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We consider a single atom in an optical lattice, subject to a harmonic trapping potential. The problem
is treated in the tight-binding approximation, with an extra parameter � denoting the strength of the
harmonic trap. It is shown that the �! 0 limit of this problem is singular, in the sense that the density
of states for a very shallow trap (�! 0) is qualitatively different from that of a translationally invariant
lattice (� � 0). The physics of this difference is discussed, and densities of states and wave functions are
exhibited and explained.
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The achievement of degeneracy in atomic gases has led
to a surge of activity. One reason is that these systems
provide a test bed for theories developed in the context of
solid-state physics. Indeed there have been experimental
observations of Bose-Einstein condensation (BEC) [1],
vortex lattices [2,3], superfluid-insulator transitions [4],
fermion degeneracy [5], and, very recently, advances have
been made towards Bardeen-Cooper-Schrieffer (BCS)
superfluidity [6]. A great advantage of these systems is
one’s unprecedented control of the experimental situation.
By varying the magnetic field strength, particle-particle
interactions can be altered. Moreover, one can use lasers
to create an optical lattice whose parameters can be
changed at will [7]. The latter scenario has been the
subject of recent theoretical attention [8–11].

One key difference between these systems and the
usual models of the solid state is that they are not trans-
lationally invariant, because of the trapping potential
necessary to confine the gas. However, in the usual setup,
when the trap is the only external potential, the local
density approximation can be employed, and thermody-
namic quantities can be simply related to their values in
the absence of the trap [12]. Trapped atoms are, therefore,
a good model of the continuum many-particle system —
analogous, in the fermion case, to ‘‘jellium,’’ the ideal
metal of many-electron theory. One thus expects that,
when the periodic optical lattice potential is added, an
experimental model of electrons in real crystals can be
obtained.

In this Letter we take a first step towards testing this
expectation by obtaining the single-particle density of
states (DOS). This is the starting point for understanding
many key features of degenerate quantum systems. For
example, in an ideal Bose gas it determines whether there
is BEC [13], while in a weakly attractive Fermi gas it
gives the critical temperature for BCS superfluidity [14].
The DOS becomes a smooth curve only in the limit in
which the trap is very weak so that the spectrum becomes
a continuum. As we shall see, this limit is singular, in the
sense that the DOS is qualitatively different from that of
an infinite, translationally invariant lattice.
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Model.—We consider a single particle, with no internal
degrees of freedom, moving in an infinite tight-binding
lattice with one orbital per site and hopping between
nearest neighbors. The particle is confined to a finite
region by a harmonic trapping potential. For simplicity,
we assume a d-dimensional hypercubic lattice. For d > 1,
the problem is separable, so we shall focus our attention
on the 1D case, indicating how the results for d > 2
follow as the need arises. The Hamiltonian for d � 1 is

H � �t
X
j

�jjihj� 1j � H:c:	 �
1

2
�
X
j

�aj	2jjihjj; (1)

where j is a site label, a the lattice constant, � the strength
of the trap, and t the nearest-neighbor hopping integral.
(This model also occurs in the related subject of the
dynamical diffraction of atoms by static light fields;
see, for example, Ref. [15] and references therein.) Note
that the trap is centered at a lattice site; see Refs. [16,17]
for a discussion of the nontrivial effect of incommensu-
ration. The model can be generalized also by considering
anisotropic lattices and trapping potentials.

Before describing the properties of the model, let us
discuss its validity. In experiments [7], the lattice is
generated by counter-propagating laser fields, giving
rise to a static, periodic potential [18] of the form U�x	 �
�U0
cos

2�x
a � 1�. Equation (1) is valid when the wells of

this potential are sufficiently deep: U0 � �h2=ma2, where
m is the mass of one atom. In this intense-laser regime,
one can approximate the orbitals at the bottom of each
well by those of a harmonic oscillator, and the usual
method [19] yields the tight-binding parameter as [9] t �

U0 exp
�
�
2

�������������������������������
U0� �h

2=ma2	�1
p

�, which is much smaller than
the first excitation energy of the orbital. The effect of the
overall trapping potential on t can be neglected provided
that the potential energy difference between the minima
of neighboring wells, �Ej, is much less than the barrier
height,U0. Now, �Ej  �a2j for j� 1; hence our model
is accurate for states whose wave functions do not extend
beyond site jc � U0=�a2. Hence the state’s energy � must
satisfy �� �a2j2c, i.e., �� �max � U2

0=�a
2. We would
2004 The American Physical Society 080404-1

https://core.ac.uk/display/10632626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VOLUME 93, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S week ending
20 AUGUST 2004
therefore like to be sure that �max � t, which is true
provided that U0 � �a2.

We are interested in the DOS, ���	 �
P
����� ��	,

which is a smooth curve only in the limit in which the
spectrum f��g is a continuum. Let us discuss some limit-
ing behaviors of ���	. The solution is well known for � �
0, when the lattice forms a large ‘‘box’’ of length L. In
this case one obtains Bloch waves with the band disper-
sion relation �k � �2t coska;where k is the wave number.
When L� a, ka runs continuously from �� to�. In this
limit, ���	 is nonzero only for j�j < 2t (this region we
call the ‘‘band’’), and has square-root singularities at � �
�2t (the ‘‘top’’ and ‘‘bottom’’ of the band). For d � 2, the
DOS extends from � � �4t to 4t and is finite at these
points, but exhibits a ‘‘van Hove’’ logarithmic singularity
at � � 0 [19].

In our model, the lattice itself is taken to be infinite; the
finite extent of the wave functions is determined instead
by the strength, �, of the harmonic trap. The correspond-
ing length scale is [12] l �

��������
t=�

p
. This suggests that, in

this model, ‘‘continuum limit’’ should be taken to mean
l� a or, equivalently, �a2 � t. We shall work in this
limit henceforth (unless otherwise stated).

Let us consider the low- and high-energy states of (1).
For energies near the bottom of the band, the dispersion
relation has the free-particle form �k  �2t� �h2k2=2m�,
wherem� � �h2=2ta2. Thus we would expect the low-lying
eigenstates of (1) to resemble those of the usual contin-
uum harmonic oscillator. Indeed, one can show explicitly
that j�0i � N0

P
je

�aj2=2
��
2

p
ljji is the ground state to sec-

ond order in a=l. Its energy is �0 � �2t� �h!�=2�
o�
a=l�2	; where !� �

������������
�=m�

p
. To first order in a=l, this

equals the usual result for the harmonic oscillator, mea-
sured from � � �2t. The low-lying states are obtained
similarly. Since the DOS of the 1D harmonic oscillator is
constant and equal to 1= �h!�, we conclude that the low-
energy limit of the DOS of (1) is given by ���	 ! 1= �h!�

as �! �2t for d � 1. For d � 2, the DOS of the har-
monic oscillator is ���	 / �, so we expect a vanishing
density of states as �! �4t in this case.

For high energies, the physical nature of the states is
quite different. When �� t, the first term in (1) can be
neglected, and thus the eigenstates of the Hamiltonian
are the position eigenstates jji, with energies �j �
�a2j2=2: The high-energy 1D DOS is then easily shown

to be ���� t	 �
�������������
2=�a2

p
��1=2. In 2D, the analogous

calculation gives ���	 ! 2�=�a2 as �=t! 1.
WKB analysis.—To extend our treatment of (1) to all

energies, we employ the Wentzel-Kramers-Brillouin
(WKB) approximation [20]; it has already been applied
to the momentum-space version of the problem in
Ref. [21]. By contrast, our WKB-type analysis will be
performed in real space [15]. It differs from traditional
WKB in that �h does not appear anywhere in (1); instead
we choose a as our small parameter. As in the ordinary
WKB method, we write the wave function in the form
080404-2
 �x	 � exp
i
R
x k�x0	dx0�. The energy is determined by

the usual quantization condition,
H
k�x	dx � 2��n� !	,

where n is an integer and ! a constant. Differentiating
this, we obtain the DOS: ���	 � dn=d� � 1

2�
@
@�

H
k�x	dx

(note that ! is not required).
On the other hand, the orbit equation is modified by

replacing the free-particle dispersion by the tight-binding
form [22]: �2t cos�ka	 � 1

2�x
2 � �. The local wave num-

ber becomes k�x	 � � 1
a arccos�

�x2�2�
4t 	. This makes a sig-

nificant difference, because it introduces two new turning
points. The classical turning points (where k � 0) still
exist, and are found at x � �xc, where

xc �

����������������
2�� 4t
�

s
� 2l

��������������
�
2t

� 1

r
; (2)

now, however, two new points appear for energies � > 2t.
They are associated with Bragg reflection, and they occur
at x � �xb, where

xb �

����������������
2�� 4t
�

s
� 2l

��������������
�
2t

� 1

r
: (3)

We shall refer to them as ‘‘Bragg turning points,’’ and the
region between them as ‘‘Bragg forbidden.’’

The quantization condition now becomes more subtle.
To see why, note that in the Bragg forbidden region
k�x	a � �� iarccosh�2���x

2

4t 	: the wave function contin-
ues to oscillate for jxj< xb, despite the damping of its
amplitude. The quantization condition must therefore
include these oscillations; it becomes:

2
Z xc

xb
k�x	dx�

2�xb
a

� ��n� !	: (4)

Now we can obtain the DOS by differentiating (4),
remembering that xb and xc depend on � according to
(2),(3); we obtain a lengthy analytic expression for ���	.
It is plotted in Fig. 3(a), along with the DOS obtained
from numerical diagonalization of (1), with appropriate
provision for finite-size scaling (see below): clearly the
agreement is excellent. This was foreseeable, since aside
from a vanishing number of low-lying states, all the wave
functions have slowly varying k�x	 (or, in the Bragg
forbidden region, not varying at all); thus the WKB
method is expected to be accurate at all energies. Note
that ���	 is qualitatively different from the DOS of the
� � 0 tight-binding model, while it agrees quantitatively

with �! 1= �h!� at � � �2t and with �!
�������������
2=�a2

p
��1=2

for �=t� 1, the limiting expressions obtained above.
Calculating the density of states for d > 1 is simple,

because the Hamiltonian is separable. Consider, for ex-
ample, the case of d � 2. It is not hard to show that
�2D��	 �

R
�
�1 ���� %	��%	d%, where �2D is the DOS

of the 2D system, and � is the DOS of the 1D
Hamiltonian (1). The result of applying this formula is
presented in Fig. 3(b), and compared with numerical
080404-2
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results; again, the agreement is excellent. Note that the
steep feature at � � 0 and the kink at � � 4t both result
from the logarithmic singularity in the 1D DOS. As �!
�4t, we recover �2D ! 0, as expected from the analytic
arguments above. Furthermore, the large-� asymptote is
exactly the constant predicted by that analysis. Higher-
dimensional densities of states may be generated in a
similar way.

Finite-size scaling: Numerics.—In the foregoing we
obtained the DOS in the continuum limit l=a! 1.
However, in experiments, l=a is finite.We should therefore
check that our results resemble the behavior of the system
when it has a steeper trap. Thus we have studied the
single-particle spectrum and wave functions by numeri-
cal diagonalization of (1) [23]. By considering increas-
ingly shallow traps, the numerical calculations also allow
us to confirm the validity of WKB for the continuum
limit.We have applied the same method in d � 2, starting
with the 2D version of (1). The results are analogous so we
shall, as above, describe in detail the 1D case only.

In order to have a finite-dimensional Hamiltonian
matrix, we must describe the lattice by a finite number
of sites, N. This leads to numerical artefacts for � > �N ,
defined by N � 2xc��N	=a, as the particle visits the arti-
ficial limits of the lattice. On the other hand, we expect
this to be essentially equivalent to the original problem
for �� �N. Calculations for increasingly largeN confirm
this (see the inset of Fig. 2).

Figure 1 shows some numerically determined wave
functions for fixed trap strength. In spite of the relatively
small system size (l=a � 10), the states seem well de-
scribed by the continuum-limit solution. At low energies,
� & 0, the wave functions resemble those of a continuum
1D harmonic oscillator. At higher energies, the period of
these oscillations starts to become similar to the lattice
constant, and commensuration effects emerge. At � � 2t,
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FIG. 1. Numerically determined wave functions for a trap
with �a2 � t=100. Each wave function has been offset along
the y-axis by its energy, in units of the hopping integral. The
numerical calculation uses a lattice with N � 130 sites. For the
energies considered, there are no noticeable numerical arte-
facts. The lower and upper solid curves correspond to the
classical and Bragg turning points, Eqs. (2),(3).
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as that period reaches its minimum, the Bragg reflection
points appear. Immediately above the top of the band,
� * 2t, the modulation of the wave number is evident,
reaching its minimum and maximum near the classical
and Bragg turning points, respectively. The rapid oscil-
lations continue in the Bragg forbidden region, where the
amplitude decays exponentially. As the energy rises fur-
ther, the distance between the Bragg and classical turning
points shrinks so that fewer and fewer oscillations take
place between these two points. Eventually the particle is
forced to localize on single sites (not shown). Note that
the Bragg and classical turning points are very accurately
described by Eqs. (2),(3), even for the relatively small
value of l=a considered here. Furthermore, the number of
high-energy (localized) solutions is reproduced correctly.
This is because the condition that the wave function’s
phase be single-valued reduces, at k � �, to the condition
that the localized states be separated by an integer num-
ber of lattice spacings (x � na).

We now turn to the DOS. Obviously for finite l=a the
spectrum is not a continuum so the DOS is not a smooth
curve. However, one can smooth it by the following
procedure: we divide an energy range into intervals, of
width ��, and count the states within each interval. We
then rescale the vertical axis of the resulting histogram so
that each column represents the number of states per unit
energy, on average, in the corresponding interval. The
result is a ‘‘binned’’ DOS that looks smooth only if the
intervals are sufficiently wide. Figure 2 shows the result
for different values of �a2=t. Note that we have further
rescaled the vertical axis by an overall factor of a=l. This
leads to the collapse of all the data onto a single curve,
suggesting that the continuum-limit DOS describes the
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FIG. 2. Finite-size scaling of the binned DOS for 1D lat-
tices with finite strength of the trapping potential: �a2=t �
5 � 10�6��	, 10�5��	, 10�4��	, and 10�3��	. In all cases the
numerical cutoff energy, �N , lies outside the energy range
showed in the plot. This is illustrated in the inset: it shows
the DOS for fixed �a2 � t=1000, but calculated using lattices
with different numbers of sites: N � 300��	, 350��	, 420��	,
and 2000��	.
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FIG. 3. DOS of a single atom in an optical lattice for
(a) d � 1 and (b) d � 2. Curves: continuum-limit results
obtained within the WKB approximation. Histograms: numeri-
cal diagonalization for finite-size systems with trap strengths
� � 5� 10�6t=a2 (a) and � � 1:5� 10�2t=a2 (b), using lat-
tices with N � 5000 and 10 000 sites, respectively.
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overall distribution of energy levels even for quite steep
traps, with only l=a� 100 sites. The inset illustrates the
numerical cutoff artefact mentioned above. Finally, Fig. 3
compares the DOS of two finite (but fairly large) systems
to the WKB predictions obtained above in 1D and 2D,
respectively. Evidently our WKB approach captures the
continuum limit rather well.

Conclusion.—We have calculated the DOS for a single
atom in an optical lattice; this should be regarded as the
logical first step towards a detailed theory of the experi-
mentally realized many-particle systems. Our results are
based on WKB theory, and refer to the limit l� a or,
equivalently, when the trapping potential becomes flat:
�! 0. Numerical diagonalization reveals this theory to
be extremely accurate in that case, and moreover shows
that, for finite-size systems, the binned DOS has the same
overall features. Our main result is that the DOS, in this
limit, is radically different from what is obtained for a
homogeneous lattice (i.e., for � � 0 rather than �! 0):
the square-root singularities in the 1D case are replaced
by a logarithmic one, and the logarithmic van Hove
singularity in 2D disappears altogether. Moreover, our
theory provides a detailed picture of how this comes
about. The crucial features are the new turning points,
associated with Bragg reflection, that appear at energies
above the top of the conduction band. The possibility of
inducing Bragg reflection by using a time-dependent
external potential was considered in [11]. We have shown
that Bragg reflection is, in fact, essential to understand the
080404-4
equilibrium single-particle spectrum of the optical
lattice.
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Note added.—It has been drawn to our attention that
some of the features discussed here have recently been
pointed out in an exact diagonalization study [25].
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I. Bloch, Nature (London) 415, 39 (2002).

[5] B. DeMarco and D. Jin, Science 285, 1703 (1999).
[6] M. Greiner et al., cond-mat/0311172.
[7] M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, and
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