
SINGLE BIT ERROR CORRECTION IMPLEMENTATION IN CRC-16
ON FPGA

Sunil Shukla, Neil W. Bergmann
School ofITEE, The Universip of Queensland, Australia

{Surd, bergmann)@itee. uq. edu.au

Abstract

Framing protocols employ c,vclic redundancy
check (CRC) fa detect errors incurred during
transmission. General1.v whole pame is protected
using CRC and upon detection of error, re-
transmission is requested. But certain protocols
demand .for single bit error correction capabilities
for the headerpart of the frame. w,hich often plays an
important role in receiver svnchronization. At a
speed of I O Gbps, header error correction
implementation in hardware can be a bottleneck
This paper presents a hardwre efficient way of
implernenting CRC-I6 over 16 bits of data, multiple
bit error detection and single bit error correction on
FPGA device.

1. Introduction

The Internet is growing rapidly in terms of
number of users and amount of bandwidth used.
Besides the transmission and switching speeds, the
per-packet operations necessary for lntemet Protocol
(IP) packet forwarding are the current limiting
factors. As transmission speeds are continually
increasing, IP packet processing overheads have
become the main bottleneck [5] . Often. IP packets
are encapsulated in frames protected by a cyclic
redundancy check (CRC) code. CRC is the most
preferred method of encoding because i t provides
very efficient protection against comnlonly occurring
burst errors. CRC’s can detect all one bit and two bit
errors as well as all odd number of bits in error [Z].
The most commonly used framing techniques are
PPP, HDLC and GFP. Generic Framing Procedure
(GFP) is a recently proposed technique for framing.
The advantage o f this technique is that it does not
use any special code to indicate the beginning and
end of frame. Frame delineation is based on packet
length that is transmitted at the beginning of each
frame. The 16 hit packet length is protected by CRC-
16 and transmitted as core header. Single bit error
correction capability is required from the receiver.
Besides fhc packet length, GFP fi-amc also has type

0-7803-8652-3/04/$20.00 0 2004 IEEE 319

header following core header which is also protected
by CRC-16 and the receiver is expected to correct
single bit error for type header also. T’his can be a
bottleneck at a speed of IOGbps, if the core is
implemented on FPGA. A lot of work has been
reported on hardware implementation of error
detection using CRC but there is no published
method for error correction in CRC in hardware. In
this paper we have proposed a technique for CRC-16
error detection and single bit error correction which
is hardware optimized and works at relatively higher
frequency. This paper focuses on implementation of
this method on FPGA. We are targeting FPGA
because timing issues in FPGA arises more oAen and
this technique utilizes the huge resources available in
FPGA as Block RAM. Focus of the paper is on
single hit error correction for header hits protected
by CRC-16. The paper is organized into two parts
viz.: CRC-16 implementation in hardware and the
proposed technique for CRC error detection and
single hit error correction.

2. CRC-16 Implementation in Hardware

The generator polynomial used for CRC-I6
calculation is XI6 + X” + Xs + I in X25 standard and
XI6 + X” + X’ + I in CCITT. In this paper, we will
he referring to the polynomial defined in X25
standard but the results can be extended to any 16 bit
generator polynomial with slight modification. CRC
can be implemented in hardware via techniques such
as serial implementation, parallel implementation or
look up table-based implementation. Look up table
approach involves storing CRC values for all
possible input combinations. Thus for I 6 bit input
data, we need to store 216 (65536) values i.e. a
storage space of IM bits. Serial implementation uses
Linear Feedback Shift Registers (LFSR) in hardware.
In LFSR, division is performed by left shifting and
subtraction by XOR operation. Serial
implementation is hardware efficient but is not
feasible at higher frequencies. In case of parallel
implementation, the division process is reducible to a
set of equations involving XOR operation. Parallel
implementation of CRC is fast because it involves
two level of logic. The optimized equation of

ICFPT 2004

resulting checksum in CRC-16 is summarized in Fig.

C(15) = E(II) e E(10) e E(7) Q E (3)

q 1 4) = ~ (1 0) e ~ (9) e ~ (6) Q ~ (2)

r(13) = ~ (9) e ~ (8) e ~ (5) Q E (I)

~ (1 2) = ~ (1 s) Q ~ (8) e ~ (7) e ~ (4) e E(n)

q i i) = ~ (1 5) o ~ (1 4) e E(II) e E (I O) Q ~ (6

qio) = ~ (1 4) e ~ (1 3) Q .qin) e ~ (9) 0 ~ (5)

c(9) = ~ (1 5) e ~ (1 3) e ~ (1 2) e ~ (9)

~ (8) = ~ (1 5) e ~ (1 4) Q ~ (1 2) e €01)

3 7) = ~ (1 5) e ~ (1 4) e ~ (1 3) Q E(II)

E(8) @ E (4)

E (8) Q E (7) 0 E(3)

Q €(IO) E (7) Q E(6) E (2)

7(6) = E(14) E(13) €(U) Q E(10)

E(9) 0 E (6) e E(5) €(I)

:(SI = ~ (1 3) o ~ (1 2) e E(II) e ~ (9)

e ~ (8) 0 E (S) e ~ (4) @ E (O)

7(41 = ~ (1 5) e ~ (1 2) e ~ (8) e ~ (4)

7(3) = ~ (1 5) Q ~ (1 4) e H I I) e ~ (7) Q ~ (3)

7(2) = ~ (1 4) Q ~ (1 3) e €(IO) Q ~ (6) e ~ (2)

:(I) = ~ (1 3) o ~ (1 2) o ~ (9) e ~ (5) e E (I)

:(OJ = ~ (1 2) e E(II) e ~ (8) e ~ (4) Q E(O)

Figure 1 CRC-16 Equations

Where,
E(i) = D(i) XOR Cmv(i),
' 8 . indicates XOR operator,
D(i) is the ilh hit of input data,
CPEu(i) is the i" bit of previous CRC result. In our
case, since data width is 16 bits, C,,., refers to the
initial state of the CRC which may be either all zeros
or all ones.

3. Proposed method for CRC-16 Error
Detection and Correction

In this paper, we will he presenting a unique
way of implementing multiple hit error detection and
single hit error correction using CRC for a data width
of 16 hits. Let F,, be the frame transmitted in which
checksum is appended after 16 bits of data. We can
express F, as
F,, = D,, & C,,

Where,
& -Concatenation operator
D,r- transmitted 16 hit data
C, - transmitted I6 bit checksum
At the receiver side, let F, be the received frame
such that

Where, C , indicates received checksum and D,
represents received data. Receiver again calculates
CRC on the received data. Let C,,, indicates the CRC
calculated over D,, at the receiver side. If no error
has occurred during transmission then C, and C,,,
are equal. But if some bit(s) are in error, then C,, and
C,,, will be in mismatch. Here we are concemed with
just single bit error. There can be two cases, either
single bit error can be in data, 0, or it can he in
checksum, C,. In case single bit error is there in one
of the checksum bits, then we need to just detect it.
So the real concem is to correct data in case one of
the data bit is in error. If we refer to Fig 1, we will
see that the checksum calculation involves XOR
operations on a combination of data bits. If single bit
of data flips then all the checksum hits in which that
data hit has been used, will be inverted. For eg. Data
bit 0 is used in checksum bit 0, 5 and 12. So if there
is an error in data bit 0, then the calculated checksum
and received checksum will differ in position 0, 5
and 12. Let C,,,,,,,., = C,I XOR C,p If we consider
that only one bit in data is in error then we will have
16 unique patterns for C,,,,,,,, each corresponding
to individual data error bits. We have written a C
program, and found the pattems for the XOR result.

Fre = D,, C,

Table 1. XOR pattern for data ba in error
I Data Bit I

If there is single bit error in checksum bit, then we
will obtain the following XOR pattems.

320

Table 2. XOR pattem for checksum bit in error
I M S B 8 I LSB 8 1

XORing
No Error CRC bit Data bit hit seq.

(16) (1) error(l) error(])

The XOR patterns are unique for single bit error
occurring anywhere, either in data or in checksum.
For correction purpose, we have to just find out the
hit in error. If that bit is CRC bit we need not do
anything but if that bit is data bit then we need to flip
that bit. We can find the hit depending upon which
we can have a hit sequence with which received data
is XORed. For e.g. if hit two is in error, then the hit
sequence is “0000000000000100”. This pattem is
XORed with received data, which is simply flipping
of bit two. We have stored these bit sequences in
memory.

4. Memory Design Considerations

In this section, memory design parameters and
programming is discussed in detail. FPGA have
abundant memory available in the form of Block
RAM. We will show in this section that one block
RAM is sufficient for whole processing. In fact two
ports of single Block RAM can serve the purpose of
two CRC correction engines simultaneously as the
Block RAM is used as ROM with the configuration
parameters initialized during its generation using
Xilinx CORE Generator.

4.1. M e m o r y Addressing

The memory is accessed using the XOR
patterns. Each 16 bit XOR pattern is unique among
the 32 cases. But using 16 bits of addressing implies
65536 locations, which is not desirable. To minimize
the number of locations required, XOR pattern is
divided into two palts of 8 bits each. If we observe
the XOR pattems in Table I , the lower 8 bits have a

Match
Panem

(8)

repetitive pattern hence upper 8 bits of XOR pattem
is used for accessing memory. as there is no
repetitive value. If we observe the XOR patterns in
Table 2, for half of the cases, upper 8 hits are zero
and for the remaining cases lower 8 bits are zero.
Thus we can’t use the upper 8 bits for addressing
memory for the first 8 cases. In those cases, lower 8
hits are used for addressing memory. Thus there is a
muxing of address. Whenever the upper 8 bits of
XOR pattern are zero, lower 8 bits are used for
accessing memory. In this way a maximum of 256
locations are required. If we observe the MSB 8 bit
patterns for data and CRC, then we will find that all
the 32 patterns are not unique. m e r e are overlapping
patterns of 16, 32 and 64. These patterns will come
as address bits when there is single bit error in data at
bit position 0. I and 2 respectively and will also
appear when there is single hit error in CRC at bit
position 5 , 6, 7 respectively and again at 12, 13 and
14 respectively. These cases can be distinguished
easily. If the lower or upper 8 bits of XOR panem
are all zeros, then it is a probable case of single bit
error in CRC else it is a probable case of single hit
error in data. We have protection for such
overlapping cases in our data structure.

4.2. M e m o r y Data Structure

The data StNCNre for memory is shown in Fig

Figure 2 Memory Data Structure

The lower 8 hits of XOR pattem are stored in
memory location as-“Match Pattem” for addresses 3,
6. 13. 16. 18. 27. 32. 36. 51. 64. 72, 102. 129, 137,
145 and 204.’ Fo; address 1,’2, 4, 8and.128 which
represent 8 bit XOR. pattern in case of CRC bit in
error excluding 16, 32 and 64, “Match pattern” is all
zeros. The 16 bit “XORing bit sequence” is stored in
which only one hit that corresponds to the bit
position in error is set to ‘I’ and all other hits are set
to ‘0’. For e.g. for location 72, which indicates a
probable case ofdata bit error at bit position 6, match
pattem will he ”I 1000100” and XORing hit
sequence will be “0000000000100000”. Two
additional hits, “CRC bit error’’ and “Data bit error”,
are used to indicate that the information is stored is
related to single bit error in data or CRC. For
locations 3. 6, 13, 16, 18, 27, 32, 36, 51, 64, 72, 102,
129, 137, 145 and 204 “Data bit error” is set to ‘I’
and at all other locations it is set to ‘0’. For locations
I , 2 ,4 , 8, 16,32, 64 and 128 “CRC hit error” is set to
‘ I ’ and at all other locations it is set to ‘0’. At
location 0, “No error” bit is set to ‘ I ’ and at all other

32 1

locations it is set to ‘0’. Thus last three bits in
memory are used to decide the type of error. The
data width of memory will be 26 bits.

5. Error Handling

In this section we will discuss how single and
multi bit errors are detected and handled. The
decision is based upon following algorithm.

BEGIN
Reset flag no-error
Reset flag single-bit-error
Reset flag single-bit-crc-error
Reset flag single-bit-data-error
Reset flag multiple-bit-error

IF bit-26 = ’ I ’ THEN

Set flag no-error
Transmit received data

ELSlF bit-25 = ‘ I ’ AND bit-24 = ‘0’ THEN
IF Cxorpattem (7:O) = “00000000” THEN

Set flag single-bit-error
Set flag single-bit-crc-error
Transmit received data

ELSE

Set flag multiple-bit-error
Transmit received data

END IF

ELSIF bit-25 = ‘0’ AND b i t 2 4 = ‘ I ’ THEN
IF Cxorpattem (7:O) = “Match Pattem” THEN

Set flag single-bit-error
Set flag single-bit-data-error
XOR received data with 16 bit “XORing bit
sequence”

ELSE

Set flag multiple-bit-error
Transmit received data

END IF

ELSlFbit-25=‘I’ANDbit-24=’I’THEN
IF Cxorpattem (7 : O) = ”00000000” THEN

Set flag single-bit-error
Set flag single-bit-crc-error
Transmit received data

ELSlF Cxorpattem (7:O) = “Match Pattem” THEN

Set flag single-bit-error
Set flag single-hit-data-error

XOR received data with 16 bit “XORing bit
sequence”

ELSE

Set multiple-bit-error
Transmit received data

END IF

Set multiple-bit-error
Transmit received data

ELSE

END IF
END

6. Hardware Implementation

The algorithm has been implemented and
verified on Xilinx Virtex-I1 FPGA device. The code
was written in VHDL and synthesized using
Leonard0 Spectrum. The device used for
implementation is 2V4Ocs144 with speed grade 5
and wire load model xcv2-40-5-wc. The results
obtained are summarized in Table 3.

Table 3 Hardware Implementation Results

Device I Area I Speed
Virtex I1 52 slices I 233MHz

I (2V4Ocs144) I I
For a GFP IP core giving a throughput of IOGbps,
there can be 9 such CRC single bit error correction
engines in receiver, assuming a data interface of 64
bits. Hence the effect of area saving in the design of
this block is multiplied by 9.

I. Conclusion

In this paper, we have described how single bit
error correction can be employed in case of CRC-16
in a very efficient way on FPGA. This approach is
efficient both in terms of hardware and speed. The
additional hardware required is very simple. This
technique works efficiently in case of ASIC design
also.

8. References

[I] Ross N. Williams, “Painless Guide to CRC Error
Detection Algorithms".
[2] Norman Matloff. “Cyclic Redundancy Checking”.
[3] Adrian Simionescu, “Computing CRC in Parallel for
Ethernet”.
[4] Giureppe Campobello, Giuseppe Patane. Marco Russo,
”Parallel CRC Realization”.
[5] Florian Braun, Mmarcel Waldvogel. “Fast Incremental
CRC Updates for IP over ATM Networks”.

322

