
SINGLE CAMERA POINTING GESTURE RECOGNITION USING SPATIAL
FEATURES AND SUPPORT VECTOR MACHINES

Z. Černeková, N. Nikolaidis and I. Pitas

Department of Informatics, Aristotle University of Thessaloniki
Box 451, Thessaloniki 541 24, GREECE

email: (zuzana, nikolaid, pitas)@zeus.csd.auth.gr

ABSTRACT

In this paper, a method for recognizing pointing gestures
without markers is proposed. The video-based system uses
one camera, which observes the user in front of a screen
and identifies the points pointed by him on this screen, his
arm being in the fully extended position towards the screen.
A GVF-snake was used in order to find the silhouette of the
user. From the silhouette features like position where the per-
son is standing, the position of the fingertip, and the position
of the shoulder are extracted, tracked and used to construct
a feature vector for each video frame. This vector is fed to
properly trained multi-class support vector machines (SVM)
in order to obtain the 2D position of the target point on the
screen. Two different camera setups with different feature
vector configurations are proposed and tested. Experiments
show very promising results for recognizing the pointing ges-
tures by using a single camera.

1. INTRODUCTION

Human posture and activity recognition from video has at-
tracted a lot of interest in recent years because of its im-
portant applications in surveillance, human-computer inter-
action and computer animation. Posture recognition is one of
the most challenging problems in computer vision, because
of the articulated motion of human bodies and the large vari-
ations in the appearance of clothing.

Hand gesture recognition in particular, is an extensive
area of research that include anything from static pose es-
timation of the human hand to dynamic movements such as
the recognition of sign languages. Hand gesture recognition
is closely related to video-based interaction which is one of
the most intuitive kinds of human-computer-interaction with
mixed-reality applications [1]. Users are not wired to a com-
puter, as it is necessary e.g. with electromagnetic sensors like
data gloves, and maintain mostly unrestricted freedom of in-
teraction. As a consequence, video-based interaction is the
preferred kind of interaction especially for technically un-
versed users.

Many traditional human posture recognition systems are
based on still cameras and background subtraction [2, 3]; the
silhouettes of the subjects are then used in posture recogni-
tion. The disadvantages of this scheme is that background
subtraction is not robust and not always possible, and the
method cannot distinguish postures when body parts are oc-
cluded by silhouettes.

One way to solve these problems is by extracting depth
information for the persons in the scene using multiple cam-
eras.Yamamoto et al. [4] describe a method of recognizing
intended arm pointing gestures, which is not restricted to the

position and orientation of the user. They use four stereo
cameras mounted in the corners of a ceiling that look down
at an oblique angle which allows to capture entire bodies and
faces simultaneously.

Nickel et al. [5] present an approach for the visual track-
ing of the head and the hands. Given the images acquired
by a calibrated stereo camera, color and disparity informa-
tion are integrated into a multi-hypotheses tracking frame-
work in order to find the 3D-positions of the respective body
parts. Based on the hands motion, an HMM-based approach
is applied to recognize pointing gestures. Furthermore, in-
formation about head orientation is used as an additional fea-
ture in order to improve the gesture recognition performance.
Carbini et al. [6] approximate the eye-finger pointing direc-
tion of a user by detecting and tracking the 3D positions of
the center of the face and of both hands; the positions are
obtained by a stereoscopic device located on the top of the
display. Their experiments show that the minimum size of
an object to be easily pointed is approximately 1.5 % of the
diagonal of the large display.

Obviously, the above mentioned approaches are more ex-
pensive to deploy than monocular systems. In [7] Kolesnik
and Kuleßa use a vision system which consists of a single
overhead view camera and exploits a priori knowledge of
the human body appearance, interactive context and envi-
ronment. The user controls the motion of virtual objects by
pointing with an arm extended towards the screen. However,
only the horizontal coordinate of the location pointed on the
screen is recognized by this method.

In this paper, we focus on recognizing the cell of a grid
on a screen that is pointed by a user, his/her hand being in the
fully extended position towards the screen. The video-based
module uses one camera, which observes the user in front
of the screen. Two different camera placements are exam-
ined. A GVF-snake is used to segment the silhouette of the
user in the first frame of the video. Characteristic features
like the top of head and the fingertip are identified and sub-
sequently tracked over time. These features are then fed into
multi-class support vector machines (SVM) that are trained
to recognize cells on the grid pointed by the user.

The remainder of the paper is organized as follows: In
Section 2, the setup used in our method is described. In
Section 3, a description of the used features as well as their
extraction procedure are presented. The use of the support
vector machine (SVM) is addressed in Section 4. Experi-
mental results on pointing gesture recognition are presented
and commented in Section 5 and conclusions are drawn in
Section 6.



2. ACQUISITION SETUP

Our testing environment is equipped with a single uncali-
brated camera. We have used two different camera place-
ment setups. In the first one (side camera) the camera is
located on the plane of the body on the right hand side of
the user, approximately 2 meters over the floor and 2.5 me-
ters away from user. The user stands in front of a screen of
size 1.2m×1.2m located at approximately one meter in front
of him. In the second setup (frontal camera) the camera is
placed on the top of the screen, thus observing the user from
the front. The same screen size has been used, whereas the
position of the user is about 2m away from the screen. In
both setups, the screen is divided to 6x6 cells each of them
of size 20× 20 cm. Furthermore, in both setups there is a
marker on the floor indicating the most suitable position of
the user. In Figure 1 one can see the testing environment with
the side and frontal cameras and the user pointing with fully
extended arm towards the screen with the grid. Frames from
videos acquired with the two setups are shown on Figures 2
and 3.

Figure 1: The testing environment setup with the side and
frontal cameras.

3. FEATURE VECTORS EXTRACTION

The first task to be solved in both setups is segmentation of
the user and of the pointing hand in the first frame. The static
environment and the fixed camera at our setups allows using
background subtraction. However, due to non-uniform light-
ing, shadows cast by the user on the floor may cause prob-
lems. Therefore, in order to properly detect the silhouette of
the user, we decided to used an active contour (snake). The
snake we have chosen is the GVF snake [8] that uses the gra-
dient vector flow (GVF) field, computed as a diffusion of the
gradient vectors of a gray-level or binary edge map derived
from the image, as its external force. Advantages of the GVF
snake over a traditional snake include its insensitivity to ini-
tialization and its ability to move into boundary concavities.

For initialization of the snake in the side camera setup,
we use an ellipse of sufficiently big size that is automati-
cally placed in the frame. The x (horizontal) coordinate of
the ellipse center is equal to the x coordinate on the frame of
the marker used to specify the user position whereas in the
vertical dimension, the ellipse center is located in 2

5 of the

distance between the foot marker and the top of the frame.
In order to obtain the silhouette we use 100 iterations for cal-
culating the gradient vector flow field and 80 iterations for
deforming the snake so as to match the person’s silhouette.
From the extracted silhouette (Figure 2) we use the follow-
ing four points: the top of head (xh), the feet position (x f ),
the shoulder (xs) and the fingertip (x f t ). The top of head is
obtained as the point with the smallest y image coordinate
(the origin of the coordinate system is placed in the top-left
corner of the image). In order to avoid false detections in
cases where the hand is placed higher than the head the x im-
age coordinate of the head is constrained to be close to the
x image coordinate of the feet. The point with the largest y
image coordinate is identified as the position of the feet. The
shoulder position is calculated as the golden ratio point on
the line segment defined by the top of the head and feet po-
sition points. Finally, the fingertip position is obtained as the
point with the largest x image coordinate. The image coordi-
nates of these four points constitute the feature vector which
is consequently processed by the properly trained SVM in
order to obtain the cell on the screen pointed by the user. Be-
cause the extraction of the whole silhouette from every frame
would be too time consuming, the snake is applied only to
the first frame and the positions of the four points in the rest
of the frames are extracted using the particle filters tracking
method [9]. Thus, for every frame f i, a feature vector v i is
constructed as follows:

v1
i = [xi

h,x
i
f ,x

i
s,x

i
f t ]. (1)

Figure 2: Silhouette detected by the GVF snake in a frame
acquired in the side camera setup.

In the frontal camera setup, we use only 2 points for cre-
ating a feature vector. These points are the top of head (x h),
and the hand (xhd). Two snakes were applied in the first
frame of the video sequence in this case: The first one in or-
der to roughly localize the head and the second one to local-
ize the pointing hand. For the initialization of the first snake,
we use an ellipse centered in the center of the frame, whereas
for the initialization of the second snake a circle is used. The
user is asked to point at a predefined cell at the start of the
session and the circle is centered at the area where the hand
resides in such pointing gesture. The top of head (x h) is ob-
tained from the first snake as the point with the smallest y
image coordinate. The center of gravity of the second snake



is used as the hand (xhd) position. In the rest of the frames
the points are tracked by a particle filters tracker [9]. For
every frame fi a feature vector vi is constructed as follows:

v2
i = [xi

h,x
i
f t ] (2)

Figure 3: Pointing hand and head detected by the GVF snake
in a frame acquired in the frontal camera setup.

4. POINTED POSITION RECOGNITION BY SVM

In order to obtain the cell pointed by the user on the screen,
the feature vectors are processed by a properly trained multi-
class SVM.

SVM is a popular technique to train classifiers that stems
from statistical learning theory [10, 11] and has its root in
the optimal hyperplane algorithm. SVMs minimize a bound
on the empirical error and the complexity of the classifier at
the same time. The data to be classified by the SVM might
be linearly separable in their original domain or not. If they
are separable, then a simple linear SVM can be used for their
classification. However, when the data cannot be separated
by a hyperplane in their original domain, we can project them
into a higher dimensional Hilbert space and attempt to lin-
early separate them in the new space using kernel functions.
Therefore, the decision boundary is given by

f (x) = sign
(
∑aiyiK(x,xi)+b

)
(3)

where K(x,xi) is a kernel function. Frequently used kernel
functions are the linear kernel, the polynomial kernel, and
the Radial Basis Function (RBF) kernel, which is defined as

K(xix j) = exp{−γ‖xi− x j‖2}. (4)

Table 1: Results for each test video sequence in the leave one
out framework using the side camera setup.

Run l-o-o accuracy

1. v1 70.7 %

2. v2 79.1 %

3. v3 68.2 %

4. m1 72.6 %

5. m2 69.3 %

Two different SVM configurations were tested. In the
first configuration, a single multi-class SVM whose output
classes were equal to the cells of the grid was used. In the
second configuration, two multi-class SVMs were used. The
first SVM was trained to recognize the row of the pointed cell
whereas the second one was trained to recognize the column.
Thus the number of the output classes of the two SVMs was
equal to the number of rows and columns of the grid, respec-
tively.

5. EXPERIMENTAL RESULTS

Two types of experiments with the two camera setups de-
scribed in Section 2 have been performed. In both cases the
Matlab DAG-SVM algorithm was used in order to construct
a multi-class support vector classification network.

5.1 Side camera setup

In the first set of experiments, the side camera setup, de-
scribed in Section 2, and the feature vector (1) were used.
Two persons, each using a different (left/right) hand for
pointing participated in this set of experiments. Three dif-
ferent videos of the first person (v1, v2 and v3) and two
videos of the second person (m1 and m2) were used. In
these videos the users point with their arm being fully ex-
tended to the centers of the cells starting from the top left
cell and scanning all cells in a row-wise zig-zag pattern until
the bottom right cell.

The leave one out training and testing method was used.
In each run, the SVM was trained with four videos and the
fifth video was used for testing the trained SVM. For the
training, the feature vectors corresponding to frames where
the person is pointing near the center of each cell, along with
the IDs of these cells were used. During testing, the SVM
was fed with the feature vectors and produced the estimated
ID of the pointed cell.

Since the recognition and generalization performance of
the SVM is strongly influenced by the selection of the ker-
nel function and the kernel parameters, various configura-
tions for the SVMs were experimentally tested and the one
that provided the best results was adopted. In terms of
the SVM kernels, a linear kernel, a quadratic polynomial
kernel and the radial basis function kernel were tested. It
should be noted that polynomial kernels of higher degree
were also tested but their training was found to be too time
consuming. Among these kernels, the RBF kernel pro-
duced the best results. In terms of the parameters for this
kernel, different values for the parameter γ in (4) and the
penalty factor C that defines the cost of constraint violations



Table 2: Confusion matrix for the rows recognition.
�����������ground truth

detected
row 1 row 2 row 3 row 4 row 5 row 6

row 1 0.62 0.38 0.0 0.0 0.0 0.0

row 2 0.16 0.46 0.38 0.0 0.0 0.0

row 3 0.0 0.0 0.83 0.17 0.0 0.0

row 4 0.0 0.0 0.0 0.92 0.08 0.0

row 5 0.0 0.0 0.0 0.13 0.87 0.0

row 6 0.0 0.0 0.0 0.0 0.02 0.98

Table 3: Results for each test video sequence in the leave one
out framework using the frontal camera setup.

Run l-o-o accuracy

1. z1 98.2 %

2. z2 94.4 %

3. z3 95.6 %

4. s1 91.3 %

5. s2 92.6 %

were experimentally tested. More specifically, the γ val-
ues {5.10−2,5.10−3,5.10−4,5.10−5,5.10−6} and the C val-
ues {1,10,50,100}were tested and the best performancewas
achieved for γ = 5.10−4 and C = 50. Finally, experiment
were conducted to verify which of the two configurations
mentioned in Section 4 provides the best results. Experi-
ments showed that the two-SVMs configuration can achieve
far better results and thus it was adopted as the configuration
of choice. The results obtained with the selected system and
parameters are presented in Table 1, where the percentages
of correctly recognized cells for each of the five runs are re-
ported. The test video for each run is also reported in this
table. As one can notice the results are satisfactory. Further-
more, Table 2 provides the confusion matrix of the proposed
system for the rows recognition. One can see that most of
the rows were recognized correctly, whereas in some cases
the row below or above the correct one was erroneously se-
lected. The same applies for the columns recognition. There-
fore, the maximum error of the system is one cell.

5.2 Frontal camera setup

The second set of experiments involved the frontal camera
setup described in Section 2 and the feature vector (2). Two
persons participated in the experiments. We have used 3 dif-
ferent videos of first person (z1, z2 and z3) and 2 videos of
second person (s1 and s2). In this case a configuration that
involves one SVM whose classes are equal to the numbers
of cells had been used since it was experimentally found to
provide the best results. The results obtained from the leave
one out method are summarized in Table 3. One can see that
this setup provides much better results than the side camera
setup.

These experiments show that very good results can be

achieved for pointing gesture recognition using only a single
camera, if properly selected simple features are fed into a
trained SVM.

6. CONCLUSIONS AND DISCUSSION

A method for the recognition of pointing gestures without
markers using only a single camera was presented in this pa-
per. The purpose of our method is to recognize cells pointed
by the user on a screen to enable intuitive video-based in-
teraction in applications like gaming (chess playing, puz-
zle solving) or virtual museums (selecting a part of painting
in order to obtain information for this part). The proposed
method utilizes characteristic features of a person’s silhou-
ette (top of head, fingertip, feet, etc.) that are detected using
a GVF snake and subsequently tracked over the video. These
features are fed in properly trained multi-class SVMs that
recognize the pointed cell. The proposed system achieved
very good results on the test video sequences. If the setup,
namely the camera position, the approximate user position
and the screen position are kept constant, the system can be
trained once with a number of videos for which the ground
truth (pointed cell) is known and consequently used to rec-
ognize the pointing gestures of the users. Future work in-
cludes improving the performance of the method and thor-
oughly testing it in a real application.

Acknowledgement

This work has been conducted in conjunction with the ‘SIM-
ILAR’ European Network of Excellence on Multimodal
Interfaces of the IST Programme of the European Union
(www.similar.cc).

REFERENCES

[1] C. Malerczyk, P. Dhne, and M. Schnaider, “Explor-
ing digitized artworks by pointing posture recognition,”
in Proc. 2005 6th Int. Symposium on Virtual Reality,
Archeology and Cultural Heritage, Pisa, Italy, Novem-
ber 2005.

[2] R. Kehl and L. V. Gool, “Real-time pointing gesture
recognition for an immersive environment,” in Proc.
2004 IEEE 6th Int. Conf. on Automatic Face and Ges-
ture Recognition (FGR04), 2004.

[3] X. Liu and K. Fujimura, “Hand gesture recognition
using depth data,” in Proc. 2004 IEEE 6th Int. Conf.
on Automatic Face and Gesture Recognition (FGR04),
2004.



[4] Y. Yamamoto, I. Yoda, and K. Sakaue, “Arm-pointing
gesture interface using surrounded stereo cameras sys-
tem,” in Proc. 2004 Int. Conf. Pattern Recognition,
Cambridge, August 2004.

[5] K. Nickel, E. Seemann, and R. Stiefelhagen, “3d-
tracking of head and hands for pointing gesture recog-
nition in a human-robot interaction scenario,” in Proc.
2004 IEEE 6th Int. Conf. on Automatic Face and Ges-
ture Recognition (FGR04), 2004.

[6] S. Carbini, J. E. Viallet, and O. Bernier, “Pointing
gesture visual recognition for large display,” in Proc.
2004 Int. Conf. Pattern Recognition, Cambridge, Au-
gust 2004.

[7] M. Kolesnik and T. Kuleßa, “Detecting, tracking and
interpretation of a pointing gesture by an overhead view
camera,” in B.Radig, editor, LNCS: Pattern Recogni-
tion, 2001.

[8] C. Xu and J. L. Prince, “Snakes, shapes, and gradi-
ent vector flow,” IEEE Trans. Image Processing, vol. 7,
no. 3, pp. 359–369, 1998.

[9] S. K. Zhou, R. Chellappa, and B. Moghaddam, “Visual
tracking and recognition using appearance-adaptive
models in particle filters.” IEEE Trans. Image Process-
ing, vol. 13, no. 11, pp. 1491–1506, 2004.

[10] V. Vapnik, Statistical Learning Theory. J. Wiley, N.Y.,
1998.

[11] N. Cristianini and J. Shawe-Taylor, An Introduction
to Support Vector Machines. Cambridge University
Press, Cambridge, U.K., 2000.


