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Single-atom level determination of 3-dimensional
surface atomic structure via neural network-
assisted atomic electron tomography

Juhyeok Lee® ', Chaehwa Jeong® ' & Yongsoo Yang® '™

Functional properties of nanomaterials strongly depend on their surface atomic structures,
but they often become largely different from their bulk structures, exhibiting surface
reconstructions and relaxations. However, most of the surface characterization methods
are either limited to 2D measurements or not reaching to true 3D atomic-scale resolution,
and single-atom level determination of the 3D surface atomic structure for general 3D
nanomaterials still remains elusive. Here we demonstrate the measurement of 3D atomic
structure at 15 pm precision using a Pt nanoparticle as a model system. Aided by a deep
learning-based missing data retrieval combined with atomic electron tomography, the surface
atomic structure was reliably measured. We found that <100> and <111> facets contribute
differently to the surface strain, resulting in anisotropic strain distribution as well as com-
pressive support boundary effect. The capability of single-atom level surface characterization
will not only deepen our understanding of the functional properties of nanomaterials but also
open a new door for fine tailoring of their performance.
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individual atom level has been the main interest for broad

scientific communities including physics, materials science,
chemistry, and nanoscience. Due to lower coordination numbers,
surface atoms often show substantial deviations from their bulk
structure!~12. However, especially for metallic nanoparticles, the
surface structure plays a crucial role in their catalytic activities,
which nowadays have major technological importance in the
synthesis of chemicals!3, abatement of air pollution!4, and fuel
cell applications!®. It is critically important to fully understand
the surface atomic structure to fine-tune the catalytic properties
for each application.

Atomic electron tomography (AET) has been recently devel-
oped as a powerful tool for individual atom level 3D structural
imaging!®17, actively being used for measuring atomic level
defects'®19, 3D strain!®?0, chemical order/disorder!®, and
nucleation dynamics?!. However, often due to geometrical lim-
itations, only part of a full tomographic angular range is experi-
mentally measurable (so-called “missing wedge” problem), which
results in elongation and Fourier ringing artifacts along the
direction of the missing information in the reconstructed
tomogram?223, The missing wedge artifact negatively affects the
accuracy of the surface atomic structure determined from the
tomogram, being the main roadblock for precise determination of
the 3D surface atomic structure!8.

On a parallel front, the deep learning-based neural network
approach has recently attracted great interest from electron
microscopists?#=27. It has already demonstrated successes in
missing data retrieval?>26 and super-resolution imaging2427-28, In
this work, we combine AET with a deep learning-based neural
network based on the atomicity principle. Using a Pt nanoparticle
as a model system, we successfully retrieved the missing wedge
information and achieved a robust reconstruction of the 3D
surface atomic structure.

P recise determination of 3D surface atomic structure at an

Results

Deep learning approach. The main idea behind this deep
learning-based approach is atomicity—the fact that all matter is
composed of atoms. This means that the true atomic resolution
electron tomogram should only contain sharp 3D atomic
potentials convolved with the electron beam profile. Therefore, a
deep neural network can be trained using simulated tomograms
that suffer from artifacts (due to missing wedge, insufficient
projection data, various noises, etc) as inputs, and the ground
truth 3D atomic volumes as targets. The trained deep learning

network effectively augments the imperfect tomograms and
removes the artifacts. Figure 1 shows our deep learning aug-
mentation (DL augmentation) architecture based on a 3D-unet?’
(see “Methods” section). An input training data set was generated
by simulating the electron tomography process using face-
centered cubic (f.c.c.)-based random atomic models, and a tar-
get data set was prepared as the 3D volumes which consist of 3D
Gaussian functions located at the ground truth atomic positions
(see “Methods” section). For the tomography simulations,
tomographic tilt series were obtained by linearly projecting the
atomic potentials based on atomic scattering factors. The
broadenings due to electron beam profiles and thermal vibrations
were also considered during the tilt-series calculation by intro-
ducing a Bfactor (see “Methods” section). Only limited tilts angles
(—65° to +65°) were used, and Poisson noises were added to
simulate the experimental conditions. Three-dimensional tomo-
grams were reconstructed from the tilt series using GENFIRE
algorithm3® (see “Methods” section). As shown in Fig. 1, the
simulated tomograms suffer from undesirable artifacts along the
vertical direction (missing wedge direction), and determination of
true atomic structure from the raw tomogram is difficult due to
these artifacts.

Simulational test. Our trained DL network was first tested with
linear projection-based simulations. Using the atom-tracing
method, the 3D coordinates of individual atoms were deter-
mined from the simulated tomograms (see “Methods” section).
Compared to the ground truth structure (Fig. 2a, f, k), the raw
tomogram clearly suffers from artifacts resulting from the missing
wedge and noise effect; the atomic intensities are blurred, elon-
gated, and connected to neighboring atoms, and several mis-
identified atoms can be found, especially near the surface (Fig. 2b,
g, 1). Applying the atomicity-based DL augmentation can suc-
cessfully suppress the artifacts (Fig. 2c, h, m). The atomic
intensities become well-localized, and most of the atoms can be
correctly retrieved. It can also be clearly seen from the Fourier
peaks that the missing wedge information was successfully
restored (Supplementary Fig. 1) by the DL approach.

To mimic the true experimental conditions including dynamic
scattering, channeling, and lens aberrations, multislice-based
plane-wave reciprocal-space interpolated scattering matrix
(PRISM) simulations3! were also performed to further test the
DL augmentations (see “Methods” section). As expected, the raw
tomograms from the PRISM simulation show more artifacts near
the surface compared to the linear counterpart (Fig. 2d, i, n).
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Fig. 1 The architecture of the deep learning augmentation. The deep learning augmentation follows a 3D-unet structure (see “Methods"” section). The set
of boxes represents the feature map. The number of channels is denoted below each feature map.
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Fig. 2 Effect of the DL augmentation for simulated tomograms. a-e 3D iso-surfaces plotted with 10% iso-surface values (10% of the highest intensity),
representing ground truth (), linear tomogram before (b) and after the DL augmentation (c), PRISM tomogram before (d), and after the DL augmentation
(e). Note that the z direction is the missing wedge direction. f-o 2-A-thick slices perpendicular to [001] direction, obtained from the 3D tomograms near
the center region (f-j) and near the surface (k-0). Ground truth (f, k), linear tomogram before (g, 1) and after the DL augmentation (h, m), PRISM

tomogram before (i, n) and after the DL augmentation (j, 0). The grayscale background represents the reconstructed intensity, and blue dots represent the
positions of traced atoms. Red circles denote misidentified atoms before the DL augmentation, which become correctly traced after the DL augmentation.

Scale bars, 1 nm.

However, the DL augmentation was still successful in reducing
the artifacts even for PRISM-simulated tomograms, and the
output volumes were as similar as the ones obtained from the
linear simulations (Fig. 2e, j, 0).

Since the traced atomic coordinates can be quantitatively
compared to the ground truth atomic model, we performed a
statistical analysis based on two test data sets of 1000 tomograms,
each generated from linear simulations and PRISM simulations,
respectively. The averaged tracing errors (percentage of incor-
rectly identified atoms; see “Methods” section) of 6.8% (linear)
and 7.9% (PRISM) of the raw tomograms were reduced to 0.4%
and 0.7% after the DL augmentation, respectively (Supplementary
Fig. 2a, b). Also, the before-DL augmentation averaged root-
mean-square deviations (RMSDs) between the ground truth
atomic positions and traced atomic positions were 34.5 pm
(linear) and 36.5 pm (PRISM), which were substantially improved
to 19.7 and 22.3 pm after the DL augmentation, respectively
(Supplementary Fig. 2e, f).

To verify the robustness of our approach, the network was
trained with two additional training data sets (one with
amorphous structure and one with f.c.c.-based structure with a
different Bfactor [see “Methods” section]), and tested with the
same test data set used for testing the original DL augmentation.
As can be seen in Supplementary Fig. 2, regardless of the base
structure of the training data sets, all DL augmentations show
consistent output, and proper f.c.c.-based ground truth struc-
tures of the test data set were retrieved even by the DL
augmentation trained with amorphous structures. Further, we
applied the DL augmentation to simulated tomograms from
various atomic models to check whether our approach is also

valid for structures other than close-to-ideal f.c.c. We generated
the test data sets based on the following atomic structures: f.c.c.-
based atomic structures with the different vacancy defect levels,
amorphous atomic structures with different sizes, decahedral
nanoparticles with twinned boundaries, and f.c.c.-based atomic
structures with stronger surface relaxations (see “Methods”
section). The DL augmentation network shows significant
improvement regardless of the base-model of the input volumes
(Supplementary Figs. 3-9), supporting the robustness of the DL
augmentation approach.

To evaluate the performance of our DL augmentation
specifically in terms of surface structure, we calculated the
tracing errors and RMSDs for the surface atoms before and after
the DL augmentation. For the linear projection simulation case,
the averaged surface tracing error in Supplementary Fig. 2c
decreased from 4.4 to 0.2%, and the averaged surface RMSD was
reduced from 30.7 to 18.0 pm (Supplementary Fig. 2g). PRISM
simulations also showed substantial improvement (the averaged
surface tracing error 0.6%, and averaged surface RMSD 21.1 pm
after the DL augmentation). These simulation results clearly
demonstrate that the DL augmentation can successfully reduce
the artifacts from insufficient data and noises, retaining improved
precision, especially for surface atoms. The DL augmentations
trained with different training data sets also showed similar
improvements (Supplementary Fig. 10).

Experimental determination of the 3D atomic structure of a Pt
nanoparticle. Next, we applied our DL augmentation to experi-
mentally determine the 3D surface atomic structure of a Pt
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nanoparticle. The experiment was performed using an aberration-
corrected scanning transmission electron microscope (STEM)
operated in annular dark-field (ADF) mode (see “Methods” sec-
tion). From a 4 nm diameter Pt nanoparticle, a tilt series of 21
images were acquired with the tilt angles ranging from —71.6° to
+71.6° (Supplementary Fig. 11). After image post-processing, a
3D tomogram was reconstructed from the tilt series using
GENFIRE algorithm30 (see “Methods” section). Figure 3a shows
the raw 3D reconstruction of the nanoparticle. Atom-tracing and
classification procedures were applied to the volume, resulting in
a 3D atomic model of 1411 Pt atoms (Fig. 3¢ and see “Methods”
section).

Severe artifacts due to the missing wedge problem and noises
can be clearly seen in Fig. 3a and Supplementary Figs. 12a, e, i,
13a—-d. The reconstruction suffers from elongation and undesired
intensity reduction near the surface, especially along the missing
wedge direction. Although many of the atoms are correctly found
at f.c.c. lattice sites, some of the atoms are clearly misidentified
and surface atoms are not well defined (Fig. 3a, ¢ and
Supplementary Fig. 13). A 3D mask is often employed to define
the surface of nanoparticles in this case. However, the mask
depends on threshold parameters. Supplementary Fig. 13 shows
the parameter dependence of the mask.

To identify the precise atomic structure including the surface,
the DL augmentation was applied to the raw tomogram.
Figure 3b, d clearly shows that the atomic intensities in the DL-
augmented output are well isolated with the expected Gaussian
shape, showing drastic improvement compared to the raw
reconstruction. Atom-tracing on the DL-augmented volume
resulted in 1530 atoms; about 100 more atoms were successfully
identified (Fig. 3d). Several missing atoms near the core region
were restored by the DL augmentation (Fig. 3d and Supplemen-
tary Fig. 14). Atom profiles (Supplementary Figs. 15, 16) clearly
show that the elongation along the missing wedge direction is
successfully resolved by the DL augmentation. The expected f.c.c.
Fourier peak structures were also well-retrieved after the DL
augmentation especially along the missing wedge direction
(Supplementary Fig. 12).

We further calculated the forward projection tilt-series images
from the atomic models obtained from the raw and DL-
augmented tomograms and compared them to the experimental
tilt series by calculating the R-factor!®1921 (see “Methods”
section). The R-factor was improved from 0.192 to 0.174 after the
DL augmentation. Furthermore, the surface boundaries, espe-
cially along the missing wedge direction, are now clearly defined
after the DL augmentation, which allows unambiguous determi-
nation of 3D surface atomic structure without parameter-
dependent masking process (Supplementary Fig. 13).

PRISM tomography simulation of the atomic model obtained
from the DL-augmented volume demonstrated 98.8% accuracy of
atom identification and 15.1 pm precision of the atomic
coordinates (see “Methods” section). We quantitatively analyzed
the improvement made from the DL augmentation (Supplemen-
tary Fig. 17). The atomic structures before and after the DL
augmentation showed a difference of 373 atoms (25.4%). About
60% of the difference comes from the surface (251 atoms). This
mainly results from the unidentifiable surface atoms (due to
missing wedge-induced intensity drop) being successfully traced
after the DL augmentation (Supplementary Fig. 14). We further
verified our approach by applying the two other DL augmenta-
tions trained by the amorphous atomic models and the fc.c.
atomic models with sharper Gaussian widths (i.e., smaller
Bfactor) (see “Methods” section). The differences between the
atomic models obtained from three different DL augmentations
showed a higher consistency compared to the differences between
the models before and after the DL augmentation (Supplementary

Fig. 3 The 3D density maps of the experimentally measured Pt
nanoparticle tomograms and traced atomic coordinates. a, b Iso-surfaces
of reconstructed 3D density are plotted with 40% and 15% iso-surface
values from the maximum intensity for tomograms before (a) and after (b)
the DL augmentation, respectively. The z direction is the missing wedge
direction. ¢, d Reconstruction volume intensity and traced atom positions.
Each slice represents an atomic layer, and the blue dots indicate the traced
3D atomic positions before (¢) and after (d) the DL augmentation. The
grayscale backgrounds of the atomic positions are iso-surfaces of 3D
density with 40% (c) and 15% (d) iso-surface values from the maximum
intensity. The sliced layers are perpendicular to [001] direction. Here the
DL augmentation network trained by the f.c.c.-based atomic model with
Bfactor 5 A2 was used. Scale bars, 1 nm.

Fig. 17). Also, the missing Fourier peak structures expected for f.c.
c. were properly reconstructed even with the DL augmentation
trained by the amorphous atomic models (Supplementary
Fig. 12c¢).
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Fig. 4 Facets, 3D atomic displacements, and strain maps of the Pt nanoparticle. a Overall atomic structure of the Pt nanoparticle with SiN substrate
represented as black and gray disks. b-d Identified facet structure of the Pt nanoparticle, showing all facets (b), <100> facets (c), and <111> facets (d).
e Atomic structure of the Pt nanoparticle represented in a divided into layers of one f.c.c. unit cell thickness. Blue and black atoms represent the atoms
assigned and not-assigned to the ideal f.c.c. lattice sites, respectively. f The atomic displacements along the crystallographic axes. g The strain maps
representing six components (&, €y, €25, € Exz €y,) Of the strain tensor. The atomic displacements and strain tensors in each row were calculated from
the corresponding slice pointed by the black arrows in e. These calculations were based on the traced atomic model from the tomogram after applying the
DL augmentation trained by f.c.c.-based atomic models with Bfactor 5 A2. Scale bar, 2 nm.

Strain analysis. Having accurate 3D atomic coordinates directly
yields the 3D displacements and strain tensor. By comparing with
an ideal f.c.c. lattice, the 3D displacements, and strain tensor were
calculated based on the traced atomic models (see “Methods”
section). The out-of-plane atomic displacements in <100> and
<111> facets (Fig. 4a—d, f) were —10.2 + 62.9 pm and —3.3 £ 41.2
pm, respectively. However, part of the surface of the nanoparticle
was making contact with the SiIN membrane substrate (Fig. 4a).
To understand the substrate effect, displacements of the atoms on
the facets making contact with the substrates were separately
calculated, resulting in the out-of-plane displacements of —17.2 +
86.5 pm for <100> facets and —21.7 + 47.4 pm for <111> facets.
For facets not in contact with the substrates, the average out-of-
plane displacements of —6.4 + 45.6 pm (compressive) and 5.3 +
35.0 pm (tensile) were obtained for <100> and <111> facets,
respectively. This behavior (compressive strain for <100> facets
and tensile strain for <111> facets) is consistent with the theo-
retical calculation result3.

The strain map (Fig. 4g) shows strong compressive strain along
the x direction and tensile strain along the y direction.
Interestingly, the strain along the z direction shows both
compressive (near the [001] facet) and tensile strain (near the
[001] facet). The anisotropic strain behavior is likely to be related
to the shape of the nanoparticle as well as the particle-substrate
interface. Therefore, we conducted a shape analysis by assuming
an ellipsoidal shape of the nanoparticle (see “Methods” section).
The vertical direction (the shortest ellipsoid principal axis) of the

nanoparticle is slightly tilted compared to the lab-coordinate z
direction (i.e., electron beam direction), as indicated in
Supplementary Fig. 18. When the nanoparticle is re-oriented
based on the f.c.c. crystallographic axes for the strain calculation,
the contact between the nanoparticle and the SiN substrate
becomes located at the lower right part of the nanoparticle
(Fig. 4a).

To clarify the exotic strain behavior, we plotted the strain map
in the lab-coordinate (Supplementary Fig. 19g). Tensile strain is
dominant along the x and y directions in the lab-coordinate, and
strong compressive strain only occurs near the interface with the
SiN membrane (along the z direction in the lab-coordinate).
This indicates that the strong compressive strain observed
along with the [100] direction (Fig. 4g) is mainly due to the
particle-substrate interface effect. We also found that the
tensile strain observed along [0 + 10] directions is resulting from
the neighboring <111> facets which show clear tensile strain (e,
maps in Supplementary Fig. 20). This explains the opposite strain
behavior along the x and y directions in Fig. 4g. Also, the strain
map in the lab-coordinate (Supplementary Fig. 19g) shows that
the z directional strain ¢,, exhibits a gradual change from tensile
(the lower right part of the nanoparticle) to compressive (the
upper left part). Although compressive strain is expected along z
direction due to the domination of <100> facets, strong tensile
strain is observed at the particle-substrate interface. This result
indicates that the nanoparticle surface structure is strongly
dependent on the boundary condition, and the choice of support
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material can critically influence the structure, strain, and related
catalytic behavior.

The strain maps were also calculated from the atomic
structures obtained from the raw tomogram (not DL-augmented)
and tomograms augmented with two other differently trained DL
networks (using amorphous models and smaller Bfactor f.c.c.
models). Some differences can be found (especially near the
surface) between the raw case and DL-augmented cases, but the
strain maps from DL-augmented tomograms are very consistent
overall, verifying the robustness of the DL augmentation
approach (Supplementary Fig. 19).

Discussion

In summary, the 3D atomic structure of a nanoparticle was
successfully determined at an individual atom level by neural
network-assisted AET. Using a Pt nanoparticle as a model system,
we demonstrated that the atomicity-based approach can reliably
identify the surface atomic structure with a precision of 15 pm.
The atomic displacement, strain, and facet analysis revealed that
the surface atomic structure and strain are related to not only the
shape of the nanoparticle but also the particle-substrate interface.
Combined with quantum mechanical calculations such as density
functional theory, the capability of precise identification of sur-
face atomic structure will serve as a powerful key to understand
the surface/interface properties such as catalytic performance and
oxidation effect.

Methods

Generation of input and target data sets for neural network training. To train
and test the DL neural network, 12,000 (10,000 for training, 1000 for validation,
and 1000 for test) simulated tomograms (for input data) and ground truth 3D
tomograms (for target data) were generated. Simulated tomograms were prepared
by following a four-step process.

(1) Random-shaped 3D volumes without cavity were created, whose volumes
range from 17,000 to 27,000 A3. Then, atoms were placed within the 3D volumes
based on f.c.c structure with lattice constant 3.912 A in random orientation. From
the atomic models, to mimic atomic structures of realistic nanoparticles, some
percentages of atoms (the percentages randomly chosen between 0 and 0.5%) were
randomly removed to simulate atomic defects, and random spatial displacement of
~22 pm RMSD was also applied to each atom.

(2) 3D volumes of atomic potentials were calculated based on the 3D atomic
structures. The atomic potentials were obtained by Fourier transformation of the
electron scattering factors32. The atomic potentials were then convolved with
Gaussian kernels to consider the thermal vibration and electron beam size effect.
The standard deviation (o) of a Gaussian kernel is (Bfactor/27%)0->. The Bfactors
were randomly selected from a Gaussian distribution with a mean 5 A2 and
standard deviation of 1 A2 Mean Bfactor of 5 A2 showed the best consistency
between the simulated projections and experimental tilt-series images.

(3) Tilt series were generated by taking linear projections from the 3D atomic
potential volumes at each tilt angle. Each tilt series was composed of 21 projections
with tilt angles ranging from —65° to +65°. The size of each projection was
144 x 144 pixels with a pixel size of 0.357 A. Poisson noises were added to the
projections to simulate the noise effect in the experiment. To take into account the
angular error due to stage instability during the experiment, random angle errors
up to +0.3° were also added to each tilt angle.

(4) 3D tomograms were reconstructed from the tilt series and corresponding
tilt angles using GENFIRE algorithm3(. The axis convention was chosen so that
the z direction is the missing wedge direction. For GENFIRE reconstructions, the
fast Fourier transform (FFT) interpolation method, number of iterations 100,
oversampling ratio of 2, and interpolation radius 0.3 were used.

The target data set (ground truth) was generated by following step 1 above. At
the position of each atom, a Gaussian intensity distribution with a standard
deviation (o) that corresponds to Bfactor 4 A2 was placed, which showed the best
performance in our simulation tests.

To verify the robustness of the DL augmentation approach, two other training
data sets were generated and tested: one with f.c.c.-based structures with Bfactor
3.2 A2, and another based on amorphous atomic structures instead of f.c.c.,
following the same four-step process described above. For the amorphous structure
case, the volumes ranged from 23,000 to 34,000 A3, and the atomic positions were
randomly placed within the volume with the constraint of minimum distance
2.0 A, until 99% atom density compared to that of the f.c.c. structure was reached.

Generation of additional test data sets for testing the DL network. We gen-
erated additional test data sets based on four-different atomic models: f.c.c.-based

atomic models with different levels of vacancy defects, small (approximately 1 nm)
amorphous atomic models, atomic models of decahedral shaped nanoparticles with
twinned boundaries, and f.c.c.-based atomic models with different spatial dis-
placements for the core and the surface atoms.

In the case of the f.c.c.-based atomic models with different levels of vacancy
defects, we simulated three different test data sets using vacancy defect levels of 5%,
10%, and 20%, respectively. We followed the same procedure of generating the data
set of f.c.c.-based atomic models with Bfactor 5 A2; the only difference here is the
level of vacancy defects, which was randomly chosen between 0% and 5%, 10%, and
20%, respectively. Second, the small amorphous models (about 1 nm diameter)
were generated following the procedure of generating the amorphous atomic model
with Bfactor 5 A2 The only difference is that each volume ranges from 3400 to
5700 A3 (about 200-300 atoms) in this case. Third, an atomic model of decahedral-
shaped Pt nanoparticle with twinned boundaries’? was used for generating
different tomograms by applying random cropping/rotation/translation and 0.5%
vacancy defect insertion. Fourth, to mimic the true surface structure of Pt
nanoparticles, we generated f.c.c.-based atomic models with stronger spatial
displacements near the surface. Following the same procedure of generating the f.c.
c.-based atomic models with Bfactor 5 A2, the spatial displacements of 22 and 50
pm RMSD were randomly applied to the core and surface atoms, respectively. We
generated the data sets of 100 tomograms for each model. Note that for the
simulation of the decahedral-shaped Pt nanoparticle, 27 tilt-series images were
used (instead of 21) and the tilt angles were chosen in the range between —75° and
+75° because resolving twin boundary structures required a higher-quality
tomogram. These atomic models were used as test data sets to check whether the
DL augmentation network is biased toward the base atomic structure of the
training data sets (Supplementary Figs. 3-8), and the result clearly shows that the
trained DL augmentation network works well even for test data sets with atomic
structures different from those of the training data sets.

Bfactor optimization for the training input data. The width of Gaussian
broadening resulting from the electron beam size and thermal vibration was
determined to generate training data consistent with the experimental data. A 3D
Gaussian function of 11x 11x 11 voxels was fitted to the averaged 11x 11x 11
voxels extracted from the local maxima positions of the experimental 3D tomo-
gram of a Pt nanoparticle. The optimized Bfactor (6> x 27%) was determined to
be 5 A2

PRISM STEM simulation for the test data set. Following the same convention
with the training data generation, 1000 simulated tilt series were generated by
PRISM simulation3-3%. The PRISM calculations were done with the following
parameters: 300 keV electron energy, —775 nm Cs aberration, 378 pm Cs aber-
ration, 25.1 mrad convergence semi-angle, 40 and 200 mrad detector inner and
outer semi-angle, interpolation factor 8 and 2 A slice thickness. Each tilt image was
convolved with a Gaussian function with Bfactor 5 A2. Also, random angle errors
up to +0.3° were added to each tilt angle. 3D reconstructions were calculated from
the obtained tilt series using GENFIRE algorithm>? with the same reconstruction
parameters given above.

Deep learning augmentation architecture and training. The sizes of input and
output data for the neural network-based DL augmentation were both

144 x 144 x 144 voxels. Figure 1 shows our neural network structure based on a 3D-
unet. For computational efficiency, the network was designed to reduce the size of
feature maps as the layer gets deeper. The encoder consists of two 3x 3x 3 con-
volutions with stride 2 and two 2x 2x 2 max-poolings for downsampling. The
bridge linking the encoder and decoder consists of one 3x 3x 3 convolution with
stride 1. The decoder consists of four 3x 3 x 3 transposed convolutions with stride
2 for upsampling and two 3 x 3 x 3 convolutions with stride 1. Leaky Rectified
Linear Unit (LReLU)3 with the coefficient of leakage 0.2 was used as an activation
function except for the connections from the last layer toward the final output,
where regular ReLU® was used. Dropout?” method was used for the 1st, 5th, and
9th layers to prevent overfitting. Loss function was the mean-square error, and
Adam optimizer3® was used with the learning rate of 2x 107%.

Three different neural networks (i.e., DL augmentations) were trained by three
different input and target data sets, respectively, which are the data sets generated
by (i) f.c.c.-based atomic model + Bfactor 5 A2, (i) amorphous-based atomic
model + Bfactor 5 A2, and (iii) f.c.c.-based atomic model + Bfactor 3.2 A2.

To choose a proper number of tomographic 3D volumes for the training, we
tested various input volumes and found that the use of more than 5000 volumes is
enough to obtain consistent output. Supplementary Figure 21 shows the evolution
of validation losses during the training based on 5000 and 10,000 training volumes,
and they show a similar level of the loss function. We, therefore, used 10,000 test
volumes for the training of the DL augmentation network.

To prevent overfitting and find a proper number of epochs for the training, we
monitored the learning curves during the training processes. The total number of
epochs was set to 100 for each training. The learning curves in Supplementary
Fig. 22 show that the training processes of all three DL networks were successfully
converged after ~50-70 epochs with no signs of overfitting.
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STEM data acquisition. Bare Pt nanoparticles were purchased from nano-
Composix, supplied in aqueous 2 mM sodium citrate. The solution was drop cast
onto a 5 nm thick SiN membrane grid and annealed in vacuum at 150 °C for 24 h.
The tomographic tilt series were acquired using a Titan Double Cs corrected
transmission electron microscope (Titan cubed G2 60-300). The images were
collected at 300 kV in annular dark-field scanning transmission electron micro-
scopy mode with 40 mrad and 200 mrad detector inner and outer semi-angles,
respectively. The convergence beam semi-angle was 25.1 mrad. Total 21 tilt-series
images for tilt angles ranging from —71.6° to 71.6° were acquired. For each tilt
angle, three consecutive 1024 x 1024 images were measured with 4 s dwell time
with 15.1 pA beam current, and the pixel size was 0.357 A. The total electron dose
for the entire tilt series was 1.86x 10° eA~2. To check the possibility of structural
change due to the electron beam during the tilt-series acquisition, the zero-degree
projection was measured again right after the experiment. The particle was rotated
a little bit (Euler angles (z-y'-x” convention) {y : 4°,6 : —3.5°,¢ : 1°}) during the
experiment, but the post-experiment zero-degree projection was consistent with
the linear projection of the final atomic model obtained from AET (after applying
the rotation), evidencing that the atomic structure did not change during the
experiment (Supplementary Fig. 23).

Image post-processing, GENFIRE reconstruction, tomogram post-processing.
Image post-processing (drift correction, scan distortion correction, BM3D noise
reduction3%4, tilt-series alignment based on center-of-mass and common line
method) was conducted as described in previous works!8-21, Also, to remove
undesirable high-frequency noise, a circle-shaped low-pass filter with a diameter of
2.35 A1 (the edge of the filter was slightly smoothened by 0.07 A—1) was applied
to the images before the BM3D noise reduction process.

After the image post-processing, a 3D reconstruction was calculated using
GENFIRE algorithm®. To reduce tilt angle error and improve reconstruction
quality, GENFIRE-based angular refinement and spatial re-alignment were also
conducted?!30. After angular refinement, the final 3D reconstruction was obtained
by running GENFIRE algorithm3° with the following parameters: discrete Fourier
transform (DFT) interpolation method, number of iterations 1000, oversampling 4,
and interpolation radius 0.1. To remove salt-pepper-like high-frequency noise,
upsampling and downsampling (binning) were subsequently applied. To match the
intensity scale between the experimental tomogram and the tomograms used for
the neural network training, a scale factor was calculated. Integrated intensities for
3x 3x 3 voxels near all traced atom positions were averaged for both experimental
and simulated 3D volumes, respectively. The ratio of the two averaged integrated
intensities was used as the scale factor and applied to the experimental tomogram
before running the DL augmentation. A DL-augmented tomogram was obtained by
applying the DL augmentation trained by the f.c.c.-based data set with Bfactor 5 A2,

Identification of 3D atomic coordinates: atom-tracing. From the raw and DL-
augmented 3D tomograms, 3D atomic coordinates were obtained by the atom-
tracing procedure!82! as follows. First, all local maxima positions were found from
the 3D tomogram, and sorted by the intensity in descending order from the highest
intensity one. Second, after cropping 5x 5x 5 voxels centered on each local max-
imum, a 3D Gaussian function was fitted for each cropped volume. Starting from
the highest intensity local maximum, the fitted position was added to the traced
atom list if all the distances between the position of the newly fitted maximum and
the positions already in the list were larger than 1.8 A.

Obtained local maxima were the mixture of proper Pt atoms and weak intensity
spots (non-atoms) originating from reconstruction artifacts. The local maxima
were classified into proper Pt atoms and non-atoms by following the unbiased
classification method described in refs. 1321,

To finalize the 3D atomic structure from the DL-augmented tomogram, a
manual correction was applied to add (or remove) physically (un)reasonable atom
candidates. A minimum distance constraint of 1.6 A was used during this process.
Total 8 atoms were manually added, and 9 atoms were manually removed. For
sanity check, the same atom-tracing procedure was applied to the tomograms
augmented with two differently trained networks (trained with the amorphous
model-based data set, trained with the f.c.c.-based data set with Bfactor 3.2 A2).
For these results, 7 and 8 atoms were manually added, and 32 and 5 atoms
were manually removed, respectively.

To measure the error between the experimental and simulated STEM images,
R-factor!$19:21 was used. We calculated the R-factor between the experimental tilt
series and linear projections of the 3D final atomic models from the tomogram
after the DL augmentation trained by the f.c.c.-based atomic models with Bfactor
5 A2 (Supplementary Fig. 23). The averaged R-factor was 0.173. Additionally,
averaged R-factors were calculated by comparing the experimental images and
linear projection images of the atomic structures from the tomograms augmented
by two different DL networks (trained by the amorphous-based atomic models
with Bfactor 5 A2 and the f.c.c.-based atomic models with Bfactor 3.2 A2). They
were determined to be 0.182 and 0.176, respectively. Note that the atomic
structures obtained from the DL-augmented tomograms were manually corrected,
as described above. To properly compare the results before and after the DL
augmentation, we also calculated the R-factors from the atomic structures before
and after the DL augmentation without the manual corrections. The averaged
R-factors from the atomic structures from the raw tomogram and the tomograms

after applying three different DL networks (trained by the f.c.c.-based atomic
models with Bfactor 5 A2, the amorphous-based atomic models with Bfactor 5 A2,
and the f.c.c.-based atomic models with Bfactor 3.2 A2) were determined to be
0.192, 0.174, 0.182, and 0.177, respectively. The R-factor is clearly decreased after
the DL augmentation, and also the R-factors obtained from the manually corrected
atomic models are better than those from the uncorrected ones. The atomic
structure obtained from the DL augmentation trained by the f.c.c.-based atomic
structures with Bfactor 5 A2 showed the best consistency with the experimental
STEM images.

Defining the surface atoms. For surface analysis, the surface atoms were deter-
mined using alpha shape algorithm*! with shrink factor 0.5. This method was
applied for both simulated and experimental data. For the experimentally measured
Pt nanoparticle, the numbers of the surface atoms were 248 and 419 atoms before
and after the DL augmentation, respectively.

Calculation of tracing error. We defined an error between two atomic coordinate
sets (so-called tracing error). To match common atom pairs, a distance threshold of
1.2 A (smaller than half of Pt covalent bonding length) was used. The number of
uncommon atoms (and surface uncommon atoms) was defined as the total sum of
the number of (surface) atoms in the first atomic model but not in the second
atomic model plus the number of (surface) atoms in the second atomic model but
not in the first atomic model. Then, the (surface) tracing errors were calculated as
the ratio of the number of (surface) uncommon atoms to the number of total
(surface) atoms in the ground truth atomic model (Supplementary Figs. 2, 3, 5, 7-
9). If ground truth is not available (as in the case of experimental data), the ratio
was calculated to the average of the total number of atoms of the two atomic
models being compared (Supplementary Figs. 10 and 17).

Precision analysis for experimental data by PRISM STEM simulation. To
estimate the precision of the atomic coordinates obtained from our approach, we
ran a precision analysis'8-20 using PRISM simulation®1:34. A tilt series of 21 pro-
jection images were calculated from the experimentally determined 3D atomic
model by PRISM simulation3!-3* using the same parameters described above with
interpolation factor 2, without adding angular errors. A 3D reconstruction was
calculated using the GENFIRE algorithm3’. A corrected tomogram was obtained by
applying the DL augmentation to the 3D reconstruction. Atomic models were
obtained from both the raw and DL-augmented tomograms by applying the atom-
tracing procedure. The numbers of traced atoms from the PRISM tomograms
before and after applying the DL augmentation were 1494 and 1511 atoms,
respectively. The percentage of common atoms (accuracies of atom identification)
between the original 3D atomic model and the PRISM traced models were 96.5%
(1476 atoms) and 98.8% (1511 atoms), for before and after the DL augmentation,
respectively. The RMSDs of common atoms pairs (the precisions of our atomic
structures) were 26.1 (before DL) and 15.1 pm (after DL).

Facet analysis, displacement field, and strain map calculation. The atomic
displacements and 6 components of the 3D strain tensor (g &y €225 €xy Exo €52)
were calculated by comparing the experimentally observed 3D atomic structure
with an ideal f.c.c. lattice??. The 3D atomic structure was assigned to ideal f.c.c.
lattice with the following procedure. First, a starting atom was chosen as an origin
of an f.c.c. lattice. Then, ideal Pt f.c.c. nearest neighbor positions of the atom were
calculated. For each nearest neighbor position, if there was an atom within the
distance 0.76 A (27.5% of Pt covalent bonding length), the atom was added to the
corresponding f.c.c. lattice site. The nearest neighbor search was repeated for all the
newly assigned f.c.c. lattice sites. The process was repeated until no more atoms
could be assigned to the lattice. Second, a new f.c.c. lattice was fitted (fitting
parameters: translation, 3D rotation and lattice constant) to the atoms assigned to
the lattice. These two steps were iterated using the newly fitted f.c.c. lattice until the
difference between the old and newly fitted lattice constant was less than 105 A.
After this process, 97.1% of the atoms were successfully assigned to f.c.c. lattice
sites, and the RMSD between the assigned atom positions and the fitted f.c.c. lattice
was 64.01 pm. The fitted f.c.c. lattice constant was 3.85 A.

<100> and <111> facets were defined as the outermost atomic planes
perpendicular to <100> or <111> directions, which include more than 10 atoms.
The total number of atoms on <100> and <111> facets were 160 and 226,
respectively. The out-of-plane and in-plane atomic displacements between the
fitted f.c.c. lattice and assigned atom positions for atoms on each facet were
calculated. Averaged out-of-plane atomic displacements of <100> and <111> facets
were determined to be —10.2 + 62.9 pm and —3.3 + 41.2 pm, respectively (minus
sign means inward displacement, and the uncertainty means the standard deviation
of the atomic displacements). For averaged in-plane displacements, 55.4 + 33.3 pm
and 65.0 + 34.6 pm were observed for <100> and <111> facets, respectively.
Comparing the number of atoms in <100> and <111> facets, it was found that the
numbers of atoms on [100], [100], [010], [010], [001] and [001] facets were 35, 32,
34, 22, 16 and 21, respectively. And, the numbers of atoms on [111], [111], [111],
[111], [111], [111], [111] and [111] facets were 27, 27, 20, 15, 45, 37, 25 and 30,
respectively. We found that the facets close to the particle-substrate interface
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([100], [001], [111] and [111] facets) are mainly responsible to the strong
compressive strain (Fig. 4 and Supplementary Figs. 19, 20).

The atomic displacement field was mapped on a cubic grid by applying a
Gaussian kernel with a standard deviation of 5.5 A to the measured atomic
displacements. 3D strain tensor maps were obtained by taking derivatives from the
displacement map.

A similar analysis was performed on the atomic structures from the raw
tomogram, tomogram augmented by the amorphous model-trained DL network,
and tomogram augmented by the f.c.c. model with Bfactor 3.2 A2 model-trained
DL network. The fraction of atoms successfully assigned to f.c.c. lattice sites were
91.3%, 95.9%, and 97.6%, respectively. The RMSDs between each fitted f.c.c. lattice
and the given atomic structures were 86.35, 73.74, and 64.39 pm, respectively.

Ellipsoid fitting for Pt nanoparticle. For analysis of the shape of the Pt nano-
particle, we fitted an ellipsoid to the determined surface atomic structure. To find
the closest ellipsoid, the positions of the defined surface atoms were exploited to fit
the parameters in the ellipsoid equation?2. The fitted principal semi-axes in the
ellipsoid were determined to be [0.92, 0.36, 0.15], [0.38, —0.92, —0.11], and [—0.10,
—0.15, 0.98] (in the lab-coordinates) with corresponding lengths of 20.0, 16.9, and
13.6 A, respectively.

Data availability
All of our experimental data, tomographic reconstructions, determined atomic structures
are posted at http://mdail kaist.ac.kr/DLaugmentation.

Code availability
All neural network-related codes and data set generating source codes are available at
http://mdail kaist.ac.kr/DLaugmentation.
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