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Single-atom Fe with Fe1N3 structure showing superior
performances for both hydrogenation and transfer
hydrogenation of nitrobenzene
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ABSTRACT The design of non-noble metal heterogeneous

catalyst with superior performance for selective hydrogena-

tion or transfer hydrogenation of nitroarenes to amines is

significant but challenging. Herein, a single-atom Fe sup-

ported by nitrogen-doped carbon (Fe1/N-C) catalyst is re-

ported. The Fe1/N-C sample shows superior performances for

the selective hydrogenation and transfer hydrogenation of

nitrobenzene to aniline at different temperatures. Density

functional theory (DFT) calculations show that the superior

catalytic activity for the selective hydrogenation at lower

temperatures could be attributed to the effective activation of

the reactant and intermediates by the Fe1/N-C. Moreover, the

excellent performance of Fe1/N-C for the selective transfer

hydrogenation could be attributed to that the reaction energy

barrier for dehydrogenation of isopropanol can be overcome

by elevated temperatures.

Keywords: single-atomic Fe catalyst, hydrogenation of nitro-

benzene, transfer hydrogenation, DFT calculations

INTRODUCTION
Amines are important chemical intermediates for fine
chemicals and pharmaceuticals [1,2]. The selective hy-
drogenation of nitroarenes to anilines with hydrogen
molecules and transfer hydrogenation with organic mo-
lecules as the hydrogen donor are extensively utilized

approaches in practical applications [3–11]. Although
numerous excellent homogeneous catalysts and noble
metal heterogeneous catalysts have been developed for
the catalytic conversion of nitroarenes to anilines, the
difficulties in the separation and reuse of the homo-
geneous catalysts and the high cost of the noble metal
heterogeneous catalysts hinder their further applications
[12–15]. Therefore, it remains a significant challenge to
synthesize the non-noble metal catalyst that possesses
superior performance for the hydrogenation of ni-
trobenzene. Iron catalyst is one of the most used non-
noble metal catalysts in the catalytic reaction, which is the
best candidate metal for the hydrogenation of ni-
trobenzene [16–18]. However, the heterogeneous iron
catalyst with excellent catalytic performances for both
selective hydrogenation and transfer hydrogenation of
nitroarenes has seldom been studied.
Single-atom catalysis has become one of the most active

research frontiers in heterogeneous catalysis due to the
uniform active site and total atom utilization efficiency
[19–36]. The uniform active site can provide an ideal
platform for deeper understanding of the fundamentals.
Meanwhile, the total atom utilization efficiency can
naturally increase the catalytic performance. It is worth
noting that the single-atom catalysts have exhibited ex-
cellent performances for various reactions. Especially, the
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single-atom Fe catalysts loaded on different supports have
shown exceptional catalytic performances for electro-
catalysis and selective oxidation [37–43]. However, there
are few studies reported the single-atom Fe catalyst with
both selective hydrogenation and transfer hydrogenation
performance.
Herein, we developed an efficient strategy to synthesize

single-atom Fe catalyst anchored on nitrogen-doped
carbon (Fe1/N-C). The as-prepared Fe1/N-C possessed
the Fe1N3 structure, which was evidenced by X-ray ab-
sorption fine structure (XAFS) data as well as the corre-
sponding fitting and density functional theory (DFT)
calculation. The Fe1/N-C sample showed superior cata-
lytic performances for the selective hydrogenation and
transfer hydrogenation of nitrobenzene than the Fe na-
noparticles/N-C catalyst. DFT calculation investigated the
reaction process and revealed that the reactant could be
effectively activated by the Fe1/N-C at lower tempera-
tures. Furthermore, the energy barrier for dehydrogena-
tion of isopropanol on the Fe1/N-C could be overcome at
higher temperatures.

EXPERIMENTAL SECTION

Materials

Dicyandiamide, dopamine, ammonium hydroxide, and
Fe(acac)3 were purchased from Innochem. Nitrobenzene,
borane-tert-butylamine, and oleylamine were purchased
from Aladdin. Ethanol was purchased from Sinopharm
Chemical Reagent Co. Ltd. (Shanghai, China). All che-
micals were used as received without further purification.

Preparation of the catalysts

Syntheses of g-C3N4

Dicyandiamide (10 g) was heated at a rate of 5°C min−1

over 2 h to reach a temperature of 600°C and then treated
at 600°C for 2 h under flowing N2 atmosphere. The ob-
tained yellow material was fully grinded to form powder
g-C3N4.

Syntheses of Fe nanoparticles

Fe(acac)3 (20 mg) was dissolved in 10 mL oleylamine at
250°C under vigorous stirring for about 10 min. Then, a
solution of 100 mg borane-tert-butylamine in 2 mL
oleylamine was added quickly into the above solution.
After about 2 min, the flask was then heated to 270°C and
then hold at 270°C for 1 h. After cooling to room tem-
perature, the sample was washed three times with ethanol

and then dispersed in cyclohexane for future use.

Syntheses of the Fe1/N-C, Fe nanoparticles/N-C and N-C

The as-prepared g-C3N4 (500 mg) and dopamine
(500 mg) were dispersed in 100 mL water and 40 mL
ethanol mixture solution under ultrasound condition.
Ten milliliter of ethanol solution containing 5 mg
Fe(acac)3 was added into the above mixture solution
under vigorous stirring. After continuous stirring about
10 min, 2 mL ammonium hydroxide was further added.
After continuous stirring for about 24 h, the suspension
was centrifuged, then washed with H2O and ethanol, and
finally dried under vacuum at room temperature. The
resulting powder was heated at a rate of 5°C min−1 to
reach a temperature of 800°C and then treated at 800°C
for 2 h under flowing N2 atmosphere. The Fe loading is
2.1 wt% determined by inductively coupled plasma op-
tical emission spectroscopy (ICP-OES) analysis. In the
same procedure, Fe nanoparticles/N-C were synthesized
by changing the Fe(acac)3 to Fe nanoparticles. The Fe
loading of Fe nanoparticles/N-C is 5.2 wt% determined
by ICP-OES analysis. N-C was synthesized using the same
method without adding any Fe species.

Catalytic evaluation

The hydrogenation of nitrobenzene was carried out in a
25-mL stainless steel autoclave with a magnetic stirrer, an
automatic temperature control apparatus and a pressure
gauge. In a typical experiment, the reaction mixture
containing the nitrocompound (1 mmol), catalyst (50 mg
Fe1/N-C, 20 mg Fe NPs/N-C and 50 mg N-C or 50 mg
mesoporous g-C3N4 (mpg-C3N4)) and 5 mL isopropanol
were loaded into the reactor. The reactor was sealed,
purged two times with N2 at 1 MPa and then pressurized
with 0.5 MPa H2 and 1 MPa N2 to a setting point. The
reactor was then heated to different temperatures and the
stirring speed was fixed to about 1000 r min−1. After 5 h,
the autoclave was cooled down to stop the reaction. The
products were identified by gas chromatography mass
spectrometry and gas chromatography.
The reaction condition for transfer hydrogenation of

nitrobenzene was similar with the condition for the hy-
drogenation of nitrobenzene, expect the atmosphere
changed by 1 bar N2 and without H2.
During the catalyst stability test, the catalysts were re-

used without any treatments. More specifically, following
the hydrogenation reaction, the reaction mixture was
centrifuged to recover the catalyst, which was washed
with acetone and then water followed by drying under
vacuum oven at 50°C for the next catalytic test.
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Characterizations

The X-ray diffraction (XRD) data were recorded on a
Rigaku D/max 2500Pc X-ray powder diffractometer.
Transmission electron microscopy (TEM) images were
recorded on a Hitachi-7700 operated at 100 kV. High-
resolution TEM (HRTEM) images were obtained by an
FEI Tecnai G2 F20 S-Twin HRTEM working at 200 kV.
Aberration-corrected (AC) high-angle annular dark-field
scanning TEM (HAADF-STEM) images were imaged by
using a Titan 80-300 scanning/transmission electron
microscope operated at 300 kV, equipped with a probe
spherical aberration corrector. ICP-OES was performed
on Thermo Fisher IRIS Intrepid II.

XAFS analysis and results

Fe K-edge X-ray absorption spectra were acquired in
fluorescence mode under ambient condition at a 1W1B
station in Beijing Synchrotron Radiation Facility (BSRF,
operated at 2.5 GeV with a maximum current of
250 mA). All samples were pelletized to disks of 8 mm
diameter with 1 mm thickness. The XAFS data were
background-subtracted, normalized, and Fourier trans-
formed by standard procedures within the IFEFFIT
package. Least-squares curve fitting analysis of the ex-
tended XAFS (EXAFS) χ(k) data was carried out based on
the EXAFS equation.

Computational method

All the calculations were carried out using DMol3 code
[44] through spin polarization DFT [45]. The Perdew-
Burke-Ernzerhof (PBE) [46] exchange-correlation func-
tional within a generalized gradient approximation was
employed. The double numerical plus polarization was
chosen as the basis set for other elements. Self-consistent
field calculations were performed with a convergence
criterion of 2.0×10−5. To ensure high-quality results, the
real-space global orbital cut off radius was chosen as high
as 4.5 Å. During geometry optimizations, the K-points of
Fe (100) is set to be 3×3×1, the K-points of FeN3 is set to
be 5×5×1. Linear synchronous transit/quadratic syn-
chronous transit (LST/QST) method, which has been well
validated to find a transition-state structure, was used to
obtain the energy barrier [47]. The different charge
densities were calculated by subtracting the charge den-
sity of the substrate and PhNO2 from the PhNO2-
absorbed system.
To simplify the calculation for hydrogenation of ni-

trobenzene, the hydrogen atoms and the water molecules
were excluded from the slab model calculations. Ac-
cording to Mondal’s scheme [48], the reaction energies

were calculated using the following formula:

( )

( )

E E n E E

E n E E

= + ×

+ × ,

reaction product
*

water water b_water

reactant
*

H H b_H

where Ereactant
* means the total energy of the system in

which the reactant is bound to the slab; Eproduct
* means the

total energy of the system in which the product is bound
to the slab while the generated water molecule does not
exist; nwater is the number of water molecules dissociating
from the reactant and nH is the number of hydrogen
atoms; Ewater and EH are the energies of an isolated water
molecule and hydrogen atom, respectively; Eb_water and
Eb_H represent the binding energies of a water molecule (a
hydrogen atom) on a clean surface.

RESULTS AND DISCUSSION
The preparation of the Fe1/N-C sample included the
following three-step procedures. Firstly, g-C3N4 was
prepared by the pyrolyzation of dicyandiamide. Then, a
thin layer of polydopamine (PDA) doped by Fe(acac)3
was coated on g-C3N4 surface to form the Fe(acac)3-
PDA@g-C3N4 composite. Finally, the above composite
was pyrolyzed to form the final Fe1/N-C sample. The
prepared g-C3N4 exhibited nanosheet morphology
(Fig. S1). The XRD pattern shows that the obtained
sample has the typical g-C3N4 crystal pattern (Fig. S2).
The g-C3N4 was crucial for the preparation of Fe1/N-C
because it was used as both a soft template to obtain the
layer structure and a nitrogen source to obtain high-
content-nitrogen-doped carbon. TEM image shows that
the Fe1/N-C sample has a nanosheet morphology, and no
obvious Fe-containing nanoparticles are observed
(Fig. 1a). And XRD pattern shows that the spectrum of
Fe1/N-C has one broad diffraction peak, with 2θ in the
range of 15°–35°, which could be assigned to the dif-
fraction character of (002) of graphitic carbon and is si-
milar to the N-C and Fe nanoparticles/N-C (Figs S3–S5).
Moreover, no diffraction peak assigned to metallic Fe was
found, eliminating the existence of Fe-containing crys-
talline species. Besides, no Fe-containing nanoparticle
was found in the HAADF-STEM image (Fig. 1b).
Meanwhile, the energy-dispersive X-ray (EDX) spectro-
scopy reveals that Fe and N atoms are uniformly dis-
tributed in the carbon nanosheets (Fig. 1c), and the
nitrogen content is up to about 4.7 wt% (Fig. S6 and
Table S1). Furthermore, the ICP-OES shows that the Fe
content is as high as 2.1 wt%. Nitrogen adsorption-des-
orption isotherms show that the Brunauer-Emmett-Teller
(BET) surface areas of N/C, Fe1/N-C, and Fe nano-
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particles/N-C are approximately 338, 311, and 297 m2 g−1,
respectively. And the average pore diameters of N/C, Fe1/
N-C, and Fe nanoparticles/N-C are 2–3 nm (Figs S7–
S12). The AC HAADF-STEM image reveals that many
single bright dots are homogeneously distributed on the
support, which could be assigned to the Fe atoms
(Fig. 1d). Besides, no Fe-containing nanocluster was
found, further confirming that the Fe species is the single-
atom state.
The detailed charge state and coordinate structure of Fe

atom were further determined by the XAFS spectroscopy.
The Fe K-edge X-ray absorption near-edge structure
(XANES) spectra show that the absorption profile of Fe1/
N-C was significantly different from that of Fe foil and
Fe2O3, demonstrating the unique structure of Fe1/N-C
(Fig. 2a). Moreover, the absorption edge and white line
intensity of Fe1/N-C were located between the Fe foil and
Fe2O3, indicating that the valence state of Fe was between
0 and 3. To reveal the coordinate structure of Fe1/N-C,
the Fourier-transformed k

3-weighted EXAFS (FT EXAFS)
measurement was further performed. Only one promi-
nent peak at 1.4 Å was observed in the FT EXAFS spec-
trum of Fe1/N-C, which could be ascribed to the Fe–N/C
contributions. Besides, no evident peak at around 2.4 Å
corresponding to the Fe–Fe contribution was observed,
demonstrating that the Fe1/N-C sample contained only
single-atom Fe (Fig. 2b). Moreover, wavelet transform

(WT) EXAFS analysis results show only one intensity
maximum at 3.2 Å−1 in K-space and 1.4 Å in R-space in
the WT EXAFS spectrum of Fe1/N-C, which is corre-
sponding to the Fe–N/C bond and further indicates that
the Fe species in Fe1/N-C exists as single-atom Fe (Fig. 2e
and Figs S13, S14). Therefore, it can be evidenced that the
Fe exists as single-atoms in Fe1/N-C by the AC HAADF-
STEM and EXAFS analysis. EXAFS fitting was further
performed to obtain the detailed structure configuration
of the Fe atom. According to the fitting results, the co-
ordination numbers of Fe–C/N within Fe1/N-C are ap-
proximate 3.1 and the average bond length of Fe–N is
1.83 Å (Fig. 2c, d, and Fig. S15, Table S2). The structure
of Fe1/N-C was further confirmed by DFT calculations
(Fig. 2f). Herein, every Fe atom was anchored by three N
atoms and the Fe–N bond length was calculated to be
1.82 Å by the DFT calculations, which is in good agree-
ment with the experimental results from the XAFS
spectra.
Next, we chose the selective hydrogenation and transfer

hydrogenation of nitrobenzene to investigate the perfor-
mance of the Fe1/N-C sample. By optimizing the reaction

Figure 1 (a, b) TEM and STEM images of Fe1/N-C. (c) EDX mapping
distributions of C, N, and Fe, respectively. (d) AC STEM image of Fe1/
N-C.

Figure 2 (a, b) XANES and FT EXAFS spectra at the Fe K-edge of Fe1/
N-C, Fe foil, and Fe2O3. (c, d) The fittings of the EXAFS spectra of Fe1/
N-C at R- and K-spaces, respectively. (e) WT EXAFS spectra of Fe1/
N-C. (f) The structural model of Fe1/N-C, C (gray), N (blue), and Fe
(purple).
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conditions, the Fe1/N-C catalyst showed superior prop-
erties for the selective hydrogenation and transfer hy-
drogenation with hydrogen molecule and isopropanol as
the hydrogen source, respectively. As shown in Table 1,
˃99% conversion and ˃99% selectivity for the selective
hydrogenation of nitrobenzene to aniline were achieved
at 160°C. When the temperature rose to 220°C, the
conversion of ˃99% and selectivity of ˃99% for the
transfer hydrogenation of nitrobenzene to aniline were
also achieved. Therefore, the superior performances of
the selective hydrogenation and transfer hydrogenation
could be achieved by the Fe1/N-C catalyst, which was one
of the best results for the selective hydrogenation and
transfer hydrogenation of nitrobenzene catalyzed by Fe-
based catalysts (Table S3). However, the N-C itself was
reactively inert for hydrogenation and transfer hydro-
genation of nitrobenzene under the same condition.
When Fe nanoparticles/N-C (Fig. S16) was used as cat-
alyst, only trace product was obtained, indicating that the
superior performance of the single-atom Fe (Table 1).
Moreover, the Fe1/N-C catalyst showed robust recycling
capability in both selective hydrogenation and transfer
hydrogenation (Figs S17 and S18). HAADF-STEM ima-
ges and XRD patterns demonstrate that the morphology

and structure of Fe1/N-C did not change and no Fe na-
noparticles or nanoclusters were obsevered after the re-
actions, which further demonstrates the robust stability of
the Fe1/N-C catalyst (Figs S19 and S20). To verify the
universal catalytic performace of Fe1/N-C, we explored
the hydrogenation of several other nitroarene derivatives,
including 4-nitrobenzene, 4-nitrotoluene, 4-nitro-
chlorobenzene, and 4-bromonitrobenzene. The results
showed that Fe1/N-C exhibited excellent peformance for
all corresponding anilines (Table 1).
In order to understand the excellent catalytic perfor-

mance of Fe1/N-C in the hydrogenation of nitrobenzene
to aniline, the reaction energies on Fe1/N-C and Fe (100),
which is the commonly active surface for the Fe-based
catalyst [49–51], were explored by DFT calculations. In
addition, Fe (100) facet was selected for our calculations
because the Fe (100) facet is often used as the re-
presentative facet of Fe nanoparticles to discuss calcula-
tion-related issues qualitatively [52–54]. At the same time,
the formation energies of the Fe (100), (111), and (211)
planes were calculated (Fig. S21). The results showed that
the Fe (100) plane is more stable. Firstly, for the ad-
sorption of nitrobenzene, the configurations of adsorbate
on Fe1/N-C and Fe (100) are parallel to the catalyst sur-

Table 1 Selective hydrogenation and transfer hydrogenation of nitrobenzenes to anilines at different temperaturesa

Catalyst Reactant Temperature (°C) Hydrogen source Conversion (%) Selectivity (%) Yeild (%)

Fe1/N-C Nitrobenzene 120 H2 N.R. − −

Fe1/N-C Nitrobenzene 140 H2 14 ˃99 14

Fe1/N-C Nitrobenzene 160 H2 ˃99 ˃99 ˃99

Fe1/N-C 4-Nitrophenol 160 H2 ˃99 ˃99 ˃99

Fe1/N-C 4-Nitrotoluene 160 H2 92 ˃99 92

Fe1/N-C 4-Nitrochlorobenzene 160 H2 94 ˃99 94

Fe1/N-C 4-Bromonitrobenzene 160 H2 92 ˃99 92

N-C Nitrobenzene 160 H2 N.R. − −

Fe nano particle/N-C Nitrobenzene 160 H2 Trace − −

Fe1/N-C Nitrobenzene 160 Isopropanol N.R. − −

Fe1/N-C Nitrobenzene 180 Isopropanol 21 ˃99 21

Fe1/N-C Nitrobenzene 200 Isopropanol 45 ˃99 45

Fe1/N-C Nitrobenzene 220 Isopropanol ˃99 ˃99 ˃99

N-C Nitrobenzene 220 Isopropanol N.R. − −

Fe nano particle/N-C Nitrobenzene 220 Isopropanol Trace − −

a) Time: 5 h; solvent: isopropanol; H2: 5 bar.
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faces. This parallel adsorption mode of nitrobenzene on
the metal surface, rather than the vertical one, is con-
sistent with previous studies [55,56]. In addition, we
calculated the charge density difference of nitrobenzene
on the surface of different catalysts. The results showed
that for Fe surface, both the benzene ring and the NO2

group in the molecule had electron exchange with the
catalyst surface; while on the Fe1/N-C surface, the elec-
tron exchange was mainly concentrated on the NO2

group, and the electron exchange effect was stronger. This
indicates that Fe1/N-C can activate nitrobenzene more
effectively.
According to the previous reports, the hydrogenation

reduction of nitrobenzene to aniline follows the direct
reaction pathway, namely PhNO2

*
→PhNOOH*

→

PhNO*
→PhNOH*(PhNHO*)→PhNHOH*

→PhNH*
→

PhNH2
* [57,58]. The full reaction energy profiles along

the pathway are collected in Fig. 3, and the structure
diagram of each intermediate is shown in Tables S4–S7.
In the hydrogenation reaction, the hydrogen atom and
the oxygen atom of PhNO2 are firstly combined to obtain

the PhNOOH intermediate, then reduced to PhNO in-
termediate (−2.30 eV on Fe1/N-C and +0.25 eV on Fe
surface). Then, the H atom can attack the O atom or N
atom of the PhNO intermediate, forming PhNOH or
PhNHO intermediates, respectively (−0.12/−0.64 eV on
Fe1/N-C and −0.26/+1.46 eV on Fe surface). In the next
step, the H atom interacts with a PhNOH or PhNHO
intermediate to form a PhNHOH intermediate
(−2.09/−1.57 eV on Fe1/N-C and +1.73/+0.02 eV on Fe
surface). Finally, the hydrogen atom combines with
PhNH to form aniline. From the above analysis, we can
see that for the hydrogenation of nitrobenzene, the full
pathway on FeNC catalyst is an exothermic process, and
there is no reaction energy barrier; for Fe surface, the
reaction energy barrier for the hydrogenation process is
+1.45 eV. Therefore, the reactivity of Fe1/N-C is sig-
nificantly higher than that of Fe nanoparticles.
To further reveal the excellent performance of Fe1/N-C

for the transfer hydrogenation of nitrobenzene to aniline
with the isopropanol as the hydrogen donor, we further
calculated the dehydrogenation reaction barrier of iso-
propanol on Fe1/N-C and Fe surface. The reaction barrier
and the structure of transition state are shown in Fig. 4.
The calculation results show that the energy barrier for
isopropanol dehydrogenation is 1.88 eV, which could be

Figure 3 Reaction energy profiles of nitrobenzene hydrogenation and
charge density difference of PhNO2 on (a) Fe1/N-C and (b) Fe (100). The
yellow and purple regions represent the deletion and accumulation of
electrons, respectively.

Figure 4 The reaction barrier for the dehydrogenation of isopropanol
on Fe1/N-C.
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overcome by the increasing reaction temperature, con-
sistent with the experimental results.

CONCLUSIONS
In summary, we have successfully synthesized the single-
atom Fe supported by nitrogen-doped carbon. The as-
prepared Fe1/N-C sample possessed the Fe1N3 structure
which showed superior performances in both the hy-
drogenation and transfer hydrogenation of nitrobenzene
in isopropanol solution. DFT showed that the unique
catalytic activity of the Fe1/N-C originated from the fact
that the reactant could be effectively activated. Moreover,
the excellent performance of Fe1/N-C catalyst for transfer
hydrogenation can be attributed to that the dehy-
drogenation reaction energy barrier of isopropanol can be
overcome by elevated temperature.
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Fe1N3结构单原子Fe催化剂在硝基苯加氢和转移
加氢中的优异性能
田书博1†, 胡敏2†, 徐琪1†, 龚万兵3, 陈文星4, 杨嘉睿1, 朱有奇4,
陈春3, 何佳2, 刘强1, 赵惠军3, 王定胜1*, 李亚栋1

摘要 设计性能优异的硝基化合物选择性加氢或转移加氢生成胺
类的非贵金属多相催化剂具有重要的意义, 但又具有很大的挑战
性. 本文报道了氮掺杂碳负载的单原子Fe催化剂(Fe1/N-C). 通过调
控温度, Fe1/N-C催化剂对硝基苯的选择性加氢和转移加氢均具有
良好的催化性能. DFT计算表明, Fe1/N-C在较低温度下能够很好
地活化反应物和中间体, 因此具有较高的选择性加氢活性. 此外,

Fe1/N-C在较高温度下可以克服异丙醇脱氢反应的能量障碍, 因此
具有很好的转移加氢性能.
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