that under appropriate
conditions on the detunings and atom-field coupling, the
classical driving fields can help to build up the field in the
two modes of the cavity and at the same time an entangle-
ment is generated between the two modes.

II. SYSTEM DESCRIPTION AND CALCULATIONS

We consider a three-level atom in a cascade configuration
crossing or trapped in a two-mode field cavity. The atomic

level configuration is depicted in Fig. 1. The two atomic
transitions �a�↔ �b� and �b�↔ �c� interact with the two cavity
modes with detunings �� with �= ��1− �Ea−Eb��= ��2

− �Eb−Ec��. The two atomic transitions �namely, �a�↔ �b� and
�b�↔ �c�� are also driven by two classical fields with the
same detunings as their corresponding quantized field modes
and �1 and �2 are the Rabi frequencies of the two classical
fields. The dipole forbidden atomic transition between �a�
and �c� are resonantly driven by another classical field of
Rabi frequency �.

The Hamiltonian of our system under the dipole and ro-
tating wave approximation and in the interaction picture is
given by

ĤI = g1��â1 +
�1

g1
	�̂bc + �â1

† +
�1

g1
	�̂cb


+ g2��â2 +
�2

g2
	�̂ab + �â2

† +
�2

g2
	�̂ba


+ ���̂ac + �̂ca� − ���̂aa + �̂cc� , �1�

where �̂ij = �i��j� �i , j=a ,b ,c� are the atomic operators. â1�â1
†�

and â2�â2
†� are the creation �annihilation� operators of the two

cavity modes and g1 and g2 are the atom-field coupling con-
stants and, in general, they are different.
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FIG. 1. The level configuration of the three-level atom. Two
cavity modes and two classical fields interact with atomic transi-
tions �a�↔ �b� and �b�↔ �c� with detunings ��, and another classi-
cal field with a Rabi frequency of � drives the dipole forbidden
atomic transition between �a� and �c� resonantly.

PHYSICAL REVIEW A 74, 022321 �2006�

1050-2947/2006/74�2�/022321�5� ©2006 The American Physical Society022321-1

http://dx.doi.org/10.1103/PhysRevA.74.022321


The Heisenberg equations of motion for the atomic opera-
tors �̂bc and �̂ba are given by

i
d�̂bc

dt
= − g1ã1

†��̂cc − �̂bb� − g2ã2�ac + ��̂ba − ��̂bc,

i
d�̂ba

dt
= − g1ã1

†�̂ca + g2ã2��̂bb − �̂aa� + ��̂bc − ��̂ba, �2�

where

ãj = âj +
� j

gj
, ãj

† = âj
† +

� j

gj
, j = 1,2. �3�

Under the large detuning condition when ��� ,� j ,g1 ,g2,
Eq. �2� can be solved adiabatically by taking d�̂bc /dt
=d�̂ba /dt=0. The adiabatic solutions for �̂bc and �̂ab can
then be substituted into the Hamiltonian �1� and we obtain

Ĥ1 = ���̂ac + �̂ca� − ���̂aa + �̂cc� +
1

�2 − �2 �− �g1
2�2ã1

†ã1 + 1�

���̂bb − �̂cc� + �g2
2�2ã2

†ã2 + 1���̂aa − �̂bb� + ���g1
2ã1

†ã1

+ g2
2ã2

†ã2��̂ac + �g1
2ã1ã1

† + g2
2ã2ã2

†��̂ca� + 2g1g2��ã1ã2�̂ac

+ ã1
†ã2

†�̂ca� + g1g2��ã1ã2 + ã1
†ã2

†���̂aa + �̂cc − 2�̂bb�
 .

�4�

If the atom is initially injected in level �b�, it will remain
confined to this level due to the large detuning approxima-
tion. The approximate effective Hamiltonian for this case
reduces to

Ĥb = �1ã1
†ã1 + �2ã2

†ã2 +
1

2
��1 + �2� + 	�ã1ã2 + ã1

†ã2
†� , �5�

where

	 =
2g1g2�

�2 − �2 ,

�1 =
2g1

2�

�2 − �2 ,

�2 =
2g2

2�

�2 − �2 . �6�

This Hamiltonian can be rewritten as

Ĥb = ��1 + �2�K̂0 + 	�K̂− + K̂+� +
1

2
��1 − �2�N̂0, �7�

where

K̂0 =
1

2
�ã1

†ã1 + ã2
†ã2 + 1� ,

K̂− = ã1ã2,

K̂+ = ã1
†ã2

†,

N̂0 = ã1
†ã1 − ã2

†ã2.

These operators can be verified to obey the SU �1, 1� com-

mutation relations �K̂− , K̂+�=2K̂0, �K̂0 , K̂±�= ± K̂±, and

�N̂0 , K̂0�= �N̂0,K̂±�=0. We can therefore use the SU �1, 1� Lie

algbra to expand the unitary evolution �17� operator Û

=e−iĤbt as

Û = e�A+K̂+�e�ln A0K̂0�e−it/2��1−�2�N̂0e�A−K̂−�, �8�

where

A0 = a0
2,

A+ = A− =
− i	t



a0 sinh 
 �9�

with

a0 =
1

cosh 
 + it
��1 + �2�

2

sinh 


,


2 = �− ��1 + �2

2
	2

+ 	2
t2. �10�

We now consider the case when the two-mode field is
initially prepared in a vacuum state �0, 0�. The time evolution
of the field state can be obtained as

�� f�t�� Þ exp�A+â1
†â2

†�exp��1â1
†�exp��2â2

†��0,0� �11�

with

�1 =
�2

g2
A+ +

�1

g1
�a0e−it/2��1−�2� − 1� ,

�2 =
�1

g1
A+ +

�2

g2
�a0eit/2��1−�2� − 1� . �12�

The SU �1, 1� Lie algebra yields

eA+â1
†â2

†
= e�
*â1â2−
â1

†â2
†�eA+

*â1â2eg�â1
†â1+â2

†â2+1�.

Let 
=rei�, g=ln cosh r, where r and � are determined by
the relation

A+ = − ei� tanh r . �13�

The squeezed parameter r and � are

r = tanh−1�A+� ,

cos � = −
Re�A+�

�A+�
,

sin � = −
Im�A+�

�A+�
. �14�

The state of the system can then be written as
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�� f�t�� = e�
*â1â2−
â1
†â2

†���1 cosh r,�2 cosh r�

= S�
�D��1 cosh r�D��2 cosh r��0,0� . �15�

It is obviously a two-mode coherent-squeezed state �18,19�.
For the generation of macroscopic entangled state, we

consider two quantities, namely, the mean photon number
and the correlation functions involved in the entanglement
criterion. The total average photon number of the two-mode
field N= �â1

†â1�+ �â2
†â2� can be easily obtained

N = 2 sinh2 r + cosh2 r����1�2 + ��2�2�cosh 2r

− ��1�2e−i� + �1
*�2

*ei��sinh 2r� . �16�

To determine the entanglement of state �15�, we need the
entanglement criterion for continuous variables system. Re-
cently, different criteria have been proposed �20–23�. Here,
we choose the summation of the quantum fluctuations pro-
posed in Ref. �20�. According to this criterion, a state is
entangled if the summation of the quantum fluctuations in
the two EPR-like operators û and v̂ satisfy the following
inequality:

��û�2 + ��v̂�2 � 2, �17�

where

û = x̂1 + x̂2,v̂ = p̂1 − p̂2,

and x̂i= �âie
−i�+ âi

†ei�� /�2 and p̂i= �âie
−i�− âi

†ei�� /�2i �i
=1,2� are the quadrature operators of the field. For the state
�15� and by taking �= 1

4� we can derive that

��û�2 + ��v̂�2 = 2�cosh 2r − sin � sinh 2r� . �18�

From Eqs. �12�, �16�, and �18�, it is clear that the average
photon number of the two-mode field depends on �1 and �2,
however, the entanglement condition is independent of the
strengths of the driving fields. We can thus change the aver-
age photon number of the field by manipulating �1 and �2
without affecting the entanglement of the two modes.

It is useful to consider the case when �1=�2=0 which
means �1=�2=0 in Eq. �12�. From Eq. �15�, we have

��� = S�
��0,0� =
1

cosh r
�

n

tanhn r�n,n� . �19�

This is a two-mode squeezed state which can also be gener-
ated by a parametric amplifier �24�. The total average photon
number of the two-mode field for an initial vacuum state is

N = 2 sinh2 r . �20�

The entanglement condition still has the form of Eq. �18�.
Next we consider the effect of the cavity losses by includ-

ing the cavity damping terms in the equation of motion for
the density operators. The equation of motion for the density
operator is given by

�̇̂ = − i�	�â1â2 + â1
†â2

†� + �1â1
†â1 + �2â2

†â2 + ��2
�2

g2
+ 	

�1

g1
	

��â2 + â2
†� + ��1

�1

g1
+ 	

�2

g2
	�â1 + â1

†�, �̂

+ � �

i=1,2
�2âi�̂âi

† − âi
†âi�̂ − �̂âi

†âi� . �21�

The resulting equations for the expectation values of the field
operators are

d�â1
†â1�

dt
= − i�	��â1

†â2
†� − �â1â2�� + ��1

�1

g1
+ 	

�2

g2
	

���â1
†� − �â1��
 − 2��â1

†â1� ,

d�â1â2�
dt

= − i�	��â1
†â1� + �â2

†â2� + 1� + ��1
�1

g1
+ 	

�2

g2
	�â2�

+ ��2
�2

g2
+ 	

�1

g1
	�â1�
 − �2� + i��1 + �2���â1â2� ,

d�â1�
dt

= − i�	�â2
†� + ��1

�1

g1
+ 	

�2

g2
	
 − �� + i�1��â1� .

�22�

On interchanging the subscripts 1 and 2 and taking the Her-
mitian conjugate, we can obtain the remaining five differen-
tial equations of �â2

†â2�, �â1
†â2

†�, etc. These eight equations
can be solved by using the standard techniques such as those
based on Laplace transform method. We can then evaluate
the average photon numbers and the quantity ��û�2+ ��v̂�2

for this system. These solutions are long and tedious and we
do not reproduce them here. Instead, we present a numerical
solutions for these equations in the next section.
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FIG. 2. The time evolution of the total average photon number
N and ��û�2+ ��v̂�2. The two-mode field is entangled when ��û�2

+ ��v̂�2�2 �Eq. �15��. The parameters are �1=10, �2=40, g1=1,
g2=2, �=1000, and �=200.
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III. DISCUSSION

We now discuss the entanglement properties of the ampli-
fied fields inside the doubly resonant cavity. In our plots, all
of parameters are in expressed in units of g1. In Fig. 2, we
plot the average photon number and ��û�2+ ��v̂�2 for the
two-mode coherent-squeezed state from Eqs. �16� and �18�,
respectively. Both the quantities exhibit oscillations. This is a
consequence of the terms proportional to �1 and �2 in
Hamiltonian �5�. The period of the oscillations can, however,
be very large as �1 and �2 can be small. Thus we can have
entanglement for sufficiently large interaction times.

In Figs. 3 and 4, we plot N and ��û�2+ ��v̂�2 in the small
time region where entanglement is present. In Fig. 3 we plot
the total average photon number N as a function of time
under two cases: �1=�2=0 �Fig. 3�a�� and �1=10, �2
=40 �Fig. 3�b��. Solid lines in Figs. 3�a� and 3�b� are plotted
from Eqs. �20� and �16�, respectively. Dotted lines and
dashed lines are plotted from Eq. �21� with the inclusion of
cavity losses. Comparing the two solid lines in Figs. 3�a� and
3�b�, we note that the average photon number of two-mode
coherent-squeezed state is extremely larger as compared to a
two-mode squeezed vacuum state. Even with the inclusion of
cavity losses �dotted lines and dashed lines�, the average
photon number of two-mode fields still increase dramatically
for the driven system. Thus the two-mode fields still can be
amplified even when cavity losses are present.

In Fig. 4, we show the time evolution of ��û�2+ ��v̂�2 in
the presence of cavity losses. Notice that the entanglement
exists in a lossy cavity. It is worthwhile to point out that we
plot ��û�2+ ��v̂�2 and N for the same set of parameters. For
this set of parameters, we obtain both amplification and en-
tanglement at the same time.

Finally, we note that the classical field � not only affects
entanglement between the two quantum fields but also the
amplification of these fields. On the other hand, the two clas-
sical fields �1 and �2 mainly amplify the quantum field but
plays no role on the entanglement criterion.

We note that Morigi et al. �15,16� have also considered
the generation of two-mode squeezing in a single atom. Their
situation is, however, different than ours. In their work,
Morigi et al. consider both external and internal degrees of
freedom. Under the large detuning limit, the atom’s internal
degrees of freedom are eliminated and a two-mode squeezed
state at certain times is obtained. At those times the atom is
decorrelated from the two cavity modes. At other times, the
system is in a tripartite entangled state between the cavity
modes and the center-of-mass degrees of freedom of the
atom. In our scheme, the entangled states are generated over
a wide range of interaction times. This is easily seen from
Figs. 2 to 4. Moreover in our scheme, we can generate a
two-mode coherent-squeezed state of large intensity.

IV. CONCLUSION

In summary, we discussed a scheme in which a single
atom in the cascade configuration inside a doubly resonant
cavity can lead to amplified fields that are entangled. The
resulting field, under appropriate conditions, is a two-mode
coherent-squeeze state. We show that the entanglement per-
sists even in the presence of cavity losses �25�.
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FIG. 3. The time evolution of total average photon number N.
Solid lines in �a� and �b� correspond to two-mode squeezed vacuum
state �Eq. �20�� and the two-mode coherent-squeezed state �Eq.
�16��, respectively; dotted ��=0.01� and dashed lines ��=0.02� are
plotted from Eq. �21�. In �a� �1=�2=0 while for �b� �1=10, �2

=40. For all plots, g1=1, g2=2 and �=1000, �=200.
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