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Abstract: Dong, Goldschmidt and Martin (2006) (DGM) showed that, for 0 < α < 1, and θ > −α,
the repeated application of independent single-block fragmentation operators based on mass parti-
tions following a two-parameter Poisson–Dirichlet distribution with parameters (α, 1− α) to a mass
partition having a Poisson–Dirichlet distribution with parameters (α, θ) leads to a remarkable nested
family of Poisson—Dirichlet distributed mass partitions with parameters (α, θ + r) for r = 0, 1, 2, . . . .
Furthermore, these generate a Markovian sequence of α-diversities following Mittag-Leffler distribu-
tions, whose ratios lead to independent Beta-distributed variables. These Markov chains are referred
to as Mittag-Leffler Markov chains and arise in the broader literature involving Pólya urn and random
tree/graph growth models. Here we obtain explicit descriptions of properties of these processes when
conditioned on a mixed Poisson process when it equates to an integer n, which has interpretations in
a species sampling context. This is equivalent to obtaining properties of the fragmentation operations
of (DGM) when applied to mass partitions formed by the normalized jumps of a generalized gamma
subordinator and its generalizations. We focus primarily on the case where n = 0, 1.

Keywords: fragmentations of mass partitions; generalized gamma process; Mittag-Leffler Markov
Chains; Poisson—Dirichlet distributions; species sampling

1. Introduction

Let Z = (Zr, r ≥ 0) denote a Markov chain characterized by a stationary transition
density Zr|Zr−1 = z given for y > z and 0 < α < 1:

P(Zr ∈ dy|Zr−1 = z)/dy =
α(y− z)

1−α
α −1ygα(y)

Γ( 1−α
α )gα(z)

, (1)

where gα(s) := fα(s−
1
α )s−

1
α−1/α is the density of a variable T−α

α , with a Mittag-Leffler
distribution, Tα := Tα,0 is a positive stable variable with density denoted as fα(t), and
Laplace transform E[e−λTα ] = e−λα

. More generally, as in [1–4], for θ > −α, let Tα,θ
denote a variable with density fα,θ(t) = t−θ fα(t)/E[T−θ

α ]; then, T−α
α,θ is said to have a

generalized Mittag-Leffler distribution with parameters (α, θ) and distribution denoted as
ML(α, θ). In the cases where Z0 = T−α

α,θ ∼ ML(α, θ), the marginal distributions of each Zr are
ML(α, θ + r). Furthermore, there is a sequence of random variables (Bj, j ≥ 1) defined for
each integer j as Bj = Zj−1/Zj; hence, there is the exact point-wise relation Zj−1 = Zj × Bj,

where, remarkably, the Bj are independent Beta( θ+α+j−1
α , 1−α

α ) variables, and (B1, . . . , Bj)

is independent of Zj, for j = 1, 2, . . . . Note further that by setting Zr = T−α
α,θ+r, there is the

point-wise equality Tα,θ = Tα,θ+r ×∏r
j=1 B−

1
α

j , where all the variables on the right-hand
side are independent. In these cases, the sequence may be referred to as a Mittag-Leffler
Markov chain with law denoted as Z ∼ MLMC(α, θ), as in [5] and, subsequently, [6]. The
Markov chain is described prominently in various generalities, that is, ranges of α and θ,
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in [5–9]. See for example [5,6,10–15] for more references concerning Pólya urn and random
tree/graph growth models.

Now, let PD(α, θ) denote a two-parameter Poisson–Dirichlet distribution over the
space of mass partitions summing to 1, say P∞ := {s = (s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0
and ∑∞

i=1 si = 1}, as described in [3,4,16]. Let (P`) := ((P`), ` ≥ 1) ∼ PD(α, θ) corre-
spond in distribution to the ranked lengths of excursion of a generalized Bessel bridge on
[0, 1], as described and defined in [1,4]. In particular, PD(1/2, 0) and PD(1/2, 1/2) corre-
spond to excursion lengths of standard Brownian motion and Brownian bridge, on [0, 1],
respectively. As noted in [6], the single-block PD(α, 1− α) fragmentation results for PD(α, θ)
mass partitions by [17], which we shall describe in more detail in Section 1.2, allow one to
couple a version of Z ∼ MLMC(α, θ) with a nested family of mass partitions ((P`,r), r ≥ 0),
where each (P`,r) := ((P`,r), ` ≥ 1) takes its values in P∞, initial (P`,0) ∼ PD(α, θ) has
α-diversity Z0 = T−α

α,θ , and each successive (P`,r) ∼ PD(α, θ + r) has α-diversity Zr = T−α
α,θ+r.

The distribution of this family is denoted as ((P`,r), Zr; r ≥ 0) ∼ MLMCfrag(α, θ).
Recall from [2] that for (P`,0) ∼ PD(α, 0), (P`,0)|Tα = t has distribution PD(α|t),

and for a probability measure ν on (0, ∞), one may generate the general class of Pois-
son–Kingman distributions generated by an α-stable subordinator with mixing ν, by form-
ing PKα(ν) =

∫ ∞
0 PD(α|t)ν(dt). Some prominent examples of interest in this work are

PD(α, θ) =
∫ ∞

0 PD(α|t) fα,θ(t)dt and P[n]
α (λ) =

∫ ∞
0 PD(α|t) f [n]α (t|λ)dt, where f [n]α (t|λ) ∝

tne−λt fα(t). Hence, P[0]
α (λ) corresponds to the law of the ranked normalized jumps of

a generalized gamma subordinator, say (τα(y); y ≥ 0), where τα(λα)/λ has density
f [0]α (t|λ) = e−λteλα

fα(t). In [6], we obtained some general distributional properties of
((P`,r), Zr; r ≥ 0) formed by repeated application of the fragmentation operations in [17]
to the case where (P`,0) ∼ PKα(ν). Furthermore, letting (e`) denote a sequence of iid
Exp(1) variables forming the arrival times, say (Γ` = ∑`

j=1 ej; ` ≥ 1), of a standard Poisson
process, we ([6], Section 4.3) focused in more detail on the special case of ((P`,r), Zr; r ≥
0)|NT−α

α,θ
(λ) = j for j = 0, 1, 2, . . . , when ((P`,r), Zr; r ≥ 0) ∼ MLMCfrag(α, θ) and (NT−α

α,θ
(t)

= ∑∞
`=1 I{Γ`/T−α

α,θ ≤t}, t ≥ 0) is a mixed Poisson process with random intensity depending on

T−α
α,θ . That is to say, (P`,0)|NT−α

α,θ
(λ) = j corresponds in distribution to (P`,0(λ)) following a

PKα(ν) distribution, where ν corresponds to the distribution of T−α
α,θ |NT−α

α,θ
(λ) = j.

In this work, we obtain results for the case where ((P`,r), Zr; r ≥ 0) is such that

(P`,0)∼P
[n]
α (λ), which is when (P`,0) corresponds to the ranked normallized jumps of a

generalized gamma process, (τα(y); y ≥ 0), and its size-biased generalizations. Interest-
ingly, our results equate in distribution to the following setup involving ((P`,r), Zr; r ≥
0)∼MLMCfrag(α, 0). Let NTα be a mixed Poisson process defined by replacing T−α

α,θ in
NT−α

α,θ
with Tα. Using the mixed Poisson framework in the manuscript of Pitman [18]

(see also [6,19] for more details), we obtain some explicit distributional properties of
((P`,r), Zr; r ≥ 0)|NTα(λ) = n and corresponding variables (B1, . . . , Br, Tα,r)|NTα(λ) = n
for n = 0, 1, 2, . . . , when ((P`,r), Zr; r ≥ 0)∼MLMCfrag(α, 0). That is when (P`,0)∼PD(α, 0).
The equivalence in distribution to the fragmentation operations of [17] applied in the gen-
eralized gamma cases may be deduced from [18], who shows that when (P`,0)∼PD(α, 0),

(P`,0)|NTα = n corresponds to the distribution of (P`,0(λ)) ∼ P[n]
α (λ). We shall primarily

focus on the case of n = 0, 1, corresponding to the generalized gamma density and its sized
biased distribution, which yields the most explicit results. The fragmentation operations (6)
applied to ((P`,0))∼P[1]

α (λ) allow one to recover the entire range of PD(α, θ) distributions

for θ > −α, by gamma randomization, whereas the case for ((P`,0))∼P[0]
α (λ) only applies

to θ ≥ 0. We note that descriptions of our results for n = 0, 1, albeit less refined ones, appear
in the unpublished manuscript ([9], Section 6). See also [20] for an application of P[0]

α (λ) for
randomized λ.
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We close this section by recalling the definition of the first size-biased pick from a
random mass partition (P`) ∈ P∞ (see [2,3,16]). Specifically, P̃1 is referred to as the first
size-biased pick from (P`), if it satisfies, for k = 1, 2, . . . ,

P(P̃1 = Pk|(P`)) = Pk. (2)

Hereafter, let (P`)1 := (P`) \ P̃1 denote the remainder, such that (P`) = Rank(((P`)1, P̃1)),
where Rank(·) denotes the operation corresponding to ranked re-arrangement. From [1],
P̃1 may be interpreted as the length of excursion (i.e., one of the (P`)), first discovered
by dropping a uniformly distributed random variable onto the interval [0, 1]. The frag-
mentation operation of [17] may be interpreted as shattering/fragmenting that interval
by the excursion lengths of a process on [0, 1], with distribution PD(α, 1− α) and then
re-ranking. For clarity and comparison, we first recall some details of the more well-known
Markovian size-biased deletion operation leading to stick-breaking representations, as
described in [1–3], and more related notions arising in a Bayesian nonparametric context in
the PD(α, θ) setting, in the next section.

Remark 1. Although we acknowledge the influence and contributions of the manuscript [18], the
pertinent distributional results we use from that work are re-derived at the beginning of Section 2.
Otherwise, the interpretation of NTα from that work is briefly mentioned in Section 1.3.

1.1. PD(α, θ) Markovian Sequences Obtained from Successive Size-Biased Deletion

Following [1], we may define SBD(·) to be a size-biased deletion operator on P∞,
as SBD((P`)) := Rank(((P`)1/(1− P̃1))), where it can be recalled from (2) that (P`) =

Rank(((P`)1, P̃1)). Now, let (SBD(j)(·), j ≥ 1) be a collection of such operators. From [1], as
per the description in ([4], Proposition 34, p. 881), it follows that for (P`,0) := (P̂`,0)∼PD(α, θ),
SBD(1)((P̂`,0)) := (P̂`,1)∼PD(α, θ + α) and is independent of the first size-biased pick
P̃1 := V1 ∼ Beta(1− α, θ + α), and hence, for r = 2, . . . ,

(P̂`,r) := SBD(r)((P̂`,r−1)
)
= SBD(r) ◦ · · · ◦ SBD(1)((P̂`,0)

)
∼ PD(α, θ + rα). (3)

This leads to a nested Markovian family of mass partitions ((P̂`,r), r ≥ 0), where
(P`,0) := (P̂`,0)∼PD(α, θ) with inverse local time at time 1, Tα,θ(see ([3], Equation (4.20),
p. 83)), and for each r, (P̂`,r)∼PD(α, θ + rα) with inverse local time at time 1, Tα,θ+rα. Fur-
thermore, (Tα,θ+rα, r ≥ 0) form a Markov chain with pointwise equality Tα,θ+(j−1)α =
Tα,θ+jα/(1−Vj), where Vj are independent Beta(1− α, θ + jα) variables and are the respec-
tive first size-biased picks from (P̂`,j−1) for j ≥ 1. Furthermore, (V1, . . . , Vr) is independent
of Tα,θ+rα and, more generally, (P̂`,r) for r = 1, 2, . . . .

From this, one obtains the size-biased re-arrangement of a PD(α, θ) mass partition, say
(P̃`)∼GEM(α, θ), satisfying P̃1 = V1∼Beta(1− α, θ + α), and for ` ≥ 2, P̃` = V` ∏`−1

j=1 (1−
Vj). Refs. [3,21] discuss the GEM(α, θ) distribution and these other concepts in a species
sampling and Bayesian context. We mention the roles of corresponding random distribution
functions as priors in a Bayesian non-parametric context. Let (U`) denote a sequence of
iid Uniform[0, 1] variables independent of (P`) ∼ PD(α, θ); then, the random distribution
Fα,θ(y) = ∑∞

`=1 P`I{U`≤y} is said to follow a Pitman–Yor distribution with parameters
(α, θ), (see [21,22]). Fα,θ is a two-parameter extension of the Dirichlet process [23] (which
corresponds to F0,θ) and has been applied extensively as a more flexible prior in a Bayesian
context, but it also arises in a variety of areas involving combinatorial stochastic processes [3,
21]. An attractive feature of Fα,θ is that it may be represented as Fα,θ(y) = ∑∞

`=1 P̃`I{Ũ`≤y},
where (Ũ`) are the iid Uniform[0, 1] concomittants of the (P̃`), as exploited in [22] (see
also [21]). This constitutes the stick-breaking representation of Fα,θ . Furthermore, we can
describe P̃1 as folllows: let X1|Fα,θ have distribution Fα,θ , and denote the first value drawn
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from Fα,θ ; then, P̃1 is the mass in (P`) corresponding to that atom of Fα,θ . The size-biased
deletion operation described above, as in (3), leads to the following decomposition of Fα,θ :

Fα,θ(y) = (1− P̃1)Fα,θ+α(y) + P̃1I{Ũ1≤y} (4)

where (P̃1, Ũ1) are independent of Fα,θ+α(y)
d
= ∑∞

k=1 P̂k,1I{Uk,1≤y}, where (P̂`,1) ∼ PD(α, θ + α),

and independent of this, where (U`,1)
iid∼ Uniform[0, 1]. See [1,4,24] and references therein

for various interpretations of (4).

1.2. DGM Fragmentation

The single-block PD(α, 1− α) fragmentation operator of [17] is defined over the space
P∞. However, for further clarity we start with an explanation at the level of random
distribution functions involving the representation in (4). Suppose that Gα,1−α(y) :=

∑∞
k=1 QkI{U′k,1≤y}, with (Q`) ∼ PD(α, 1− α) and, independent of this, (U′`,1)

iid∼ Uniform[0, 1];

hence, Gα,1−α
d
= Fα,1−α. Suppose that Gα,1−α is chosen independent of Fα,θ in (4); then, it

follows from [17] that

Fα,θ+1(y)
d
= (1− P̃1)Fα,θ+α(y) + P̃1Gα,1−α(y), (5)

and it is evident that the mass partition (Q`) shatters/fragments P̃1 into a countably infinite
number of pieces (P̃1(Q`)) := (P̃1Q`, ` ≥ 1) = (P̃1Q1, P̃1Q2, . . .). It follows that, in this
case, Rank

(
(P`)1, P̃1(Q`)

)
∼PD(α, θ + 1), which is the featured case of the PD(α, 1 − α)

fragmentation described in [17]. Hence, for general (P`) = Rank(((P`)1, P̃1)) ∈ P∞, a
PD(α, 1− α) fragmentation of (P`) is defined as

F̂ragα,1−α

(
(P`)

)
:= Rank

(
((P`)1, P̃1(Q`))

)
∈ P∞,

where, independent of (P`), (Q`) ∼ PD(α, 1− α). Let
(
(Q(j)

` ); j ≥ 1
)

denote an independent
collection of PD(α, 1− α) mass partitions defining a sequence of independent fragmentation

operators
(
F̂rag

(j)
α,1−α(·); j ≥ 1

)
. It follows from [17] that a version of the family ((P`,r),

Zr; r ≥ 0)∼MLMCfrag(α, θ) may be constructed by the recursive fragmentation, for r =
1, 2, . . . :

(P`,r) = F̂rag
(r)
α,1−α

(
(P`,r−1)

)
(6)

In particular, (P`,r)∼PD(α, θ + r) when (P`,0) ∼ PD(α, θ).

1.3. Remarks

We close this section with remarks related to some relevant work of Eugenio Regazzini
and his students, arising in a Bayesian context. From [18], in regards to a species sampling
context using Fα,θ (see [21]), NTα,θ (λ) interprets as the number of animals trapped and
tagged up until time λ, and hence, Γj/Tα,θ interprets as the time when the j-th animal
is trapped for j = 1, . . . . Ref. [18] indicates that this gives further interpretation to such
types of quantities arising in [25,26]. Using a Chinese restaurant process metaphor, the
animals may be replaced by customers arriving sequentially to a restaurant. More gener-
ically, NTα,θ (λ) is the number of exchangeable samples drawn from Fα,θ up until time λ.
Furthermore, Fα,n(y)|NTα,n(λ) = n for each n = 0, 1, 2, . . . is equivalent in distribution to

Fα(y|λ)
d
= τα(λαy)/τα(λα), which is now referred to in the Bayesian literature as a normal-

ized generalized gamma process. While, according to [2], Fα(y|λ) appears in a relevant
species sampling context in the 1965 thesis of McCloskey [27], and certainly elsewhere, the
paper by Reggazzini, Lijoi, and Prünster [28] and subsequent works by Regazzini’s students
(see [29]) helped to popularize the usage of Fα(y|λ) in the modern literature on Bayesian
non-parametrics. Our work presents a view of Fα(y|λ) subjected to the fragmentation
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operations in [17]. Although we do not consider specific Bayesian statistical applications in
this work, we note that other types of fragmentation/coagulation of PD(α, θ) models have
been applied, for instance, in [30]. We anticipate the same will be true of the operations
considered here.

2. Results

Hereafter, we shall focus on the case of PD(α, 0), as we will recover the general (α, θ)
cases by applying gamma randomization as in ([4], Proposition 21) for θ ≥ 0 or ([19],
Corollary 2.1) for θ > −α and other results. See also ([6], Section 2.2.1). We first re-derive
some relevant properties related to NTα that are easily verified by first conditioning on Tα

and otherwise can be found in [18]. First, for fixed λ, and for j = 0, 1, . . . ,

P(NTα(λ) = j, Tα ∈ ds) =
λj

j!
sje−λs fα(s)ds, (7)

and for j = 1, 2, . . . ,

P
( Γj

Tα
∈ dλ, Tα ∈ ds

)
/dλ =

λj−1

(j− 1)!
sje−λs fα(s)ds. (8)

Note these simple results hold for any variable T with density fT in place of Tα and
fα. It follows from (7) and (8) that Tα|NTα(λ) = 0 has the generalized gamma density

f [0]α (t|λ) = e−λteλα
fα(t). Furthermore, for j = 1, 2, . . . ; Tα|NTα(λ) = j has the same dis-

tribution as Tα|Γj/Tα = λ with density f [j]α (t|λ). Since it is assumed that (Γ`; ` ≥ 1) is
independent of (P`), it follows that for (P`) ∼ PD(α, 0), the conditional distribution of
(P`)|Tα = t, NTα(λ) = n is PD(α|t), and hence, (P`)|NTα(λ) = n has distribution P[n]

α (λ)
for n = 0, 1, . . . , as mentioned previously.

Remark 2. For the next results, which are extensions to ((P`,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0),

conditioned on NTα(λ) = n, we note, as in [19], that the densities f [n]α (t|λ) are well-defined for
any real number $ in place of [n], with density f [$]α (t|λ), provided that λ > 0, and for λ = 0 only
in the case where $ = −θ < α, which corresponds to fα,θ(t). Ref. ([19], Corollary 2.1) shows that
distributions for $ can be expressed as randomized (over λ) distributions for any n > $.

For clarity, with respect to ((P`,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0), Bj = Zj−1/Zj are

independent Beta( α+j−1
α , 1−α

α ) variables for j = 1, 2, . . . , and (B1, . . . , Br) is independent of
Zr = T−α

α,r and (P`,r) for each r = 1, 2, . . . .

Proposition 1. Consider ((P`,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0), formed by the fragmentation
operations in (6), when (P`,0) ∼ PD(α, 0). Denote the conditional distribution of ((P`,r), Zr; r ≥
0)|NTα(λ) = n as MLMC[n]

frag(α|λ) and its corresponding component values as ((P`,r(λ)), Zr(λ);
r ≥ 0). Then, the distribution has the following properties.

(i) (P`,0)|NTα(λ) = n is equivalent in distribution to (P`,0(λ)) ∼ P[n]
α (λ) =

∫ ∞
0 PD(α|t)

f [n]α (t|λ)dt.

(ii) (P`,r)|NTα(λ) = n, ∏r
i=1 Bi = br has distribution P[n−r]

α (λb−
1
α

r ), for r = 1, 2, . . . .

(iii) (P`,r)|NTα(λ) = n, ∏r
i=1 Bi = br has the same distribution as (P`,r)|NTα,r (λb−

1
α

r ) = n.

Proof. Statement (i) has already been established. For (ii) and equivalently (iii), we use

Tα = Tα,r ×∏r
i=1 B−

1
α

i , to obtain NTα(λ) = NTα,r (λ ∏r
i=1 B−

1
α

i ). Use (7) and (8) with Tα,r,

with density fα,r(t), in place of Tα, to conclude that Tα,r|NTα,r (λb−
1
α

r ), ∏r
i=1 Bi = br has
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density f [n−r]
α (t|λb−

1
α

r ). Then, apply (P`,r)|Tα,r = t, NTα(λ) = n, ∏r
i=1 Bi = br is PD(α|t) for

(P`,r) ∼ PD(α, r).

3. Results for n = 0, 1

We will now focus on results for (B1, . . . , Br, Tα,r), given NTα(λ) = n, in the cases
where n = 0, 1, and ((P`,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0). This is equivalent to providing
more explicit distributional results than Proposition 1 for the generalized gamma and its
size-biased case, where (P`,0(λ)) ∼ P[n]

α (λ), for n = 0, 1, subjected to the fragmentation
operations in (6). We first highlight a class of random variables that will play an important
role in our descriptions.

Throughout, we define γθ ∼ Gamma(θ, 1) for θ ≥ 0, with γ0 := 0. Let (e(`)) and
(γ

(`)
1−α

α

) denote, respectively, iid collections of exponential(1) and Gamma( 1−α
α , 1) ran-

dom variables that are mutually independent. Use this to form iid sums γ
(k)
1
α

:= e(k) +

γ
(k)
1−α

α

∼ Gamma( 1
α , 1), and construct increasing sums Γα,k := ∑k

j=1 γ
(j)
1
α

∼Gamma( k
α , 1) for

k = 1, 2, . . . .

Lemma 1. For k = 1, 2, . . . , set Yk(λ) = (Γα,k−1 + λα)/(Γα,k + λα), with Γα,0 = 0, and
hence Y1(λ) = λα/(Γα,1 + λα). Then, for any r = 1, 2, . . . , and λ > 0, the joint density of
(Y1(λ), . . . , Yr(λ)) can be expressed as

ϑ
[0]
α,r(y1, . . . , yr|λ) =

λr

[Γ( 1
α )]

r
e−λα/(∏r

j=1 yj)eλα
r

∏
l=1

y−
(r−l+1)

α −1
l (1− yl)

1
α−1. (9)

Furthermore, λα/ ∏r
j=1 Yj(λ) = Γα,r + λα.

3.1. Results for (P`,0(λ)) ∼ P[0]
α (λ), the Generalized Gamma Case

Let (β
(k)
( 1−α

α ,1)
) denote a collection of iid Beta( 1−α

α , 1) variables, and independent of

this, let (τ
(r)
α (y)) denote, for each fixed y ≥ 0, a collection of iid variables such that

τ
(r)
α (y) d

= τα(y). In addition, for each r, (β
(1)
( 1−α

α ,1)
, . . . , β

(r)
( 1−α

α ,1)
, τ

(r)
α (λ)) is independent of

(Y1(λ), . . . , Yr(λ)).

Proposition 2. Consider ((P`,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0); then, for each r, the joint
distribution of the random variables (B1, . . . , Br, Tα,r)|NTα(λ) = 0 is equivalent component-wise
and jointly to the distribution of (B[0]

1 (λ), . . . , B[0]
r (λ), T[0]

α,r(λ)), where:

(i) B[0]
k (λ)

d
= 1− β

(k)
( 1−α

α ,1)
[1−Yk(λ)], with conditional density given Yk(λ) = yk,

1− α

α
(1− bk)

1−α
α −1(1− yk)

1− 1
α I{yk≤bk≤1},

for k = 1, 2, . . ..
(ii) The conditional distribution of Tα,r|NTα(λ) = 0 is equivalent to that of

T[0]
α,r(λ)

d
=

τ
(r)
α (Γα,r + λα)

(Γα,r + λα)1/α

where recall λα/ ∏r
j=1 Yj(λ) = Γα,r + λα.

(iii) The conditional density of T[0]
α,r(λ)|∏r

i=1 Yi(λ) = yr, is f [0]α (t|λyr
− 1

α ).

(iv) Hence, (P`,r)|NTα(λ) = 0 ∼ E[P[0]
α ((Γα,r + λα)1/α)].

(v) (B[0]
1 (λ), . . . , B[0]

r (λ), T[0]
α,r(λ))|Y1(λ), . . . , Yr(λ) are independent.
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Corollary 1. Suppose that (P`,0(λ))
d
= (P[0]

` (λ)) ∼ P[0]
α (λ) =

∫ ∞
0 PD(α|t)e−λteλα

fα(t)dt,
then for r = 1, 2, . . . ,

(P`,r(λ)) = F̂rag
(r)
α,1−α

(
(P`,r−1(λ))

) d
= (P[0]

` ((Γα,r + λα)1/α)) (10)

where Γα,r = ∑r
j=1 γ

(j)
1
α

∼ Gamma( r
α )

Proof. This follows from statement (iv) of Proposition 2.

The corollary shows that the fragmentation operations in (6) lead to a nested family
of (mixed) normalized generalized gamma distributed mass partitions, with λα replaced
by the random quantities λα/ ∏r

j=1 Yj(λ) = Γα,r + λα. In other words, (P`,r)|NTα,0(λ) = 0
equates in distribution to the ranked masses of the random distribution function, for
v ∈ [0, 1]:

Fα(v|(Γα,r + λα)1/α)
d
=

τα([Γα,r + λα]v)
τα(Γα,r + λα)

.

Now, in order to recover MLMCfrag(α, θ) for θ ≥ 0, when (P`,0(λ))∼P
[0]
α (λ), set, for

θ ≥ 0, G̃α,θ
d
= G

1
α
θ
α

d
= γθ

Tα,θ
, where G θ

α
∼Gamma( θ

α , 1). When (P`,0(λ))
d
= (P[0]

` (λ))∼P[0]
α (λ),

as in Corollary 1, it follows from ([4], Proposition 21) that (P`,0(G̃α,θ))∼PD(α, θ). Hence
((P`,r(G̃α,θ)), Zr(G̃α,θ); r ≥ 0)∼MLMCfrag(α, θ). It follows from Proposition 2 that,

B[0]
k (G̃α,θ)

ind∼Beta( θ+α+k−1
α , 1−α

α ) for k = 1, 2, . . . . Notably, (Y1(G̃α,θ), . . . , Yr(G̃α,θ)) are in-
dependent variables, such that 1−Yr(G̃α,θ) ∼ Beta( 1

α , θ+r−1
α ) for r = 1, 2, . . . . When θ = 0,

or equivalently λ = 0, Y1(0) = 0, and 1−Yr(0)∼Beta( 1
α , r−1

α ) for r = 2, . . . .

3.2. Results for (P`,0(λ))∼P
[1]
α (λ)

Proposition 3. Consider ((P`,r), Zr; r ≥ 0)|NTα(λ) = 1∼MLMC[1]
frag(α|λ); then, for each r, the

joint distribution of the random variables (B1, . . . , Br, Tα,r)|NTα(λ) = 1 is equivalent component-
wise and jointly to the distribution of (B[1]

1 (λ), . . . , B[1]
r (λ), T[1]

α,r(λ)), where:

(i) B[1]
1 (λ)

d
= λα/(γ 1−α

α
+ λα), where γ 1−α

α
∼Gamma( 1−α

α , 1).

(ii) B[1]
k (λ)

d
= B[0]

k−1((γ 1−α
α

+ λα)1/α) for k = 2, 3, . . . , component-wise and jointly.

(iii) T[1]
α,r(λ) is equivalent in distribution to Tα,r|NTα(λ) = 1 and equivalent in distribution to

T[0]
α,r−1((γ 1−α

α
+ λα)1/α)

d
=

τ
(r−1)
α (Γα,r−1 + γ 1−α

α
+ λα)

(Γα,r−1 + γ 1−α
α

+ λα)1/α
,

r = 1, 2, . . ..

Corollary 2. The distributions of the components of ((P`,r(λ)), Zr(λ); r ≥ 0)∼MLMC[1]
frag(α|λ),

where (P`,0(λ))
d
= (P[1]

` (λ)) ∼ P[1]
α (λ), for λ > 0, satisfies for r = 1, 2, . . . ,

(P`,r(λ)) = F̂rag
(r)
α,1−α

(
(P`,r−1(λ))

) d
= (P[1]

` ((Γα,r + λα)1/α)), (11)

where (P[1]
` ((e1 + Γα,r−1 + γ 1−α

α
+ λα)1/α))

d
= (P[0]

` ((Γα,r−1 + γ 1−α
α

+ λα)1/α)) for e1∼

exponential(1) independent of the other variables. In this case, Γα,r
d
= e1 + Γα,r−1 + γ 1−α

α
.
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Proof. (P`,r)|NTα(λ) = 1, has the same distribution as (P`,r(λ)) in (11), and (iii) of Propo-

sition 3 shows that they are equivalent in distribution to (P[0]
` ((Γα,r−1 + γ 1−α

α
+ λα)1/α)).

From ([19], Corollary 2.1, Proposition 3.2), there is the equivalence (P[1]
` ((e1 + λα)1/α))

d
=

(P[0]
` (λ)) for any λ ≥ 0, yields (11).

Now, in order to recover MLMCfrag(α, θ) for θ > −α, when (P`,0(λ))) ∼ P[1]
α (λ), use

Ĝα,θ
d
= G

1
α
θ+α

α

d
=

γ1+θ
Tα,θ

, where G θ+α
α
∼Gamma( θ+α

α , 1), and, ((P`,r(λ)), Zr(λ); r ≥ 0)∼

MLMC[1]
frag(α|λ). It follows from ([19], Corollary 2.1) that ((P`,r(Ĝα,θ)), Zr(Ĝα,θ); r ≥ 0)∼

MLMCfrag(α, θ), for θ > −α.

3.3. Proofs of Propositions 2 and 3

Although the joint conditional density of (B1, . . . , Br, Tα,r)|NTα(λ) = 0 in the MLMC(α, 0)
setting can be easily obtained from ([6], p. 324), with h(t) = e−λteλα

, for clarity, we derive it
here. Since P(NTα(λ) = 0|Tα,r = s, ∏r

i=1 Bi = br) = e−λs/br
1/α

, and P(NTα(λ) = 0) = e−λα
,

it follows that the desired conditional density of (B1, . . . , Br, Tα,r)|NTα(λ) = 0, can be
expressed as,

αr

[Γ( 1−α
α )]r

r

∏
i=1

b
α+i−1

α −1
i (1− bi)

1−α
α −1 × s−r fα(s)e−λs/br

1/α
eλα

. (12)

Now, a joint density of (B[0]
1 (λ), . . . , B[0]

r (λ), T[0]
α,r(λ), Y1(λ), . . . , Yr(λ)) follows from

the descriptions in Proposition 2 and Lemma 3.1 and can be expressed, for 0 ≤ yk ≤ bk ≤
1,k = 1, . . . , r, as

eλα
fα(s)

λr

[Γ( 1−α
α )]r

r

∏
k=1

(1− bk)
1−α

α −1 × e−λs/yr
1/α

r

∏
l=1

y−
(r−l+1)

α −1
l , (13)

for yr = ∏r
i=1 yi. Proposition 2 is verified by showing that integrating over (y1, . . . , yr)

in (13) leads to (12). This is equivalent to showing that

∫ b1

0
· · ·

∫ br

0
e−λs/yr

1/α
r

∏
l=1

y−
(r−l+1)

α −1
l dyr · · · dy1 = αrλ−rs−re−λs/br

1/α
r

∏
i=1

b
i−1

α
i .

which follows by elementary calculations involving the change of variable vi = y−1/α
i , for

i = 1, . . . , r and exponential integrals. Now, to establish Proposition 3, first note that since

P(NTα(λ) = 1|Tα,1 = s, B1 = b1) = λsb−
1
α

1 e−λs/b
1
α
1 , and P(NTα(λ) = 1) = αλαe−λα

, the
joint density of B1, Tα,1|NTα(λ) = 1 can be expressed as

λ1−α

Γ( 1−α
α )

b−
1
α

1 (1− b1)
1−α

α −1 × e−λs/b1
1/α

eλα
fα(s). (14)

Hence, the conditional density of B1|NTα(λ) = 1 can be expressed as,

λ1−α

Γ( 1−α
α )

b−
1
α

1 (1− b1)
1−α

α −1 × e−λα/b1eλα
. (15)

which corresponds to B[1]
1 (λ)

d
= λα/(γ 1−α

α
+ λα), verifying statement (i) of Proposition 3.

Refs. (14) and (15) show that Tα,1|NTα(λ) = 1, B1 = b1 is f [0]α (s|λb−
1
α

1 ), which leads to

(P`,1)|NTα(λ) = 1, B1 = b1 having distribution P[0]
α (λb−

1
α

1 ). This agrees with statement (ii)
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of Proposition 1, with n = r = 1. Using λα/B1(λ)
d
= γ 1−α

α
+ λα and applying Proposition 2

starting with (P`,1)|NTα(λ) = 1, B1 = b1 subject to (6) concludes the proof of Proposition 3.
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