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Abstract
Single-solution-based optimization algorithms have gained little to no attention by the research community, unlike popula-
tion-based approaches. This paper proposes a novel optimization algorithm, called Single Candidate Optimizer (SCO), that 
relies only on a single candidate solution throughout the whole optimization process. The proposed algorithm implements a 
unique set of equations to effectively update the position of the candidate solution. To balance exploration and exploitation, 
SCO is integrated with the two-phase strategy where the candidate solution updates its position differently in each phase. 
The effectiveness of the proposed approach is validated by testing it on thirty three classical benchmarking functions and 
four real-world engineering problems. SCO is compared with three well-known optimization algorithms, i.e., Particle Swarm 
Optimization, Grey Wolf Optimizer, and Gravitational Search Algorithm and with four recent high-performance algorithms: 
Equilibrium Optimizer, Archimedes Optimization Algorithm, Mayfly Algorithm, and Salp Swarm Algorithm. According 
to Friedman and Wilcoxon rank-sum tests, SCO can significantly outperform all other algorithms for the majority of the 
investigated problems. The results achieved by SCO motivates the design and development of new single-solution-based 
optimization algorithms to further improve the performance. The source code of SCO is publicly available at: https:// uk. 
mathw orks. com/ matla bcent ral/ filee xchan ge/ 116100- single- candi date- optim izer.
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1 Introduction

The rapid advances in science and technology in the last dec-
ade has increased the difficulty level of real-world optimiza-
tion problems and this motivates the development of fast and 
efficient optimization algorithms. The first step in optimization 
is to formulate an objective function that can be maximized or 
minimized. Once the optimization problem is formulated, an 
optimization algorithm is needed to search for the best vari-
ables that can achieve the best solution. Real-world optimiza-
tion problems are mathematically formulated as follows:

where f (�) is the objective function that needs to be opti-
mized, D, L and K are the numbers of dimensions (vari-
ables), inequality constraints, equality constraints, respec-
tively, ubj and lbj represents the upper and lower bounds of 
variable x at dimension j.

Generally, optimization problems can be solved by 
deterministic or stochastic methods. Utilizing gradient 
information, linear and non-linear programming are two 
prominent deterministic methods that can be used to find 
the optimal solution of a given problem. However, these 
conventional deterministic methods can converge to 
local optima [1] [2]. To overcome the limitations of the 
conventional approaches, meta-heuristic algorithms, as 
a stochastic approach, can be used to solve complicated 
real-world optimization problems. Meta-heuristic algo-
rithms have shown robust performance when applied to 
different optimization problems in various fields such 
as wireless communications [3–5] and artificial intel-
ligence [6–8].

The main merits of meta-heuristic algorithms are their 
simplicity, flexibility, ability to avoid a local optimum, and 
derivative-free mechanisms [9]. The searching process of 

(1)

min f (�), � = x1, x2, ..., xD

s. t. hk(�) = 0, k = 1, 2, ...,K

gl(�) > 0, l = 1, 2, ..., L

lbj < xj < ubj, j = 1, 2, ...,D
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meta-heuristic algorithms is split into two phases: explora-
tion and exploitation. The exploration stage broadly spans 
the search space with the aim of finding promising regions 
that can lead towards the optimal solution [10]. Poor explo-
ration can lead to local optima entrapment. The exploitation 
phase focuses on searching around the promising regions 
discovered in the exploration phase. The inability to perform 
successful exploitation can significantly reduce the solution 
accuracy. Balancing between exploration and exploita-
tion is one of the major challenges faced by meta-heuristic 
approaches . An efficient meta-heuristic algorithm is a one 
that: 

1 Balances well between exploration and exploitation
2 Provides high level of accuracy
3 Converges towards the optimal solution and escapes 

from local optima
4 Has a stable performance where results are not sig-

nificantly different from one independent run to 
another

The purpose of this paper is to develop a robust optimi-
zation algorithm that can be used to solve diverse real-
world optimization problems. The rest of the paper is 
organized as follows. In Section two, a literature review 
on meta-heuristic algorithms is provided. Section three 
develops the mathematical model and the algorithm of 
the proposed approach. It also presents the complexity 
of the proposed single candidate optimizer. Sections 
four and five discuss the performance of the proposed 
optimization algorithm on thirty three benchmarking 
functions and four engineering problems, respectively. 
Finally, Section six concludes this work and provides 
some potential research directions.

2  Literature review

Meta-heuristic algorithms can be classified into four 
main different groups: swarm algorithms, evolutionary 
algorithms, physics-based approaches, and human-based 
algorithms [11]. Swarm intelligence algorithms are 
inspired by the behaviour of animals when they search 
for food in groups. In this category, the information of all 
or part of the particles is shared during an iterative opti-
mization process. One of the most well-known swarm 
approaches is Particle Swarm Optimization (PSO) which 
was developed by Kennedy and Eberhart in 1995 [12]. 
PSO mimics birds flying in swarms where individuals 
in a swarm are guided by a leader who has the closest 
position to the target.

In PSO, a swarm of particles where each particle 
represents a potential solution flies in the search space 

with the aim of finding better positions that help to move 
toward the optimal solution. During the PSO iterative 
process, each particle is attracted to the global best 
position (gbest) which is the particle that has achieved 
the best fitness so far and it is also attracted to its best 
historical position (Pbest). Other widely known swarm 
algorithms are: Grey Wolf Optimization [9], Ant Colony 
Optimization [13], Salp Swarm Algorithm [14],Whale 
Optimization Algorithm [11], Krill Herd [15], Butter-
fly Optimization Algorithm [16], Seagull Optimization 
Algorithm [17], and Cuckoo Search [18].

Evolutionary algorithms as the second class of meta-
heuristics are developed by imitating biological evo-
lution such as mutation and crossover. The most well-
known evolutionary algorithm is the Genetic Algorithm 
(GA) developed by Holland in 1992 [19]. A GA imple-
ments three main steps: selection, crossover, and muta-
tion. In the selection process, some of the exiting candi-
date solutions (ones with better fitness) are selected to 
produce a second generation using the crossover concept. 
To maintain diversity, some dimensions of certain solu-
tions are mutated with a mutation probability. Besides 
GA, Evolutionary Programming [20], Differential Evolu-
tion (DE) [21], Evolution Strategies [22] are three other 
widely used evolutionary approaches.

The third category of meta-heuristic algorithms uti-
lizes the laws of physics such as Newton’s gravitational 
law and Archimedes’ principle to build interactions 
between candidate solutions. Simulated Annealing (SA) 
[23] and Gravitational Search Algorithm (GSA) [24] are 
two prominent approaches that belong to this class. SA 
is a single-solution-based algorithm that imitates the 
physical annealing process of metals. In GSA, candi-
date solutions are treated as a collection of masses that 
obey Newton’s gravity and motion laws. Equilibrium 
Optimizer [25] and Henry Gas Solubility Optimization 
[26] are two recent state-of-the-art physics-based opti-
mization algorithms. Other optimization algorithms that 
belong to this class are: Sine Cosine Algorithm [48], 
Water Cycle Algorithm [49], Black Hole algorithm [50], 
and Thermal Exchange Optimization [51].

The final group of meta-heuristic methods emulates 
the social behaviour of humans. For instance, Political 
Optimizer [36] and Parliamentary Optimization Algo-
rithm [52] are two optimization algorithms inspired by 
the political process. Teaching-Learning-Based Opti-
mization (TLBO) [53] is another social example where 
its mechanism is developed by mimicking the teaching-
learning process in a classroom. Election Campaign 
Optimization [54], Brain Strom Optimization [55], 
Exchange Market Algorithm [56], Bus Transportation 
Algorithm [57], Group Teaching Optimization Algorithm 
[37], and Student Psychology Based Optimization [58] 
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are other optimization algorithms that belong to this 
category.

Another classification of meta-heuristic algorithms 
is presented in [59] where meta-heuristic algorithms 
are divided into nine different categories: swarm-based, 
chemical-based, biology-based, physics-based, sports-
based, musical-based, social-based, mathematical-based, 
and hybrid approaches. Besides the nine aforementioned 
categories, the authors in [60–62] added water-based, 
light-based and plant-based as three different classes of 
intelligent optimization algorithms.

Based on the number of candidate solutions involved 
in each iteration of the optimization process, meta-heu-
ristic algorithms can also be classified into two cate-
gories: single-solution-based and population-based. In 
single-solution-based, only a single candidate solution 
is used to search for the optimal solution while in pop-
ulation-based methods a swarm of candidate solutions 
are needed. Most of the recent literature if not all as 
can be seen from Table 1 has focused on population-
based methods as it is believed amongst the research 
community that single-solution-based algorithms always 
have poor performance compared with population-based 
approaches. This belief is because the performance of the 

three most common single-solution-based approaches, 
i.e, SA, Tabu Search [63], and Hill Climbing is very poor 
when compared with population-based algorithms. Lack 
of inspiration is another reason that has led to the devel-
opment ignorance of single-solution-based algorithms. It 
is hard to find natural, physical or social phenomena that 
rely on a single object or creature. On the other hand, it 
is relatively easy to observe natural or physical behav-
iours generated by groups. These two main reasons have 
increased the popularity of population-based algorithms 
and at the same time neglected the development of new 
single-solution-based algorithms.

Many works have attempted to improve the optimi-
zation performance by introducing new ideas that can 
help to update the positions of potential solutions effec-
tively. The authors in [9] proposed a Grey Wolf Opti-
mizer (GWO) that implements a leadership hierarchy 
that consists of four wolves known as alpha, beta, delta, 
and omega. Moreover, GWO imitates the hunting behav-
iour of preys that is performed in three different steps: 
searching, encircling and attacking preys. The proposed 
hierarchy system of GWO provides diversity that can 
help to achieve good results. In [25], a novel optimi-
zation algorithm called Equilibrium Optimizer (EO) is 

Table 1  Some recent 
optimization algorithms

Algorithm Ref. Inspiration Year

Henry gas solubility optimization [26] Henry’s law 2019
Harris hawks optimization (HHO) [27] Harris hawks attacking strategies 2019
Atom search optimization [28] Atomic motion model 2019
Pathfinder algorithm [29] Collective movements of swarms 2019
Sailfish Optimizer [30] Sailfish group hunting 2019
Equilibrium optimizer [25] Mass balance for a control volume 2020
Marine Predators Algorithm [31] foraging strategy of ocean predators 2020
Heap-based optimizer [32] Corporate rank hierarchy 2020
Gradient-based optimizer [33] Gradient-based Newton’s approach 2020
Mayfly optimization algorithm [34] Flight behaviour of mayflies 2020
Bear smell search algorithm [35] Smelling mechanism of bears 2020
Political Optimizer [36] Multi-phased political process 2020
Group teaching optimization algorithm [37] Group teaching mechanism 2020
The Arithmetic Optimization Algorithm [38] Arithmetic operators 2021
Archimedes optimization algorithm [39] Archimedes’ principle 2021
Aquila Optimizer [40] Aquila’s behaviors 2021
Red fox optimization algorithm [41] Red fox hunting 2021
Horse herd optimization algorithm [42] Horses’ herding behavior 2021
Remora optimization algorithm [43] Parasitic behavior of remora 2021
Dwarf Mongoose Optimization Algorithm [44] Foraging behavior of the dwarf mongoose 2022
Snake Optimizer [45] Mating behavior of snakes 2022
Ebola Optimization Algorithm [46] Propagation of the Ebola virus 2022
Reptile Search Algorithm [47] Hunting behaviour of Reptiles 2022
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proposed where it is inspired by mass balance for a con-
trol volume. The strength of EO mainly comes from a 
term called generation rate that is responsible to exploit 
the space and it sometimes plays an essential explora-
tion role.

Inspired by the Archimedes’ Principle, an Archimedes 
Optimization Algorithm (AOA) is proposed in [39]. The 
exploration phase of AOA is activated when objects col-
lide with each other while exploitation takes place when 
no collision happens. The work in [64] developed a new 
nature-inspired algorithm called Moth-Flame Optimi-
zation (MFO) that mimics moths movements that rely 
on the moon’s light to travel in a direct path. In MFO, 
moths are potential solutions whereas f lames are the 
best solutions that have been obtained. Another differ-
ence between moths and flames is the updating mecha-
nism. To promote exploration and avoid local optimum 
in MFO, each moth is assigned one flame only. Moreo-
ver, MFO attempts to balance exploration and exploita-
tion by reducing the number of flames. In [65], a Honey 
Badger algorithm (HBA) is developed by formulating 
the digging behaviour to represent the exploration stage 
while exploitation is represented by the process of find-
ing honey. HBA proposes a density factor that can help 
to smoothly switch from exploration to exploitation.

Another nature-inspired optimization algorithm 
called Ant Lion Optimizer (ALO) is proposed in [66]. 
In ALO, following the natural searching behaviour of 
ants, the movements of ants are modelled by a random 
walk. The roulette wheel operator is implemented for 
modelling the hunting behaviour of antlions. In addi-
tion, elitism is applied by ALO to store the best obtained 
solutions. The proposed random walk of ALO enhances 
its exploration abilities whereas elitism promotes exploi-
tation particularly at the final stages of the ALO search 
process.

In [67], a novel intelligent optimization algorithm 
called War Strategy Optimization (WSO) is proposed 
where its mechanism mimics the strategical movements 
(defence or attack) of army troops when wars take place. 
Utilizing a war strategy, WSO develops a novel updating 
mechanism to update the position of soldiers. Moreover, 
a unique updating mechanism is proposed to update the 
positions of weak soldiers. Another interesting mecha-
nism of WSO is to replace weak or injured soldiers with 
new ones or to relocate them. The proposed WSO strate-
gies can contribute towards balancing exploration and 
exploitation and achieve good performances. Inspired 
by chemical reactions, an Artificial Chemical Reaction 

Optimization Algorithm (ACROA) is proposed in [68]. 
IN ACROA, atoms are treated as particles since they 
have positions and velocities. To enhance the global and 
local search capabilities, ACROA applies five chemical 
reactions: synthesis, bimolecular, redox2, displacement, 
and monomolecular reactions. One of the main advan-
tages of ACROA is that it has a few parameters. The 
methodologies in [67, 68] and [5] can be integrated with 
SCO and other optimization algorithms to improve the 
optimization performance.

Although the state-of-the-art optimization algorithm 
have shown remarkable improvements in solving diverse 
problems, they achieve the best performance only on 
certain problems while their performances of different 
problems is far from optimal. The following summa-
rizes six main disadvantages of existing metaheuristic 
algorithms:

• Many metaheuristic algorithms achieve strong explo-
ration performances; however, their exploitation abil-
ity is weak. On the other hand, some metaheuristic 
algorithms can exploit the search space well; never-
theless, they have poor exploration capabilities. This 
results in undesired exploration-exploitation imbal-
ance that degrades the overall optimization perfor-
mance.

• Some intelligent swarm algorithms can easily cov-
erage to local optima. These algorithms either have 
poor strategies that cannot avoid local optima or they 
do not have strong mechanisms that can help to redi-
rect the search towards promising regions once the 
algorithm is trapped.

• A significant disadvantage of some algorithms is the 
requirement of massive number of function evalua-
tions to achieve acceptable solutions.

• Many algorithms have various sensitive parameters 
where a slight change in a certain parameter can 
affect the performance significantly.

• Some optimization algorithms perform well on low 
dimensional problems; however, their performance 
substantially degrades as the number of dimensions 
increases.

• Although some algorithms can achieve promising 
results on unconstrained problems, they face diffi-
culties in solving real-world constrained optimization 
problems.

According to the No Free Lunch (NFL) theorem [69], 
a meta-heuristic algorithm that performs well on a 
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particular class of problems achieves degraded perfor-
mance when it solves different sets of problems. In other 
words, there is no meta-heuristic algorithm that can pro-
vide the best solutions for all kind of problems. Many 
state-of-the-art meta-heuristic algorithms have shown 
promising results on a certain set of problems; how-
ever, they have demonstrated poor performance when 
applied to solve a different set of problems. This moti-
vates researchers to develop novel meta-heuristic meth-
ods that achieve higher level of accuracy when applied 
to a wide range of optimization problems. Table 1 sum-
marizes some recent optimization algorithms and their 
inspirations.

3  Proposed algorithm

This work proposes a novel approach that utilizes only a sin-
gle candidate solution during the whole optimization process 
to find better solutions, unlike most of the existing searching 
algorithms that rely on a swarm of particles. In the proposed 
scheme, the overall optimization process that consists of T 
function evaluations or iterations is divided into two phases 
where the candidate solution updates its position differently 
in each phase. Although single-solution-based algorithms 
and two-phase approaches are two established meta-heuristic 
optimization methods, they have been implemented sepa-
rately. The developed approach integrates the single candi-
date approach with the two-phase strategy to form a single 
robust algorithm. Most importantly, the proposed algorithm 
implements a unique set of equations to update the position 
of the candidate solution with relying only on its informa-
tion, i.e., its current position.

The purpose of the two-phase strategy is to provide 
diversity and balance between exploration and exploita-
tion. The first phase in SCO terminates when � function 
evaluations are performed while the second phase con-
sists of � function evaluations where � + � = T  . In the 
first phase of SCO, the candidate solution updates its 
positions as follows:

where r1 is a random variable in the range [0,1].
The mathematical definition of w is given as follows:

(2)xj =

{

gbestj + (w ∣ gbestj ∣) if r1 < 0.5

gbestj − (w ∣ gbestj ∣) otherwise

where b is a constant, t is the current function evaluation or 
iteration, and T is the maximum number of function evalu-
ations, respectively.

The second phase of SCO performs a deep search that 
starts by extensively exploring the space around the best 
position obtained in the first phase. The latter part of 
phase two reduces the space to be searched which helps 
to focus on promising regions only. The following shows 
how the candidate solution updates its position in the 
second phase:

where r2 is another random variable in the range of [0,1], ubj 
and lbj are the boundary upper and lower bounds, respec-
tively and w is the most important parameter in SCO which 
is responsible to balance between exploration and exploita-
tion. From (3), w decreases exponentially as the number of 
function evaluations increase. This behaviour is crucial as 
a relatively high value of w at the beginning of the search 
process helps to explore the search space effectively while a 
small value of w strengthens the exploitation abilities at the 
latter stages of the optimization process. One of the main 
limitations of meta-heuristic algorithms is becoming trapped 
in local optima particularly at the latter phases of the search-
ing process. In other words, continuous update of the posi-
tions of candidate solutions does not yield fitness improve-
ment. SCO tackles this issue by updating the position of 
the candidate solution differently in the second phase if no 
fitness improvement is achieved in m consecutive function 
evaluations. A counter c is used to count the number of func-
tion evaluations m that sequentially can not achieve fitness 
improvement. A binary parameter p is used to determine 
whether the updated candidate can achieve a successful fit-
ness or not where p = 1 indicates successful fitness improve-
ment while p = 0 denotes fitness improvement failure. In 
the second phase of SCO, a candidate solution updates its 
position based on (4); however, if performing m consecutive 
function evaluations does not improve the fitness value, the 
candidate solution updates its position as follows:

(3)w(t) = exp
−

(

bt

T

)b

(4)xj =

{

gbestj +
(

(r2w
(

ubj − lbj
))

if r2 < 0.5

gbestj −
(

(r2w
(

ubj − lbj
))

otherwise
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explained as follows. The process starts by randomly gener-
ating a candidate solution in the search space, evaluating its 
fitness, recording this candidate as gbest (global best posi-
tion) and its fitness f(gbest) as the global best fitness. The 
initial candidate solution is generated as follows:

(7)xj = lbj + r4(ubj − lbj)

Table 2  Unimodal test functions

Function Range fmin

f1(x) =
∑n

i=1
x2
i

[−100,100] 0
f2(x) =

∑n

i=1
∣ xi ∣ +

∏n

i=1
∣ xi ∣ [−10,10] 0

f3(x) =
∑n

i=1
(
∑i

j−1
xj)

2 [−100,100] 0

f4(x) = maxi{∣ xi ∣, 1 ≤ i ≤ n} [−100,100] 0

f5(x) =
∑n−1

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] [−30,30] 0

f6(x) =
∑n

i=1
([xi + 0.5])2 [−100,100] 0

f7(x) =
∑n

i=1
ix4

i
+ random[0, 1) [−1.28, 1.28] 0

where r3 is a random number that can have a value in the 
range of [0,1]. The position update in (5) allows the candi-
date solution to shift from exploitation to exploration which 
is helpful to escape from local optimum.

Updating the positions of some variables can sometimes 
cause their values to go out of range or boundaries. To 
restrict variables from exceeding the boundaries, the updated 
positions are set as follows in case their values are higher 
than their upper bounds and lower bounds, respectively:

In (6), the updated dimension of a candidate solution 
is assigned the same value as the global best value if the 
updated position goes out of boundaries.

In SCO, a single candidate solution x is randomly gener-
ated and then it is iteratively updated in order to search for 
a better solution. The steps of the proposed algorithm are 

(5)xj =

{

gbestj +
(

(r3
(

ubj − lbj
))

if r3 < 0.5

gbestj −
(

(r3
(

ubj − lbj
))

otherwise

(6)xj =

{

gbestj if xj > ubj
gbestj if xj < lbj
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where lbj and ubj are the lower and upper boundaries of the 
search space, r4 is a random number in the range of [0,1].

The repetitive process that terminates when it reaches T 
function evaluations starts by updating the position of the 

Table 3  Multimodal test 
functions

Function Range fmin

f8(x) =
∑n

i=1
−xisin(

√

∣ xi ∣) [−500,500] −418.9829 × Dim

f9(x) =
∑n

i=1
[x2

i
− 10cos(2�xi) + 10] [−5.12,5.12] 0

f10(x) = − 20exp

⎛

⎜

⎜

⎝

−0.2

�

�

�

�

1

n

n
�

i=1

x2
i

⎞

⎟

⎟

⎠

− exp

�

1

n

n
�

i=1

cos(2�xi)

�

+ 20 + e

[−32,30] 0

f11(x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�

xi
√

i

�

+ 1
[−600,600] 0

f12(x) =
�

n
{10sin

(

�y1
)

+

n−1
∑

i=1

(

yi − 1
)2[

1 + 10sin2
(

�yi + 1
)]

+
(

yn − 1
)2

+

n
∑

i=1

u
(

xi, 10, 100, 4
)

}

[−50,50] 0

yi = 1 +
xi+1

4

u(xi, a, k,m) =

⎧

⎪

⎨

⎪

⎩

k
�

xi − a
�m

xi > a

0 - a < xi < a

k
�

−xi − a
�m

xi < −a

f13(x) = 0.1{sin2
(

3�x1
)

+

n
∑

i=1

(

xi − 1
)2
[1 + sin2

(

3�xi + 1
)

]

+
(

xn − 1
)2
[1 + sin2

(

2�xn
)

]} +

n
∑

i=1

u
(

xi, 5, 100, 4
)

[−50,50] 0

Table 4  Fixed-dimension 
multimodal test functions

Function Dim Range fmin

f14(x) =

�

1

500
+
∑25

j=1

1

j+
∑2

i=1
(xi−aij)

6

�−1 2 [−65,65] 1

f15(x) =
∑11

i=1

�

ai −
x1(b

2

i
+bix2)

b2
i
+bix3+x4

�2 4 [−5,5] 0.00030

f16(x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [−5,5] −1.0316

f17(x) =
(

x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10

(

1 −
1

8�

)

cosx1 + 10
2 [−5,5] 0.398

f18(x) =
[

1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1x2 + 3x2

2
)
]

×
[

30 + (2x1 − 3x2)
2 × (18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2
)
]

2 [−2,2] 3

f19(x) = −
∑4

i=1
ciexp

�

−
∑3

j=1
aij(xj − pij)

2

�

3 [1,3] −3.86

f20(x) = −
∑4

i=1
ciexp

�

−
∑6

j=1
aij(xj − pij)

2

�

6 [0,1] −3.32

f21(x) = −
∑5

i=1

�

(X − ai)(X − ai)
T + ci

�−1 4 [0,10] −10.1532

f22(x) = −
∑7

i=1

�

(X − ai)(X − ai)
T + ci

�−1 4 [0,10] −10.4028

f23(x) = −
∑10

i=1

�

(X − ai)(X − ai)
T + ci

�−1 4 [0,10] −10.5363

candidate solution. The candidate solution x updates its posi-
tion in phase one and phase two based on (2) and (4), respec-
tively. After updating the candidate position, the fitness of 
the newly generated candidate solution f(x) is evaluated and 
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compared with f(gbest). If f(x) is better than the gbest fitness 
f(gbest), gbest and f(gbest) are replaced by x and f(x), respec-
tively. The iterative process continues until the maximum 
number of function evaluations T is reached. The pseudo-
code of the proposed algorithm is presented in Algorithm 1.

3.1  Complexity analysis

The computational complexity of population-based algo-
rithms depends on four parameters: the number of candi-
date solutions and dimensions denoted as N and D, respec-
tively, the cost of evaluating the objective function C and 
the maximum number of function evaluations T. In swarm 
algorithms, the maximum number of function evaluations 
is given as T = Nt where t is the maximum number of itera-
tions. Generally, the minimal computational complexity of 
swarm algorithms including PSO, GWO and EO is com-
posed of two main elements: initialization and main loop. 
Initialization involves generation of random candidate 
solutions and evaluating their fitness. The time complex-
ity of generating candidate solutions is given as O(ND) 
while O(NC) represents the complexity of evaluating their 

fitness. Thus, the overall initialization complexity is give as 
O(ND + NC).

The main loop is mainly composed of function evalua-
tions and position updates. The computational complexity of 
evaluating the fitness for all candidate solutions in the main 
loop for all iterations is O(tNC) which is equivalent to O(TC) 
whereas the complexity of updating positions is O(TD). The 
minimal computational complexity of population-based 
algorithms can be written as follows:

Besides O(initialization) and O(main loop), other operations 
such as memory savings as in PSO and EO are needed which 
contribute to increasing the complexity level.

In SCO, the initialization complexity is O(D + C) which is 
lower than the initialization complexity of other algorithms 
( O(ND + NC) ) as SCO has only one candidate solution. The 
main loop complexity of SCO is O(TC + TD) which includes 
function evaluations and positions update with complexities 
of O(TC) and O(TD), respectively. Thus, the overall compu-
tational complexity of SCO is given as follows:

From (8) and (9), it is clear that the computational complex-
ity of SCO is even lower than the minimal complexity of 
population-based algorithms.

4  Results and discussion

To validate the effectiveness of the proposed algorithm, it is 
tested first on a set of 23 classical benchmarking functions 
[9, 11, 70–72] that are divided into three different groups: 
unimodal, multimodal and fixed-dimension multimodal 
functions. Unimodal functions are used to test the exploita-
tion ability of optimization algorithms since they have only 
one global optimum whereas multimodal functions assess 
the exploration efficiency as they have multiple local optima. 

(8)O(swarmmin) = O(ND + NC + TC + TD)

(9)O(SCO) = O(D + C + TC + TD)

Table 5  CEC2019 test functions No. Function Name Dim Range fmin

F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192,8192] 1
F2 Inverse Hilbert Matrix Problem 16 [−16384,16384] 1
F3 Lennard-Jones Minimum Energy Cluster 18 [−4,4] 1
F4 Rastrigin’s Function 10 [−100,100] 1
F5 Griewangk’s Function 10 [−100,100] 1
F6 Weierstrass Function 10 [−100,100] 1
F7 Modified Schwefel’s Function 10 [−100,100] 1
F8 Expanded Schaffer’s F6 Function 10 [−100,100] 1
F9 Happy Cat Function 10 [−100,100] 1
F10 Ackley Function 10 [−100,100] 1

Table 6  Parameter settings of all compared algorithms

Algorithm Parameter Value

SCO � , b 1000, 2.4
EO Generation probability , 

a1 , a2
0.5, 2, 1

GWO a Linearly decreasing from 
2 to 0

PSO C1 , C2 , w 2,2,[0.9-0.4]
SSA Position update probability 0.5
MA Population size 15 males and 15 females

g, a1 , a2 , a3 , � , d, fl 0.8,1,1.5,1.5,2,0.1,0.1
AOA C1 , C2 2, 6
GSA Alpha, G0, Rnorm, Rpower 20, 100, 2, 1
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The difference between the multimodal functions ( f8 − f13 ) 
and the fixed-dimension multimodal functions ( f14 − f23 ) is 
that the number of variables of f14 − f18 are unchangeable, 
unlike f8 − f13 . In addition, the fixed-dimension multimodal 
functions spans different search range. Tables 2 , 3 and 4 list 
the mathematical representations of unimodal, multimodal 
and fixed-dimension multimodal functions, respectively.

To further validate the effectiveness of the proposed 
algorithm, its performance is evaluated on the CEC 2019 
test suite. A summary of the CEC 2019 test functions that 
includes function name, dimension, and search range is pro-
vided in Table 5. The performance of the proposed approach 
is compared with three well-known optimization algorithms, 

i.e., PSO, GWO and GSA. It is also compared with four 
recent high-performance approaches: EO, AOA, MA, and 
SSA. EO, AOA, MA, and SSA have shown outstanding per-
formance when applied to solve benchmarking functions and 
real-world engineering problems. Their results showed that 
they can outperform several optimization algorithms such 
as Success-History Based Parameter Adaptation Differen-
tial Evolution (SHADE) [73], LSHADE-SPACM, GA, DE, 
HHO, and L-SHADE.

The results of all compared algorithms are averaged over 
30 independent runs. For all the test functions, the algo-
rithms are compared in terms of the average fitness and 
the average standard deviation. All simulation results are 

Table 7  Results of average fitness of unimodal functions when D=30

Fun SCO EO GWO PSO SSA MA AOA GSA

f1 Mean 0 4.73E-05 1.25E-02 2.90E+01 1.20E+03 9.38E+00 1.90E-14 2.81E+03
Std 0 4.18E-05 8.20E-03 1.23E+01 4.83E+02 1.78E+01 4.11E-14 6.55E+02

f2 Mean 6.45E-258 8.89E-04 2.27E-02 1.82E+00 1.68E+01 1.37E+00 7.24E-09 1.33E+01
Std 0 3.58E-04 8.41E-03 5.75E-01 4.35E+00 1.22E+00 1.44E-08 4.70E+00

f3 Mean 7.94E-123 6.25E+01 3.59E+02 2.77E+03 6.91E+03 2.36E+03 5.04E-09 5.61E+03
Std 4.35E-122 9.10E+01 3.31E+02 1.03E+03 3.75E+03 1.27E+03 2.18E-08 1.95E+03

f4 Mean 3.28E-20 2.61E-01 1.39E+00 1.01E+01 2.15E+01 8.82E+00 2.89E-07 2.01E+01
Std 1.80E-19 1.52E-01 4.39E-01 2.21E+00 4.39E+00 2.63E+00 8.95E-07 2.79E+00

f5 Mean 2.85E+01 2.83E+01 4.52E+01 1.42E+03 1.61E+05 2.42E+02 2.88E+01 2.61E+05
Std 9.48E-02 4.28E-01 6.82E+01 9.71E+02 1.34E+05 1.82E+02 7.11E-02 1.72E+05

f6 Mean 2.63E-01 1.12E+00 3.18E+00 3.74E+01 1.16E+03 1.84E+01 5.65E+00 2.94E+03
Std 9.25E-02 3.41E-01 6.90E-01 1.91E+01 4.55E+02 4.11E+01 3.28E-01 8.50E+02

f7 Mean 2.87E-04 6.87E-03 1.80E-02 8.15E-02 5.21E-01 1.14E-01 3.56E-03 4.26E-01
Std 2.69E-04 2.94E-03 7.26E-03 2.55E-02 2.21E-01 5.32E-02 2.50E-03 2.30E-01

Mean rank 1.14 2.57 3.85 5.85 7.57 5.14 2.42 7.42
Rank 1 3 4 6 8 5 2 7

Table 8  Results of average fitness of multimodal functions when D=30

Fun SCO EO GWO PSO SSA MA AOA GSA

f8 Mean −8.25E+03 −7.08E+03 −5.34E+03 −6.23E+03 −6.31E+03 −5.73E+03 −3.62E+03 −2.47E+03
Std 5.86E+02 6.39E+02 1.19E+03 7.73E+02 8.54E+02 6.33E+02 4.06E+02 4.98E+02

f9 Mean 0 2.49E+00 3.62E+01 5.78E+01 9.20E+01 2.22E+01 2.02E+01 7.83E+01
Std 0 2.97E+00 1.16E+01 1.52E+01 1.98E+01 7.01E+00 6.20E+01 2.46E+01

f10 Mean 8.88E-16 1.26E-03 2.60E-02 2.94E+00 9.45E+00 7.38E+00 1.87E-08 8.12E+00
Std 0 6.91E-04 6.68E-03 4.40E-01 1.09E+00 1.61E+00 4.28E-08 9.34E-01

f11 Mean 0 5.57E-03 8.47E-02 1.28E+00 1.28E+01 9.59E+00 6.89E-03 4.10E+02
Std 0 1.45E-02 6.36E-02 1.54E-01 5.05E+00 4.95E+00 3.77E-02 4.88E+01

f12 Mean 2.60E-02 3.44E-02 4.06E-01 1.89E+00 2.52E+01 7.40E+00 8.21E-01 4.61E+01
Std 3.77E-02 1.37E-02 2.65E-01 1.21E+00 1.92E+01 3.09E+00 1.98E-01 9.15E+01

f13 Mean 1.45E+00 7.67E-01 2.31E+00 9.20E+00 4.40E+04 3.50E+01 2.92E+00 8.05E+04
Std 5.91E-01 2.82E-01 5.36E-01 5.49E+00 8.36E+04 1.44E+01 8.94E-02 1.00E+05

Mean rank 1.16 2.00 4.16 5.00 6.66 5.50 3.83 7.66
Rank 1 2 4 5 7 6 3 8
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generated under equal conditions. MATLAB is used to pro-
duce the results for all algorithms on Intel(R) Core(TM) 
i5-7200U CPU @ 2.50GHz with 8 GB RAM.

To provide a fair comparison, the maximum number of 
function evaluations for all algorithms is set to 3000. For 
all algorithms except SCO, the maximum number of itera-
tions are 100 while the number of candidate solutions are 
30 which is equivalent to 3000 function evaluations. Similar 
to all other algorithms, the maximum number of function 
evaluations in SCO is 3000; however, the difference is that 
SCO uses only one candidate solution instead of a swarm 
of particles. Candidate solutions are known as particles in 
PSO, search agents in EO, GWO, and SSA, solutions in MA, 
objects in AOA, and mass in GSA. Table 6 summarizes the 
parameter settings of all algorithms as recommended by 
their original papers.

Tables 7, 8, 9 show the results of the average fitness and 
standard deviation for the unimodal, multimodal, and fixed-
dimension functions for the eight compared algorithms, 
respectively.

4.1  Exploitation analysis

As mentioned earlier, the purpose of unimodal benchmark-
ing functions is to validate the exploitation ability of an opti-
mization algorithm.

According to the statistical results of unimodal functions 
( f1 − f7 ) in Table 7, it is clear that SCO outperforms all other 
compared algorithms on all functions except f5 . For f5 , SCO 
is ranked second following EO and its performance is very 
close to the performance achieved by EO. The superior per-
formance of the proposed approach is also shown in terms of 
standard deviation demonstrating that the proposed method 
is a more stable algorithm. The results in Table 7 shows that 
the SCO algorithm has strong exploitation ability.

4.2  Exploration analysis

The exploration ability of the proposed algorithm is vali-
dated by testing it on 16 multimodal functions that include 
high dimensional ( f8 − f13 ) and fixed dimension ( f14 − f23 ) 
functions. Tables 8 and 9 provide the statistical results of all 
compared approaches for the f8 − f13 functions and for the 
f14 − f23 functions, respectively. The results illustrate that 
SCO achieves better solution accuracy than other algorithms 
on functions f8 − f12 , f14 , f21 , and f23 while it achieves the 
best performance on f16 − f19 equally with a few other algo-
rithms such as EO and MA.

As Tables 8 and 9 show, SCO is able to achieve the opti-
mal solutions for f9 , f11 , f16 , f18 and f19 . It is also evident that 
SCO is the only algorithm that provides the optimal solu-
tions for f9 and f11 . For the rest of the multimodal functions, 

Table 9  Results of average fitness of fixed-dimension multimodal functions

Fun SCO EO GWO PSO SSA MA AOA GSA

f14 Mean 1.09E+00 1.48E+00 5.10E+00 4.34E+00 2.61E+00 5.60E+00 1.46E+00 9.13E+00
Std 3.03E-01 1.86E+00 4.32E+00 2.64E+00 1.68E+00 3.73E+00 1.06E+00 4.42E+00

f15 Mean 4.53E-03 4.57E-03 5.33E-03 2.04E-03 8.67E-03 2.32E-03 1.31E-03 1.30E-02
Std 1.15E-02 8.03E-03 8.48E-03 4.99E-03 1.34E-02 6.11E-03 1.09E-03 1.00E-02

f16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
Std 6.77E-08 4.70E-16 3.47E-07 4.49E-16 4.00E-13 5.45E-16 1.73E-03 9.82E-05

f17 Mean 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.97E-01 4.18E-01 4.04E-01
Std 6.00E-08 0 2.80E-05 0 1.21E-13 0 3.33E-02 3.27E-02

f18 Mean 3.00E+00 3.00E+00 3.00E+00 5.70E+00 3.00E+00 3.00E+00 4.29E+00 3.00E+00
Std 8.16E-07 3.75E-15 1.93E-03 1.47E+01 1.50E-12 3.92E-15 5.02E+00 1.06E-14

f19 Mean -3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.85E+00 −3.86E+00 −3.80E+00 −3.84E+00
Std 6.99E-05 1.43E-03 2.42E-03 1.97E-15 2.75E-02 2.43E-15 5.84E-02 2.35E-02

f20 Mean −3.30E+00 −3.25E+00 −3.25E+00 −3.29E+00 −3.24E+00 −3.29E+00 −2.73E+00 −3.30E+00
Std 4.98E-02 6.71E-02 7.55E-02 5.11E-02 9.35E-02 4.83E-02 2.86E-01 4.82E-02

f21 Mean −9.47E+00 −7.80E+00 −8.45E+00 −4.81E+00 −6.15E+00 −6.52E+00 −5.39E+00 −4.67E+00
Std 1.76E+00 3.22E+00 2.94E+00 3.12E+00 3.62E+00 3.71E+00 2.04E+00 3.36E+00

f22 Mean -9.61E+00 −8.66E+00 −9.86E+00 −6.04E+00 −7.43E+00 −7.26E+00 −4.70E+00 −8.51E+00
Std 2.07E+00 2.98E+00 1.86E+00 3.68E+00 3.48E+00 3.67E+00 1.70E+00 3.18E+00

f23 Mean −9.54E+00 -8.78E+00 −9.44E+00 −7.43E+00 −7.71E+00 −6.72E+00 −4.79E+00 −8.73E+00
Std 2.28E+00 3.24E+00 2.72E+00 3.68E+00 3.79E+00 3.66E+00 1.96E+00 3.07E+00

Mean rank 1.40 2.60 2.70 3.70 3.80 3.40 4.30 4.00
Rank 1 2 3 5 6 4 8 7
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SCO provides a close to optimum solutions and its perfor-
mance is competitive with other algorithms. Table 8 also 
shows that SCO is the best algorithm to solve f8 where f8 is 
considered to be one of the most difficult multimodal func-
tions as it has a high number of local optimum.

4.3  Impact of high‑dimensionality

Many metaheuristic algorithms achieve degraded perfor-
mance when they solve high dimensional problems. There-
fore, it is essential to test the high-dimensional performances 
of new metaheuristic algorithms. This subsection evaluates 
the high-dimensional performance of SCO on f1 − f13 by 
increasing the number of dimensions from 30 to 100 and 
200. Tables  10 and 11 present the statistical results of 
SCO and the other comparative algorithms when D = 100 
and D = 200 , respectively. Table 10 shows that SCO out-
performs all algorithms on all functions except f13 when 
D = 100 . It also shows that SCO is the only algorithm that 
can achieve the optimal solutions for f1 , f9 and f11 . When 

D = 200 , Table 11 shows that SCO performs better than all 
other algorithms on all functions except f5 and f13 where 
SCO is ranked second. Tables 10 and 11 have shown that 
SCO is not significantly affected by increasing the number 
of dimensions unlike other algorithms.

4.4  Sensitivity analysis

The SCO parameters particularly � and b are expected to 
significantly influence its optimization performance. The 
impact of � and b on the SCO performance is investigated 
in this subsection. Three different cases are studied where 
the first phase of SCO in case one, case two and case three 
consists of 500, 1000 and 2000 function evaluations, respec-
tively. In each case, eight different scenarios are considered 
where the value of b decreases from 3 to 0.9. The statistical 
results of unimodal and multimodal functions for the first 
case, second case and third case are presented in Table 12, 
Table 13, and Table 14, respectively. From these Tables, 
it is evident that better exploitation is achieved in the first 

Table 10  Results of average fitness of f
1
- f

13
 functions when D=100

Fun SCO EO GWO PSO SSA MA AOA GSA

f1 Mean 0 3.50E-02 6.36E+01 3.52E+03 1.78E+04 4.13E+03 2.45E-12 2.79E+03
Std 0 1.65E-02 1.90E+01 6.12E+02 2.25E+03 1.23E+03 5.34E-12 7.85E+02

f2 Mean 4.73E-238 6.34E-02 3.98E+00 7.28E+01 1.04E+02 3.95E+01 3.31E-07 1.25E+01
Std 0 1.96E-02 6.44E-01 5.18E+01 9.66E+00 7.12E+00 5.12E-07 3.38E+00

f3 Mean 6.25E-147 9.79E+03 4.29E+04 6.85E+04 8.62E+04 3.29E+04 3.10E-06 7.02E+03
Std 3.42E-146 5.99E+03 1.14E+04 1.61E+04 4.61E+04 8.97E+03 1.32E-05 3.68E+03

f4 Mean 2.39E-17 1.84E+01 3.08E+01 3.54E+01 3.22E+01 2.27E+01 1.11E-06 1.93E+01
Std 1.26E-16 7.19E+00 7.30E+00 2.99E+00 3.76E+00 2.05E+00 1.37E-06 2.78E+00

f5 Mean 9.88E+01 1.02E+02 4.05E+03 9.34E+05 6.30E+06 4.82E+04 9.89E+01 2.30E+05
Std 5.58E-02 3.61E+00 2.88E+03 3.18E+05 1.60E+06 1.88E+04 4.14E-02 1.64E+05

f6 Mean 9.27E+00 1.65E+01 8.44E+01 3.59E+03 1.83E+04 3.90E+03 2.28E+01 2.77E+03
Std 1.69E+00 1.00E+00 2.35E+01 6.90E+02 2.23E+03 8.38E+02 5.12E-01 9.53E+02

f7 Mean 6.89E-04 2.13E-02 1.86E-01 2.32E+00 1.17E+01 2.77E+00 3.11E-03 4.41E-01
Std 5.42E-04 8.33E-03 6.18E-02 7.64E-01 4.41E+00 7.28E-01 2.17E-03 2.52E-01

f8 Mean −2.22E+04 −1.61E+04 −1.21E+04 −1.69E+04 -1.28E+04 -1.04E+04 −6.24E+03 −2.56E+03
Std 2.49E+03 1.81E+03 3.93E+03 1.88E+03 1.59E+03 1.74E+03 8.34E+02 5.12E+02

f9 Mean 0 2.46E+00 2.43E+02 4.81E+02 6.20E+02 2.24E+02 2.64E-12 7.68E+01
Std 0 3.38E+00 5.12E+01 4.09E+01 4.27E+01 2.31E+01 5.52E-12 2.36E+01

f10 Mean 8.88E-16 2.77E-02 3.01E+00 8.48E+00 1.33E+01 1.10E+01 1.63E-07 7.87E+00
Std 0 1.02E-02 3.09E-01 4.56E-01 4.43E-01 7.41E-01 3.14E-07 1.02E+00

f11 Mean 0 5.16E-02 1.63E+00 3.27E+01 1.55E+02 9.97E+01 3.29E-02 4.15E+02
Std 0 6.69E-02 2.49E-01 5.06E+00 2.35E+01 2.09E+01 1.35E-01 5.21E+01

f12 Mean 1.87E-01 4.97E-01 5.66E+00 1.31E+04 1.71E+05 1.58E+01 1.04E+00 5.64E+01
Std 4.56E-02 9.61E-02 2.19E+00 1.44E+04 2.08E+05 3.22E+00 7.04E-02 1.74E+02

f13 Mean 9.77E+00 9.08E+00 5.56E+01 3.99E+05 6.26E+06 8.17E+02 9.93E+00 1.01E+05
Std 2.91E-01 5.93E-01 1.95E+01 1.88E+05 2.59E+06 1.47E+03 4.60E-02 1.47E+05

Mean rank 1.07 2.76 4.53 6.23 7.53 5.84 2.61 5.38
Rank 1 3 4 7 8 6 2 5
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case where the value of � is 500. However, better explora-
tion can be obtained if the value of � increases from 500 to 
1000 or 2000.

According to the results, a good balance between explora-
tion and exploitation is achieved when the value of � is 1000. 
Considering the parameter b, Tables 12, 13 and 14 show 
that the exploration performance of SCO degrades when 
b decreases from 3 to 0.9 while the exploitation of SCO 
improves. The best performance is achieved when the value 
of b is 2.4. Overall, based on the Friedman mean rank, the 
best performance of SCO is achieved when the value of � is 
1000 and the value of b is 2.4.

4.5  Performance of SCO on the CEC 2019 suite

The performance of SCO on the CEC 2019 test suite is pre-
sented in Table 15. The results in Table 15 show that SCO 
outperforms all algorithms on functions F1 , F2 , F5 , and F10 . 
It is also clear from Table 15 that SCO achieves the opti-
mal solution on F1 while all other algorithms achieve poor 

performance when solving the same function. The proposed 
algorithm achieved competitive results on F3 and F8 that 
allows it to be ranked second. The performance of SCO on 
the rest of the CEC 2019 functions is close to the best perfor-
mance achieved by other algorithms as Table 15 illustrates.

4.6  Statistical significance analysis

The Friedman test as one of the most famous statistical tests 
is used to statistically analyze the performance of SCO. The 
principle of this test is to rank all compared approaches for 
each problem individually. For each problem, the best, sec-
ond best, and third best algorithms are ranked as 1, 2, and 3 
and so on. The performance of each algorithm is averaged 
over all problems. In Friedman test,the best approach is the 
one that achieves the lowest average rank. The Friedman test 
results that provide the average rank for all algorithms con-
sidering all test functions in low and high dimensional cases 
are shown in Table 16. As Table 16 illustrates, SCO achieves 
the lowest average rank with a value of 1.4 demonstrating 

Table 11  Results of average fitness of f
1
- f

13
 functions when D=200

Fun SCO EO GWO PSO SSA MA AOA GSA

f1 Mean 9.53E-301 5.18E-01 1.29E+03 2.46E+04 4.54E+04 1.69E+04 1.84E-11 2.89E+03
Std 0 3.53E-01 2.77E+02 2.93E+03 4.20E+03 3.36E+03 4.42E-11 8.08E+02

f2 Mean 6.31E-221 2.71E-01 2.69E+01 4.15E+02 2.35E+02 1.18E+02 1.28E-06 1.22E+01
Std 0 5.73E-02 2.90E+00 8.10E+01 1.10E+01 1.00E+01 1.68E-06 3.96E+00

f3 Mean 2.88E-167 7.98E+04 2.20E+05 2.96E+05 3.63E+05 1.38E+05 1.76E-04 6.33E+03
Std 0 3.99E+04 4.99E+04 7.53E+04 1.83E+05 4.63E+04 9.11E-04 3.77E+03

f4 Mean 2.62E-14 4.17E+01 5.88E+01 4.71E+01 3.64E+01 2.79E+01 2.37E-06 1.92E+01
Std 1.43E-13 7.81E+00 5.17E+00 2.63E+00 2.77E+00 2.65E+00 4.19E-06 2.44E+00

f5 Mean 1.98E+02 2.39E+02 1.90E+05 1.41E+07 2.21E+07 9.26E+05 1.98E+02 1.97E+05
Std 5.91E-02 3.30E+01 7.04E+04 2.74E+06 5.11E+06 2.85E+05 3.45E-02 1.38E+05

f6 Mean 3.35E+01 4.19E+01 1.29E+03 2.48E+04 4.56E+04 1.55E+04 4.75E+01 2.78E+03
Std 2.31E+00 1.50E+00 2.85E+02 2.84E+03 4.60E+03 3.00E+03 6.00E-01 6.64E+02

f7 Mean 5.05E-04 3.63E-02 1.26E+00 4.17E+01 6.95E+01 2.42E+01 3.17E-03 3.86E-01
Std 4.31E-04 1.72E-02 3.90E-01 8.65E+00 1.76E+01 8.11E+00 2.70E-03 2.04E-01

f8 Mean −3.52E+04 −2.33E+04 −2.28E+04 −2.68E+04 −1.93E+04 −1.39E+04 −9.21E+03 −2.54E+03
Std 2.98E+03 2.53E+03 4.25E+03 3.17E+03 2.08E+03 2.36E+03 1.46E+03 4.48E+02

f9 Mean 0 4.85E+00 7.39E+02 1.33E+03 1.51E+03 8.03E+02 1.78E-11 7.80E+01
Std 0 5.29E+00 7.72E+01 6.27E+01 8.35E+01 6.15E+01 4.16E-11 2.25E+01

f10 Mean 8.88E-16 5.83E-02 4.80E+00 1.26E+01 1.42E+01 1.18E+01 1.91E-07 8.14E+00
Std 0 1.69E-02 3.82E-01 4.04E-01 4.59E-01 5.57E-01 3.89E-07 1.03E+00

f11 Mean 0 1.85E-01 1.21E+01 2.31E+02 4.14E+02 2.71E+02 6.89E-03 4.16E+02
Std 0 1.08E-01 2.38E+00 1.96E+01 4.07E+01 4.57E+01 3.77E-02 5.40E+01

f12 Mean 3.23E-01 8.68E-01 2.16E+01 2.20E+06 2.29E+06 3.93E+01 1.11E+00 1.22E+03
Std 4.52E-02 1.25E-01 7.55E+00 1.16E+06 1.34E+06 1.62E+01 4.13E-02 5.75E+03

f13 Mean 1.99E+01 2.32E+01 1.38E+03 1.94E+07 2.61E+07 1.02E+05 1.99E+01 1.02E+05
Std 9.56E-02 2.13E+00 3.26E+03 7.59E+06 8.37E+06 8.19E+04 3.84E-02 1.52E+05

Mean rank 1.15 3.15 4.69 6.53 7.38 5.61 2.38 5.07
Rank 1 3 4 7 8 6 2 5
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the superiority of the proposed approach. The second best 
algorithm is EO, followed by AOA, GWO, MA, PSO, GSA 
and SSA.

Wilcoxon rank-sum test is another prominent statistical 
test that is widely used to validate the effectiveness of novel 
metaheuristic algorithms. A pair-wise comparison between 
SCO and the comparative algorithms at 0.05 significance 
level is carried out. Table  17, Table  18, Table  19, and 
Table 20 show the p-values of the Wilcoxon test for f1 − f23 
(D=30 for f1 − f13 ), f1 − f23 (D=100), f1 − f23 (D=200), and 
the ten CEC2019 test functions, respectively. From these 
Tables, it is obvious that SCO is significantly better as com-
pared with the state-of-the-art algorithms.

4.7  Convergence behavior of SCO

One of the main problems faced by optimization algorithms 
is convergence to local optima. To tackle this undesired 
convergence behavior, it is essential to balance between 
exploration and exploitation which in turns ensures conver-
gence to global optima. The balance between exploration 
and exploitation in SCO is achieved by the implementation 

of the two phases. Moreover, in the second phase, the param-
eter w is used to control the right amount of space to be 
explored or exploited. A relatively high w value allows it to 
perform extensive exploration while a low w value is needed 
to exploit promising regions. As a result, w is set to have a 
high value at the beginning of the search process to enable 
efficient exploration and it is decreased as the number of 
function evaluations increase in order to achieve successful 
exploitation.

To provide a fair and concise comparison, the conver-
gence behaviour of the proposed algorithm is compared with 
the best four existing algorithms, i.e, EO, GWO, AOA, and 
PSO. The selection of these algorithms is based on their rank 
as presented in Table 16. The convergence curves of SCO 
and the best four existing algorithms for some unimodal, 
multimodal and CEC 2019 functions are shown in Figure 1. 
From Fig. 1, it is clear that SCO outperforms all algorithms. 
The convergence behaviour of SCO on unimodal functions 
( f1 , f3 , f4 , f6 and f7 ) shows the superiority of SCO to rap-
idly exploit promising regions. From the same figure, it is 
evident that SCO requires only a few function evaluations to 
reach near optimal solutions while other algorithms require 

Table 12  Statistical results of case 1 when � is 500 and b varies from 3 to 0.9

Fun b=3 b=2.7 b=2.4 b=2.1 b=1.8 b=1.5 b=1.2 b=0.9

f1 Mean 0 7.01E-292 2.43E-287 4.72E-264 2.04E-222 5.15E-205 1.89E-167 3.10E-138
Std 0 0 0 0 0 0 0 1.69E-137

f3 Mean 5.18E-197 8.65E-122 3.51E-135 2.35E-160 2.11E-108 7.79E-09 7.94E-47 1.29E-71
Std 0 4.73E-121 1.79E-134 1.28E-159 1.15E-107 4.26E-08 4.35E-46 7.08E-71

f5 Mean 2.86E+01 2.85E+01 2.88E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01
Std 9.46E-02 1.54E-01 1.25E-01 4.06E-02 3.97E-02 9.74E-02 7.28E-02 9.06E-02

f7 Mean 5.01E-04 8.82E-04 8.20E-04 8.31E-04 1.41E-03 1.32E-03 9.32E-04 1.28E-03
Std 4.32E-04 9.29E-04 6.72E-04 1.27E-03 1.40E-03 8.34E-04 9.60E-04 1.39E-03

f9 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f11 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f13 Mean 1.97E+00 1.69E+00 1.59E+00 2.20E+00 2.78E+00 2.82E+00 2.87E+00 2.88E+00
Std 5.82E-01 6.66E-01 5.08E-01 4.53E-01 2.45E-01 2.89E-01 2.52E-01 1.56E-01

f15 Mean 1.85E-02 6.74E-03 1.34E-02 1.07E-02 6.34E-03 5.97E-03 1.09E-02 6.99E-03
Std 3.92E-02 2.27E-02 2.87E-02 2.31E-02 2.00E-02 9.24E-03 2.20E-02 1.29E-02

f17 Mean 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.98E-01 3.98E-01 3.98E-01
Std 0 4.38E-13 3.35E-08 1.23E-05 1.02E-04 5.01E-04 5.69E-04 7.19E-04

f19 Mean −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00
Std 8.22E-05 2.66E-05 7.23E-05 4.48E-04 1.17E-03 7.46E-04 8.34E-04 8.20E-04

f21 Mean −8.80E+00 −9.98E+00 −9.81E+00 −9.64E+00 −9.85E+00 −9.97E+00 −9.45E+00 −9.74E+00
Std 2.54E+00 9.22E-01 1.29E+00 1.54E+00 1.36E+00 1.28E-01 1.86E+00 2.92E-01

f23 Mean −9.28E+00 −8.87E+00 −9.04E+00 −8.89E+00 −9.26E+00 −9.54E+00 −9.43E+00 −9.59E+00
Std 2.87E+00 3.10E+00 3.06E+00 3.33E+00 2.82E+00 2.41E+00 2.34E+00 1.93E+00

Mean rank 2.75 2.50 3.08 4.00 4.66 4.16 5.25 4.91
Rank 2 1 3 4 6 5 8 7
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higher numbers of function evaluations. For instance, SCO 
requires only 199 function evaluations to achieve a value 
of 10−10 (a near-optimal value) when solving f1 while all 
other algorithms are not able to reach this value with 3000 
function evaluations except AOA that requires 1553 func-
tion evaluations. This demonstrates the efficient convergence 
behaviour of SCO when dealing with unimodal functions.

Similarly, SCO has shown its ability to escape from local 
optima quickly as illustrated in Fig. 1 ( f9 , f10 , f11 , f21 ). Fig-
ure 1 also shows that SCO is a fast optimization algorithm. 
Overall, the convergence curves shown in Fig. 1 illustrate 
the superiority of SCO in terms of convergence speed when 
it is used to solve different kind of optimization problems.

5  Engineering problems

The proposed algorithm is tested on four widely used real-
world engineering problems in order to further validate its 
effectiveness. Real-world optimization problems usually 
have a number of constraints that must be satisfied. The pres-
ence of constraints divides particles or candidate solutions 

into two groups: valid and invalid candidate solutions. A 
valid candidate solution is a one that can satisfy all con-
straints whereas a candidate solution that violates one or 
more constraints is invalid. To penalize an invalid candidate 
solution in minimization problems, its fitness is assigned a 
large value, for example 109 . For all engineering problems, 
the parameter setting of all algorithms are the same param-
eters presented in Table 6 except that the maximum number 
of function evaluations is 15000. The following presents the 
engineering problems and the obtained results for all com-
pared algorithms while their mathematical formulations are 
provided in [9, 74].

5.1  Welded beam design (WBD)

Welded beam design is one of the most well-known real-
world engineering problems that serves as a benchmark to 
validate the effectiveness of meta-heuristic algorithms. This 
problem aims to minimize the fabrication cost when design-
ing a welded beam. The welded beam design problem has 
four variables and five constraints as shown in Appendix A.

Table 13  Statistical results of case 2 when � is 1000 and b varies from 3 to 0.9

Fun b=3 b=2.7 b=2.4 b=2.1 b=1.8 b=1.5 b=1.2 b=0.9

f1 Mean 0 0 0 0 3.39E-319 5.15E-291 1.28E-250 2.37E-195
Std 0 0 0 0 0 0 0 0

f3 Mean 9.61E-237 1.17E-213 7.94E-123 1.13E-124 6.24E-173 1.91E-58 9.67E-148 3.72E-94
Std 0 0 4.35E-122 6.19E-124 0 1.04E-57 5.29E-147 2.03E-93

f5 Mean 2.86E+01 2.85E+01 2.85E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01
Std 9.11E-02 1.61E-01 9.48E-02 5.20E-02 4.46E-02 6.99E-02 5.15E-02 7.78E-02

f7 Mean 5.94E-04 4.77E-04 2.87E-04 8.19E-04 1.04E-03 8.15E-04 7.10E-04 9.32E-04
Std 7.76E-04 5.91E-04 2.69E-04 5.96E-04 8.34E-04 6.59E-04 8.39E-04 8.56E-04

f9 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f11 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f13 Mean 1.91E+00 1.73E+00 1.45E+00 2.25E+00 2.76E+00 2.84E+00 2.93E+00 2.88E+00
Std 5.19E-01 5.25E-01 5.91E-01 4.93E-01 2.79E-01 3.16E-01 1.20E-01 2.04E-01

f15 Mean 1.90E-02 1.85E-02 4.53E-03 8.81E-03 9.92E-03 1.05E-02 1.07E-02 7.75E-03
Std 3.87E-02 3.22E-02 1.15E-02 2.37E-02 1.73E-02 2.28E-02 2.60E-02 1.32E-02

f17 Mean 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std 0 3.69E-13 6.00E-08 1.94E-05 1.88E-04 3.80E-04 8.23E-04 6.59E-04

f19 Mean −3.76E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00
Std 5.22E-01 2.54E-05 6.99E-05 7.39E-04 2.47E-03 3.06E-03 2.17E-03 3.18E-03

f21 Mean −7.94E+00 −8.79E+00 −9.47E+00 −9.38E+00 −9.92E+00 −9.76E+00 −9.31E+00 −9.41E+00
Std 2.56E+00 2.29E+00 1.76E+00 2.00E+00 9.13E-01 9.16E-01 1.84E+00 1.37E+00

f23 Mean −7.92E+00 −8.45E+00 −9.54E+00 −9.55E+00 −1.02E+01 −9.09E+00 −9.61E+00 −9.03E+00
Std 2.88E+00 3.09E+00 2.28E+00 2.57E+00 1.47E+00 2.87E+00 2.09E+00 2.59E+00

Mean rank 3.83 2.83 2.16 3.50 3.50 4.50 4.75 4.75
Rank 5 2 1 3 4 6 7 8
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Table 21 shows the best solutions obtained by all compared 
algorithms including the best variables and the best fitness. From 
Table 21, it is clear that SCO provides the best fitness besides 
EO, PSO, MA, and AOA. It is also evident from Table 21 that 
SCO requires fewer number of function evaluations.

The statistical results of all algorithms for the welded 
beam design problem are presented in Table 22.

5.2  Speed reducer design problem (SRD)

SRD deals with designing a speed reducer for small aircraft 
engine with the objective of minimizing the weight of the 
speed reducer. As shown in Appendix B [75], the number of 
constraints and variables of the SRD minimization problem 
are 11 and 7, respectively. Table 23 shows the best obtained 
solutions in terms of best variables, best weight, and the 
number of function evaluations for the proposed and the 
state-of-the-art algorithms. From Table 23, it is shown that 
SCO outperforms GWO, SSA and GSA algorithms in terms 
of the best obtained weight while it achieves the same per-
formance as EO, PSO, MA and AOA. The statistical results 
of all compared algorithms are presented in Table 24.

5.3  Pressure vessel design problem (PVD)

The main aim of the PVD problem is to minimize the total 
cost when designing a pressure vessel. As shown in Appen-
dix C, four constrains must be satisfied to solve the PVD 
problem while four variables are involved to compute the 
objective function. The best achieved solutions and the sta-
tistical results of all algorithms are presented in Tables 25 
and 26, respectively. The results in Table 25 demonstrates 
the superiority of SCO in terms of achieving the best cost. 
Moreover, SCO requires fewer number of function evalua-
tions to achieve better cost compared with other algorithms.

5.4  Tension/compression spring design problem 
(TSDP)

TSDP involves designing a tension/compression spring 
where the main objective is to minimize weight. The TSDP 
problem contains 3 variables and 4 constraints as illus-
trated in Appendix D. Table 27 compares the performance 
of all compared algorithms in terms of best achieved vari-
ables, best achieved solution, and the number of function 

Table 14  Statistical results of case 3 when � is 2000 and b varies from 3 to 0.9

Fun b=3 b=2.7 b=2.4 b=2.1 b=1.8 b=1.5 b=1.2 b=0.9

f1 Mean 0 0 0 0 0 0 3.57E-319 5.32E-291
Std 0 0 0 0 0 0 0 0

f3 Mean 1.96E-239 1.21E-290 2.11E-159 4.15E-240 2.20E-157 7.73E-109 1.49E-177 6.47E-149
Std 0 0 1.15E-158 0 1.20E-156 4.23E-108 0 3.32E-148

f5 Mean 2.86E+01 2.86E+01 2.88E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01
Std 1.12E-01 1.25E-01 8.36E-02 3.56E-02 6.56E-02 7.99E-02 3.91E-02 6.10E-02

f7 Mean 3.56E-04 2.19E-04 4.37E-04 3.50E-04 6.42E-04 4.71E-04 4.63E-04 5.11E-04
Std 4.36E-04 2.17E-04 4.03E-04 3.33E-04 5.90E-04 4.61E-04 4.78E-04 5.12E-04

f9 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f11 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f13 Mean 2.93E+00 2.44E+00 1.68E+00 2.24E+00 2.86E+00 2.92E+00 2.96E+00 2.94E+00
Std 3.86E-02 4.22E-01 5.55E-01 4.70E-01 2.93E-01 2.72E-01 1.41E-01 7.76E-02

f15 Mean 5.26E-02 1.80E-02 3.37E-02 1.83E-02 8.86E-03 1.16E-02 1.59E-02 1.42E-02
Std 4.97E-02 3.60E-02 4.87E-02 3.97E-02 2.21E-02 2.42E-02 3.39E-02 2.71E-02

f17 Mean 4.1E+00 1.26E+00 3.97E-01 3.97E-01 3.98E-01 3.98E-01 3.99E-01 3.99E-01
Std 2.20E+00 1.05E+00 9.30E-08 2.12E-05 3.20E-04 1.43E-03 3.03E-03 3.68E-03

f19 Mean −3.41E+00 −3.00E+00 −3.09E+00 −3.67E+00 −3.00E+00 −3.76E+00 −3.85E+00 −3.85E+00
Std 1.09E+00 1.33E+00 1.28E+00 7.25E-01 1.33E+00 5.21E-01 4.53E-03 6.29E-03

f21 Mean −9.42E-01 −5.04E+00 −5.05E+00 −5.05E+00 −5.02E+00 −8.45E+00 −9.42E+00 −9.01E+00
Std 1.38E+00 3.11E-02 4.58E-06 1.92E-03 3.64E-02 2.16E+00 5.99E-01 9.37E-01

f23 Mean −1.36E+00 −5.08E+00 −5.12E+00 −5.03E+00 −6.17E+00 −8.92E+00 −8.55E+00 −8.12E+00
Std 1.70E+00 1.68E-01 3.74E-06 4.93E-01 2.16E+00 2.03E+00 2.45E+00 2.21E+00

Mean rank 4.50 3.33 3.25 3.33 4.16 3.25 3.66 3.75
Rank 8 3 1 4 7 2 5 6
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evaluations required to reach the value of the best weight. 
It is clear from Table 27 that SCO achieves the best solu-
tion with requiring only 1445 function evaluations while 
other algorithms require more than 4170 function evalua-
tions (Table 28).

SCO has achieved significant and remarkable optimiza-
tion improvements because it implements a unique set of 
equations that can effectively update the position of the can-
didate solution throughout the entire optimization process. 
The proposed unique set of updating equations allows SCO 
to extensively explore the search space in the early stages 
of the SCO optimization process. In this exploration phase, 
SCO updates its position based on an equation that allows 
the candidate solution to visit as many new locations as pos-
sible. In other words, SCO broadly yet effectively explores 
the search space to discover places where the optimal solu-
tion might be found.

The integration of SCO with the two-phase strategy 
has shown its effectiveness in balancing exploration and 

exploitation. According to the results, when SCO per-
forms 500 function evaluations only during the exploration 
phase and 2500 function evaluations for exploitation, SCO 
achieves promising exploitation performances. However, 
the exploration performance of SCO degrades. This hap-
pens because SCO did not spend enough time to explore the 
space. As a result, SCO skips some regions where the opti-
mal solution might be located. On the other hand, increasing 
the number of function evaluations from 500 to 1000 for the 
exploration phase has demonstrated that SCO performs well 
on unimodal and multimodal functions. This happens as a 
result of giving SCO enough time for exploration without 
affecting the exploitation process as SCO still spends two-
thirds of the optimization process searching around the dis-
covered promising areas. Overall, the best SCO performance 
is achieved when one-third of the optimization process is 
dedicated for exploration while the remaining SCO process 
focuses on exploitation.

Table 15  Results of average fitness of CEC 2019 benchmarking functions

Fun SCO EO GWO PSO SSA MA AOA GSA

F1 Mean 1 1.29E+05 9.79E+05 1.33E+06 6.03E+06 1.63E+07 1.60E+01 1.88E+09
Std 8.00E-05 3.23E+05 1.90E+06 1.04E+06 5.05E+06 1.73E+07 6.38E+01 8.34E+08

F2 Mean 4.97E+00 5.64E+02 1.42E+03 1.37E+03 3.40E+03 2.88E+03 6.77E+00 3.28E+04
Std 6.06E-01 4.48E+02 6.12E+02 6.52E+02 1.56E+03 1.16E+03 9.56E+00 9.77E+03

F3 Mean 4.29E+00 4.37E+00 5.2779E+00 5.22E+00 6.19E+00 2.52E+00 6.45E+00 8.48E+00
Std 1.56E+00 1.53E+00 2.85E+00 2.19E+00 1.88E+00 1.81E+00 1.14E+00 1.36E+00

F4 Mean 4.25E+01 1.91E+01 2.81E+01 3.12E+01 4.28E+01 2.63E+01 7.69E+01 1.11E+02
Std 2.30E+01 8.07E+00 1.59E+01 1.03E+01 2.34E+01 8.57E+00 1.27E+01 1.68E+01

F5 Mean 1.14E+00 1.23E+00 2.79E+00 1.29E+00 1.22E+00 1.45E+00 5.43E+01 1.20E+02
Std 9.60E-02 1.31E-01 2.20E+00 2.42E-01 1.23E-01 5.00E-01 1.89E+01 3.10E+01

F6 Mean 6.17E+00 2.13E+00 3.94E+00 2.69E+00 7.36E+00 6.27E+00 9.15E+00 1.23E+01
Std 1.67E+00 7.63E-01 1.48E+00 1.31E+00 1.68E+00 1.23E+00 1.04E+00 9.23E-01

F7 Mean 1.14E+03 9.03E+02 1.20E+03 8.99E+02 1.24E+03 1.19E+03 1.79E+03 2.39E+03
Std 3.81E+02 3.12E+02 5.06E+02 3.01E+02 3.01E+02 3.76E+02 2.09E+02 2.85E+02

F8 Mean 4.32E+00 4.12E+00 4.33E+00 4.43E+00 4.61E+00 4.84E+00 4.69E+00 5.38E+00
Std 4.80E-01 4.27E-01 3.06E-01 3.67E-01 4.02E-01 2.63E-01 2.58E-01 1.44E-01

F9 Mean 1.37E+00 1.22E+00 1.32E+00 1.26E+00 1.48E+00 1.24E+00 3.12E+00 4.27E+00
Std 1.29E-01 7.26E-02 1.32E-01 7.83E-02 1.93E-01 1.22E-01 5.56E-01 6.57E-01

F10 Mean 2.03E+01 2.16E+01 2.16E+01 2.15E+01 2.10E+01 2.14E+01 2.14E+01 2.11E+01
Std 3.28E+00 1.10E-01 1.14E-01 1.53E-01 1.04E-01 6.13E-01 2.95E-01 2.02E-01

Mean rank 2.50 2.60 4.50 3.70 5.20 4.30 5.70 7.50
Rank 1 2 5 3 6 4 7 8

Table 16  Friedman test result SCO EO GWO PSO SSA MA AOA GSA

Mean Rank 1.40 2.61 4.07 5.17 6.36 4.96 3.54 6.17
Rank 1 2 4 6 8 5 3 7
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Table 17  The p-values of a 
pair-wise comparison between 
SCO and the other comparative 
algorithms at 0.05 significance 
level for f

1
− f

13
 when D=30 

and f
14
− f

23

Bold face show the p-values that are higher than 0.05. ‘ + ’, ‘ ≈ ’, and ‘−’ show when SCO achieves sig-
nificant improvements, statically similar performances, and achieves significant degradation compared with 
other algorithms, respectively

Fun EO GWO PSO SSA MA AOA GSA

f1 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f2 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f3 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11
f4 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f5 1.2870E-09 4.6159E-10 3.0199E-11 3.0199E-11 3.0199E-11 1.9073E-01 3.0199E-11
f6 3.3384E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0180E-11
f7 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 1.3289E-10 3.0199E-11
f8 2.8314E-08 3.0199E-11 6.0658E-11 1.2057E-10 3.0199E-11 3.0199E-11 3.0199E-11
f9 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 5.6375E-09 1.2118E-12
f10 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f11 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.6435E-11 1.2118E-12
f12 1.3272E-02 2.1544E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f13 8.1975E-07 1.7290E-06 3.0199E-11 3.0199E-11 3.0199E-11 3.6897E-11 3.0199E-11
f14 5.0572E-06 7.3846E-11 1.0804E-08 5.7338E-02 9.9186E-11 2.0152E-08 3.0199E-11
f15 2.7071E-01 7.8446E-01 6.5671E-02 1.4128E-01 1.3562E-07 4.7335E-01 1.3594E-07
f16 2.3638E-12 5.0922E-08 3.1578E-12 3.0199E-11 1.2455E-11 3.0199E-11 1.6865E-10
f17 1.2118E-12 3.0199E-11 1.2118E-12 3.0066E-11 1.2118E-12 3.0199E-11 1.2384E-09
f18 2.9654E-11 6.6955E-11 5.5392E-10 3.0199E-11 2.9580E-11 3.0199E-11 3.0066E-11
f19 4.3543E-10 2.8314E-08 1.6933E-11 2.0523E-03 1.2455E-11 3.0199E-11 4.1997E-10
f20 7.3940E-01 8.3520E-08 7.6588E-05 4.8252E-01 1.1706E-05 4.0772E-11 1.3242E-02
f21 8.8830E-01 1.7294E-07 2.8389E-04 4.8252E-03 9.5853E-03 4.1825E-09 1.8515E-03
f22 3.0339E-03 6.5261E-07 2.9047E-02 2.7071E-02 2.8789E-03 1.1023E-08 1.2643E-03
f23 5.2978E-03 2.4913E-06 2.3985E-03 5.7460E-02 8.7607E-01 2.6015E-08 1.3954E-03
+ 18 22 19 20 18 22 21
≈ 0 0 0 0 0 0 0
– 5 1 4 3 5 1 2

Table 18  The p-values of a 
pair-wise comparison between 
SCO and the other comparative 
algorithms at 0.05 significance 
level for f

1
− f

13
 when D=100

Bold face show the p-values that are higher than 0.05

Fun EO GWO PSO SSA MA AOA GSA

f1 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f2 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f3 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11
f4 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f5 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 1.0315E-02 3.0199E-11
f6 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f7 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 9.0632E-08 3.0199E-11
f8 2.3715E-10 3.3384E-11 1.1737E-09 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f9 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 5.7786E-09 1.2118E-12
f10 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f11 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f12 3.6897E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f13 3.3242E-06 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 8.0727E-01 3.0199E-11
+ 12 13 13 13 13 13 13
≈ 0 0 0 0 0 0 0
– 1 0 0 0 0 0 0
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SCO does not only avoid local optima entrapment, it 
also implements the escape from local optima strategy 
to smoothly switch from exploration into exploitation in 
case SCO is stagnated. The integration of SCO and this 
strategy can help to enhance the performance particu-
larly for problems that have many local optima as results 
have shown. In addition, the exploration and exploitation 
abilities of SCO heavily relies on the parameter w. This 
parameter can help to balance exploration and exploi-
tation if its values during the iterative SCO process is 
chosen properly. The parameter w should have a rela-
tively high value at the beginning of the SCO process to 

promote exploration. As the number of function evalua-
tions increase, the value of w should decrease to strength 
the exploitation abilities.

To summarize, the proposed unique set of updating 
equations, the two-phase strategy, the escape from local 
optima strategy, and the parameter w are the main con-
tributors that have supported SCO to achieve promising 
results.

One of the main strengths of SCO is its strong explora-
tion abilities that is achieved by effectively updating the 
position of the candidate solution. In addition, SCO starts 
a deep exploitation search after an extensive exploration 

Table 19  The p-values of a 
pair-wise comparison between 
SCO and the other comparative 
algorithms at 0.05 significance 
level for f

1
− f

13
 when D=200

Fun EO GWO PSO SSA MA AOA GSA

f1 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12
f2 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f3 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11
f4 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f5 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.6439E-02 3.0199E-11
f6 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0180E-11
f7 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 2.9215E-09 3.0199E-11
f8 3.0199E-11 3.0199E-11 5.5727E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f9 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.9254E-09 1.2118E-12
f10 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f11 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f12 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f13 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 2.4327E-05 3.0199E-11
+ 13 13 13 13 13 11 13
≈ 0 0 0 0 0 0 0
– 0 0 0 0 0 2 0

Table 20  The p-values of a 
pair-wise comparison between 
SCO and the other comparative 
algorithms at 0.05 significance 
level for the CEC2019 test 
functions

Bold face show the p-values that are higher than 0.05

Fun EO GWO PSO SSA MA AOA GSA

F1 3.8202E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 1.4085E-07 3.0199E-11
F2 2.9822E-11 2.9822E-11 2.9822E-11 2.9822E-11 2.9822E-11 9.1168E-01 2.9822E-11
F3 9.8231E-01 3.1830E-02 9.3341E-02 1.7836E-04 1.0407E-04 1.1937E-06 1.7769E-10
F4 3.0103E-07 7.9590E-03 9.9258E-03 8.8830E-01 1.1738E-03 4.8011E-07 1.4643E-10
F5 4.0330E-03 3.0199E-11 1.3272E-02 1.0315E-02 7.2951E-04 3.0199E-11 3.0199E-11
F6 4.5043E-11 3.3242E-06 8.8910E-10 7.2884E-03 3.6322E-01 3.6459E-08 3.0199E-11
F7 2.6077E-02 8.5338E-01 1.6955E-02 4.1191E-02 4.8252E-02 4.5726E-09 4.0772E-11
F8 8.5000E-02 9.7052E-01 2.8378E-02 2.8129E-02 1.0188E-05 1.0576E-03 4.0772E-11
F9 2.6784E-06 7.4827E-02 3.7704E-04 2.4157E-02 3.3679E-04 6.0658E-11 3.0199E-11
F10 3.0199E-11 3.0199E-11 3.0199E-11 5.5999E-07 4.5726E-09 5.0723E-10 1.5178E-03
+ 5 7 6 10 7 10 10
≈ 0 0 0 0 0 0 0
– 5 3 4 0 3 0 0
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Fig. 1  Convergence curves for some benchmarking functions
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Table 21  Best results of the 
comparative algorithms for the 
welded beam design problem

Algorithm x
1

x
2

x
3

x
4

Optimal cost FEs

SCO 0.1988 3.3374 9.1921 0.1988 1.6702 7502
EO 0.1988 3.3374 9.1920 0.1988 1.6702 9660
GWO 0.1981 3.3490 9.2019 0.1988 1.6720 14910
PSO 0.1988 3.3374 9.1920 0.1988 1.6702 11070
SSA 0.1909 3.4946 9.1920 0.1988 1.6789 13320
MA 0.1988 3.3374 9.1922 0.1988 1.6702 14610
AOA 0.1988 3.3374 9.1920 0.1988 1.6702 8820
GSA 0.1762 3.6965 9.6205 0.1969 1.7396 10620

Table 22  Statistical results of the comparative algorithms for the welded beam design problem

Algorithm Mean Best Worst Std

SCO 1.7407 1.6702 2.1182 0.0888
EO 1.6720 1.6702 1.6875 0.0042
GWO 1.6764 1.6720 1.6863 0.0036
PSO 1.6754 1.6702 1.8100 0.0255
SSA 1.8305 1.6789 2.2434 0.1472
MA 1.6744 1.6702 1.7316 0.0118
AOA 1.6915 1.6702 1.8235 0.0354
GSA 2.3702 1.7396 3.1031 0.3133

Table 23  Best results of the 
comparative algorithms for the 
speed reducer problem

Algorithm x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal weight FEs

SCO 3.5000 0.7000 17.0000 7.3018 7.7153 3.3505 5.2867 2994.4 7203
EO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 6720
GWO 3.5012 0.7000 17.0036 7.3527 7.8575 3.3542 5.2919 3003.4 15000
PSO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 10080
SSA 3.5044 0.7000 17.0000 7.3018 7.8773 3.3531 5.2867 3000.4 12720
MA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 9870
AOA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 7410
GSA 3.5266 0.7052 18.1755 8.2003 7.8907 3.5628 5.3968 3384.4 6510

Table 24  Statistical results of the comparative algorithms for the speed reducer problem

Algorithm Mean Best Worst Std

SCO 2995.8 2994.4 2999.3 1.0883
EO 2995.9 2994.4 3007.4 3.9136
GWO 3416.8 3003.4 5238 705.2673
PSO 3026.6 2994.4 3149.3 31.4321
SSA 3038.4 3000.4 3115.6 24.2014
MA 13334 2994.4 1.0000e+09 3.4574e+08
AOA 3000.3 2994.4 3034.6 8.6124
GSA 4287.3 3384.4 5598.8 653.4043
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search is performed. SCO also have a higher potential to 
avoid local optimum. However, it might be stuck at local 
optima. SCO can tackle this problem by the implementa-
tion of the escape from local optima strategy which allows 
SCO to smoothly switch from the exploitation process into 
an exploration mission. In terms of computational com-
plexity, SCO has lower complexity compared with swarm 
algorithms as shown in (9). Moreover, SCO does not require 
a massive number of function evaluations to achieve good 
performances. In this work, only 3000 function evaluations 
are needed to produce optimal and near-optimal solutions.

Although SCO has shown superior performances on 
most of the investigated unconstrained and constrained 
problems, it still suffers from two main limitations. Simi-
lar to swarm algorithms, SCO replaces the entire global 
best position once a new candidate solution can achieve 
a better fitness even if a few dimensions of the newly 
candidate solution obtained at iteration tare worse than 
their corresponding dimensions of the global best position 
found at iteration t − 1 . In some cases, combining the best 
dimensions (not necessarily all) of the candidate solution 
at iteration t and the best dimensions of the candidate 
solutions at iteration t − 1 might generate a new candidate 
solution that can achieve a better fitness compared with 
the fitness of the best candidate solution found so far. 
This combination has been investigated in [76] for PSO 
and its implementation has shown significant improve-
ments. However, the approach in [76] is computationally 
expensive. Therefore, it is needed to develop new meth-
ods to tackle this issue for SCO and swarm algorithms. 
Another limitation of SCO is that careful selections of 
the parameters b and � are required to achieve the best 
performances.

6  Conclusions and future research

This paper proposes a novel optimization algorithm called 
Single Candidate Optimizer (SCO) that implements a 
unique set of equations to effectively update the position 
of the candidate solution. To balance between exploration 

Table 25  Best results of the 
comparative algorithms for the 
pressure vessel design problem

Algorithm x
1

x
2

x
3

x
4

Optimal cost FEs

SCO 0.7784 0.3848 40.3323 199.8267 5885.8 8644
EO 0.8163 0.4035 42.2963 174.1997 5953.8 9690
GWO 0.7823 0.3896 40.5307 197.0943 5901.3 15000
PSO 0.7909 0.3909 40.9773 191.0422 5903.4 11280
SSA 0.7876 0.3893 40.8104 196.3365 5968.9 14220
MA 0.8196 0.4051 42.4661 172.1333 5960.1 8340
AOA 0.7801 0.3856 40.4173 198.6448 5888.6 8250
GSA 1.7248 0.8526 89.3684 69.5338 24708 8370

Table 26  Statistical results of the comparative algorithms for the 
pressure vessel design problem

Algorithm Mean Best Worst Std

SCO 6534.0 5885.8 7299.0 505.5225
EO 6607.2 5953.8 7319 522.7266
GWO 6075.8 5901.3 7263.1 335.0595
PSO 6346.8 5907.4 7319.0 386.8015
SSA 9430.1 5968.9 71768 11908
MA 6320.9 5960.1 6914.6 278.9480
AOA 6513.6 5888.6 7319 516.5846
GSA 2.2155E+05 2.4708E+04 4.9272E+05 1.0874E+05

Table 27  Best results of the comparative algorithms for the tension/
compression spring design problem

Algorithm x
1

x
2

x
3

Optimal weight FEs

SCO 0.0530 0.3885 9.6450 0.0127 1445
EO 0.0550 0.4427 7.5922 0.0129 4170
GWO 0.0527 0.3827 9.9155 0.0127 14610
PSO 0.0505 0.3286 13.1501 0.0127 4350
SSA 0.0521 0.3663 10.7795 0.0127 8040
MA 0.0516 0.3552 11.3775 0.0127 4440
AOA 0.0527 0.3827 9.9138 0.0127 5280
GSA 0.0567 0.4732 7.7796 0.0149 2580

Table 28  Statistical results of the comparative algorithms for the ten-
sion/compression spring design problem

Algorithm Mean Best Worst Std

SCO 0.0159 0.0127 0.0178 0.0017
EO 0.0138 0.0129 0.0178 0.0011
GWO 0.0129 0.0127 0.0136 0.0002
PSO 0.0136 0.0127 0.0177 0.0011
SSA 0.0143 0.0127 0.0220 0.0026
MA 0.0131 0.0127 0.0178 0.0009
AOA 0.0133 0.0127 0.0172 0.0010
GSA 0.0235 0.0149 0.0406 0.0070
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and exploitation, the two-phase strategy is applied where 
the candidate solution updates its position differently eat 
each phase. SCO also implements a escape from local 
optima strategy which permits the candidate solution to 
shift from an exploitation mode into an exploration mode 
in the second phase of SCO. The integration of SCO with 
the two-phase strategy and the escape from local opti-
mum method allows the candidate solution to explore and 
exploit the search space well. The effectiveness of SCO is 
validated by testing it on thirty-three classical benchmark-
ing functions and four real-world engineering problems. 
The performance of SCO is compared with 7 well-known 
and recent optimization algorithms including PSO, GWO, 
EO and AOA. Results of unimodal and multimodal func-
tions have demonstrated that SCO can effectively explore 
the search space in the first phase and it then switches to 
the second phase to perform deep exploitation. Moreover, 
SCO has shown that it can avoid and escape from local 
optima particularly when it solves functions with multiple 
optima. For most of the studied problems, results have 
shown that SCO can achieve optimal and near-optimal 
solutions and its performance is significantly better than 
other algorithms in terms of solution accuracy and con-
vergence speed. According to the results, the best SCO 
performance is achieved when it spends one-third of the 
optimization process exploring the search space while 
the remaining SCO process focuses on exploitation. In 
addition, it has been demonstrated that the computational 
complexity of SCO is lower than the complexity of swarm 
algorithms. Another advantage of SCO is that it does 
not require massive number of functions evaluations to 
achieve significant performances. This work has shown 
that single-solution-based algorithms can outperform 
population-based algorithms if designed well.

Further work is needed to further improve the perfor-
mance of single-solution-based algorithms. The following 
present some potential research directions that can further 
improve the performance of SCO:

• SCO can be hybridized with other algorithms such as 
PSO, GWO and EO.

• A new version of SCO can be developed to solve multi-
objective problems.

• A binary version of SCO can be developed to solve 
binary problems such as the problem of feature selection.

• SCO can be applied to solve a wide range of real-world 
optimization problems such as lot-sizing optimization 
[77, 78], data clustering [79], optimizing the hyper-
parameters of convolutional neural networks [80], 
designing supply-chain network [81], and maintenance 
scheduling [82].

• SCO can be integrated with chaotic maps and levy flight 
random walk [83].

• SCO be applied to solve well-known constrained opti-
mization problems such as cantilever beam design and 
three-bar truss design.

Appendix A: Welded beam design problem

minx f (x) = 1.10471x2
1
x2 + 0.04811x3x4

�

14 + x2
�

s.t. g1(x) = �(x) − �max ≤ 0

g2(x) = �(x) − �max ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = 0.10471x2
1
+ 0.04811x3x4

�

14 + x2
�

− 5 ≤ 0

g5(x) = 0.125 − x1 ≤ 0

g6(x) = �(x) − �max ≤ 0

g7(x) = P − Pc(x) ≤ 0

range 0.1 ≤ xi ≤ 2 i = 1, 4

0.1 ≤ xi ≤ 10 i = 2, 3

where �(x) =

�

(��)2 + 2�����
x2

2R
+ (���)2
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P

√

2x1x2
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MR

J

M = P
�

L +
x2

2

�
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�

x2
2

4
+

�

x1+x3

2

�2

J = 2
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√

2x1x2

�

x2
2

12
+

�

x1+x3

2

�2
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�(x) =
6PL

x4x
2
3

, �(x) =
4PL3

Ex3
3
x4

Pc(x) =
4.013E

�

x2
3
x6
4

36
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�

1 −
x3

2L
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E

4G

�

�max = 13600psi �max = 30000psi

�max = 0.25in, P = 6000lb

E = 30 × 106psi, L = 14in

G = 12 × 106psi
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Appendix B: Speed reducer design problem

Appendix C: Pressure vessel design problem

minx f (x) = 0.7854x1x
2
2

(

3.3333x2
3
+ 14.9334x3

− 43.0934 − 1.508x1
(

x2
6
+ x2

7

)

+ 7.4777
(

x3
6
+ x3

7

)

+ 0.7854
(

x4x
2
6
+ x5x

2
7

)

s.t. g1(x) =
27

x1x
2
2
x3
− 1 ≤ 0

g2(x) =
397.5

x1x
2
2
x3
− 1 ≤ 0

g3(x) =
1.93x3

4

x2x
4
6
x3
− 1 ≤ 0

g4(x) =
1.93x3

5

x2x
4
7
x3
− 1 ≤ 0

g5(x) =

√

(

745x4

x2x3

)2

+16.9×106

110x3
6

− 1 ≤ 0

g6(x) =

√

(

745x5

x2x3

)2

+157.5×106

85x3
7

− 1 ≤ 0

g7(x) =
x2x3

40
− 1 ≤ 0

g8(x) =
5x2

x1
− 1 ≤ 0

g9(x) =
x1

12x2
− 1 ≤ 0

g10(x) =
1.5x6+1.9

x4
− 1 ≤ 0

g11(x) =
1.1x7+1.9

x5
− 1 ≤ 0

range 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8

17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5

min
x

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4

19.84x2
1
x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = x4 − 240 ≤ 0

g4(x) = −�x2
3
x4 −

4

3
�x3

3
+ 1296000 ≤ 0

range 0 ≤ xi ≤ 100, i = 1, 2

10 ≤ xi ≤ 200, i = 3, 4

Appendix D: Tension/compression spring 
design problem
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