
Vol.:(0123456789)1 3

Evolutionary Intelligence
https://doi.org/10.1007/s12065-022-00762-7

RESEARCH PAPER

Single candidate optimizer: a novel optimization algorithm

Tareq M. Shami1 · David Grace1 · Alister Burr1 · Paul D. Mitchell1

Received: 8 June 2022 / Revised: 15 July 2022 / Accepted: 22 July 2022
© The Author(s) 2022

Abstract
Single-solution-based optimization algorithms have gained little to no attention by the research community, unlike popula-
tion-based approaches. This paper proposes a novel optimization algorithm, called Single Candidate Optimizer (SCO), that
relies only on a single candidate solution throughout the whole optimization process. The proposed algorithm implements a
unique set of equations to effectively update the position of the candidate solution. To balance exploration and exploitation,
SCO is integrated with the two-phase strategy where the candidate solution updates its position differently in each phase.
The effectiveness of the proposed approach is validated by testing it on thirty three classical benchmarking functions and
four real-world engineering problems. SCO is compared with three well-known optimization algorithms, i.e., Particle Swarm
Optimization, Grey Wolf Optimizer, and Gravitational Search Algorithm and with four recent high-performance algorithms:
Equilibrium Optimizer, Archimedes Optimization Algorithm, Mayfly Algorithm, and Salp Swarm Algorithm. According
to Friedman and Wilcoxon rank-sum tests, SCO can significantly outperform all other algorithms for the majority of the
investigated problems. The results achieved by SCO motivates the design and development of new single-solution-based
optimization algorithms to further improve the performance. The source code of SCO is publicly available at: https:// uk.
mathw orks. com/ matla bcent ral/ filee xchan ge/ 116100- single- candi date- optim izer.

Keywords Single candidate optimizer · Particle swarm optimization · Novel optimization algorithm · Metaheuristic · SCO

1 Introduction

The rapid advances in science and technology in the last dec-
ade has increased the difficulty level of real-world optimiza-
tion problems and this motivates the development of fast and
efficient optimization algorithms. The first step in optimization
is to formulate an objective function that can be maximized or
minimized. Once the optimization problem is formulated, an
optimization algorithm is needed to search for the best vari-
ables that can achieve the best solution. Real-world optimiza-
tion problems are mathematically formulated as follows:

where f (�) is the objective function that needs to be opti-
mized, D, L and K are the numbers of dimensions (vari-
ables), inequality constraints, equality constraints, respec-
tively, ubj and lbj represents the upper and lower bounds of
variable x at dimension j.

Generally, optimization problems can be solved by
deterministic or stochastic methods. Utilizing gradient
information, linear and non-linear programming are two
prominent deterministic methods that can be used to find
the optimal solution of a given problem. However, these
conventional deterministic methods can converge to
local optima [1] [2]. To overcome the limitations of the
conventional approaches, meta-heuristic algorithms, as
a stochastic approach, can be used to solve complicated
real-world optimization problems. Meta-heuristic algo-
rithms have shown robust performance when applied to
different optimization problems in various fields such
as wireless communications [3–5] and artificial intel-
ligence [6–8].

The main merits of meta-heuristic algorithms are their
simplicity, flexibility, ability to avoid a local optimum, and
derivative-free mechanisms [9]. The searching process of

(1)

min f (�), � = x1, x2, ..., xD

s. t. hk(�) = 0, k = 1, 2, ...,K

gl(�) > 0, l = 1, 2, ..., L

lbj < xj < ubj, j = 1, 2, ...,D

 * Tareq M. Shami
 tareq.al-shami@york.ac.uk

1 Department of Electronic Engineering, University of York,
Heslington, York YO10 5DD, UK

https://uk.mathworks.com/matlabcentral/fileexchange/116100-single-candidate-optimizer
https://uk.mathworks.com/matlabcentral/fileexchange/116100-single-candidate-optimizer
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-022-00762-7&domain=pdf

 Evolutionary Intelligence

1 3

meta-heuristic algorithms is split into two phases: explora-
tion and exploitation. The exploration stage broadly spans
the search space with the aim of finding promising regions
that can lead towards the optimal solution [10]. Poor explo-
ration can lead to local optima entrapment. The exploitation
phase focuses on searching around the promising regions
discovered in the exploration phase. The inability to perform
successful exploitation can significantly reduce the solution
accuracy. Balancing between exploration and exploita-
tion is one of the major challenges faced by meta-heuristic
approaches . An efficient meta-heuristic algorithm is a one
that:

1 Balances well between exploration and exploitation
2 Provides high level of accuracy
3 Converges towards the optimal solution and escapes

from local optima
4 Has a stable performance where results are not sig-

nificantly different from one independent run to
another

The purpose of this paper is to develop a robust optimi-
zation algorithm that can be used to solve diverse real-
world optimization problems. The rest of the paper is
organized as follows. In Section two, a literature review
on meta-heuristic algorithms is provided. Section three
develops the mathematical model and the algorithm of
the proposed approach. It also presents the complexity
of the proposed single candidate optimizer. Sections
four and five discuss the performance of the proposed
optimization algorithm on thirty three benchmarking
functions and four engineering problems, respectively.
Finally, Section six concludes this work and provides
some potential research directions.

2 Literature review

Meta-heuristic algorithms can be classified into four
main different groups: swarm algorithms, evolutionary
algorithms, physics-based approaches, and human-based
algorithms [11]. Swarm intelligence algorithms are
inspired by the behaviour of animals when they search
for food in groups. In this category, the information of all
or part of the particles is shared during an iterative opti-
mization process. One of the most well-known swarm
approaches is Particle Swarm Optimization (PSO) which
was developed by Kennedy and Eberhart in 1995 [12].
PSO mimics birds flying in swarms where individuals
in a swarm are guided by a leader who has the closest
position to the target.

In PSO, a swarm of particles where each particle
represents a potential solution flies in the search space

with the aim of finding better positions that help to move
toward the optimal solution. During the PSO iterative
process, each particle is attracted to the global best
position (gbest) which is the particle that has achieved
the best fitness so far and it is also attracted to its best
historical position (Pbest). Other widely known swarm
algorithms are: Grey Wolf Optimization [9], Ant Colony
Optimization [13], Salp Swarm Algorithm [14],Whale
Optimization Algorithm [11], Krill Herd [15], Butter-
fly Optimization Algorithm [16], Seagull Optimization
Algorithm [17], and Cuckoo Search [18].

Evolutionary algorithms as the second class of meta-
heuristics are developed by imitating biological evo-
lution such as mutation and crossover. The most well-
known evolutionary algorithm is the Genetic Algorithm
(GA) developed by Holland in 1992 [19]. A GA imple-
ments three main steps: selection, crossover, and muta-
tion. In the selection process, some of the exiting candi-
date solutions (ones with better fitness) are selected to
produce a second generation using the crossover concept.
To maintain diversity, some dimensions of certain solu-
tions are mutated with a mutation probability. Besides
GA, Evolutionary Programming [20], Differential Evolu-
tion (DE) [21], Evolution Strategies [22] are three other
widely used evolutionary approaches.

The third category of meta-heuristic algorithms uti-
lizes the laws of physics such as Newton’s gravitational
law and Archimedes’ principle to build interactions
between candidate solutions. Simulated Annealing (SA)
[23] and Gravitational Search Algorithm (GSA) [24] are
two prominent approaches that belong to this class. SA
is a single-solution-based algorithm that imitates the
physical annealing process of metals. In GSA, candi-
date solutions are treated as a collection of masses that
obey Newton’s gravity and motion laws. Equilibrium
Optimizer [25] and Henry Gas Solubility Optimization
[26] are two recent state-of-the-art physics-based opti-
mization algorithms. Other optimization algorithms that
belong to this class are: Sine Cosine Algorithm [48],
Water Cycle Algorithm [49], Black Hole algorithm [50],
and Thermal Exchange Optimization [51].

The final group of meta-heuristic methods emulates
the social behaviour of humans. For instance, Political
Optimizer [36] and Parliamentary Optimization Algo-
rithm [52] are two optimization algorithms inspired by
the political process. Teaching-Learning-Based Opti-
mization (TLBO) [53] is another social example where
its mechanism is developed by mimicking the teaching-
learning process in a classroom. Election Campaign
Optimization [54], Brain Strom Optimization [55],
Exchange Market Algorithm [56], Bus Transportation
Algorithm [57], Group Teaching Optimization Algorithm
[37], and Student Psychology Based Optimization [58]

Evolutionary Intelligence

1 3

are other optimization algorithms that belong to this
category.

Another classification of meta-heuristic algorithms
is presented in [59] where meta-heuristic algorithms
are divided into nine different categories: swarm-based,
chemical-based, biology-based, physics-based, sports-
based, musical-based, social-based, mathematical-based,
and hybrid approaches. Besides the nine aforementioned
categories, the authors in [60–62] added water-based,
light-based and plant-based as three different classes of
intelligent optimization algorithms.

Based on the number of candidate solutions involved
in each iteration of the optimization process, meta-heu-
ristic algorithms can also be classified into two cate-
gories: single-solution-based and population-based. In
single-solution-based, only a single candidate solution
is used to search for the optimal solution while in pop-
ulation-based methods a swarm of candidate solutions
are needed. Most of the recent literature if not all as
can be seen from Table 1 has focused on population-
based methods as it is believed amongst the research
community that single-solution-based algorithms always
have poor performance compared with population-based
approaches. This belief is because the performance of the

three most common single-solution-based approaches,
i.e, SA, Tabu Search [63], and Hill Climbing is very poor
when compared with population-based algorithms. Lack
of inspiration is another reason that has led to the devel-
opment ignorance of single-solution-based algorithms. It
is hard to find natural, physical or social phenomena that
rely on a single object or creature. On the other hand, it
is relatively easy to observe natural or physical behav-
iours generated by groups. These two main reasons have
increased the popularity of population-based algorithms
and at the same time neglected the development of new
single-solution-based algorithms.

Many works have attempted to improve the optimi-
zation performance by introducing new ideas that can
help to update the positions of potential solutions effec-
tively. The authors in [9] proposed a Grey Wolf Opti-
mizer (GWO) that implements a leadership hierarchy
that consists of four wolves known as alpha, beta, delta,
and omega. Moreover, GWO imitates the hunting behav-
iour of preys that is performed in three different steps:
searching, encircling and attacking preys. The proposed
hierarchy system of GWO provides diversity that can
help to achieve good results. In [25], a novel optimi-
zation algorithm called Equilibrium Optimizer (EO) is

Table 1 Some recent
optimization algorithms

Algorithm Ref. Inspiration Year

Henry gas solubility optimization [26] Henry’s law 2019
Harris hawks optimization (HHO) [27] Harris hawks attacking strategies 2019
Atom search optimization [28] Atomic motion model 2019
Pathfinder algorithm [29] Collective movements of swarms 2019
Sailfish Optimizer [30] Sailfish group hunting 2019
Equilibrium optimizer [25] Mass balance for a control volume 2020
Marine Predators Algorithm [31] foraging strategy of ocean predators 2020
Heap-based optimizer [32] Corporate rank hierarchy 2020
Gradient-based optimizer [33] Gradient-based Newton’s approach 2020
Mayfly optimization algorithm [34] Flight behaviour of mayflies 2020
Bear smell search algorithm [35] Smelling mechanism of bears 2020
Political Optimizer [36] Multi-phased political process 2020
Group teaching optimization algorithm [37] Group teaching mechanism 2020
The Arithmetic Optimization Algorithm [38] Arithmetic operators 2021
Archimedes optimization algorithm [39] Archimedes’ principle 2021
Aquila Optimizer [40] Aquila’s behaviors 2021
Red fox optimization algorithm [41] Red fox hunting 2021
Horse herd optimization algorithm [42] Horses’ herding behavior 2021
Remora optimization algorithm [43] Parasitic behavior of remora 2021
Dwarf Mongoose Optimization Algorithm [44] Foraging behavior of the dwarf mongoose 2022
Snake Optimizer [45] Mating behavior of snakes 2022
Ebola Optimization Algorithm [46] Propagation of the Ebola virus 2022
Reptile Search Algorithm [47] Hunting behaviour of Reptiles 2022

 Evolutionary Intelligence

1 3

proposed where it is inspired by mass balance for a con-
trol volume. The strength of EO mainly comes from a
term called generation rate that is responsible to exploit
the space and it sometimes plays an essential explora-
tion role.

Inspired by the Archimedes’ Principle, an Archimedes
Optimization Algorithm (AOA) is proposed in [39]. The
exploration phase of AOA is activated when objects col-
lide with each other while exploitation takes place when
no collision happens. The work in [64] developed a new
nature-inspired algorithm called Moth-Flame Optimi-
zation (MFO) that mimics moths movements that rely
on the moon’s light to travel in a direct path. In MFO,
moths are potential solutions whereas f lames are the
best solutions that have been obtained. Another differ-
ence between moths and flames is the updating mecha-
nism. To promote exploration and avoid local optimum
in MFO, each moth is assigned one flame only. Moreo-
ver, MFO attempts to balance exploration and exploita-
tion by reducing the number of flames. In [65], a Honey
Badger algorithm (HBA) is developed by formulating
the digging behaviour to represent the exploration stage
while exploitation is represented by the process of find-
ing honey. HBA proposes a density factor that can help
to smoothly switch from exploration to exploitation.

Another nature-inspired optimization algorithm
called Ant Lion Optimizer (ALO) is proposed in [66].
In ALO, following the natural searching behaviour of
ants, the movements of ants are modelled by a random
walk. The roulette wheel operator is implemented for
modelling the hunting behaviour of antlions. In addi-
tion, elitism is applied by ALO to store the best obtained
solutions. The proposed random walk of ALO enhances
its exploration abilities whereas elitism promotes exploi-
tation particularly at the final stages of the ALO search
process.

In [67], a novel intelligent optimization algorithm
called War Strategy Optimization (WSO) is proposed
where its mechanism mimics the strategical movements
(defence or attack) of army troops when wars take place.
Utilizing a war strategy, WSO develops a novel updating
mechanism to update the position of soldiers. Moreover,
a unique updating mechanism is proposed to update the
positions of weak soldiers. Another interesting mecha-
nism of WSO is to replace weak or injured soldiers with
new ones or to relocate them. The proposed WSO strate-
gies can contribute towards balancing exploration and
exploitation and achieve good performances. Inspired
by chemical reactions, an Artificial Chemical Reaction

Optimization Algorithm (ACROA) is proposed in [68].
IN ACROA, atoms are treated as particles since they
have positions and velocities. To enhance the global and
local search capabilities, ACROA applies five chemical
reactions: synthesis, bimolecular, redox2, displacement,
and monomolecular reactions. One of the main advan-
tages of ACROA is that it has a few parameters. The
methodologies in [67, 68] and [5] can be integrated with
SCO and other optimization algorithms to improve the
optimization performance.

Although the state-of-the-art optimization algorithm
have shown remarkable improvements in solving diverse
problems, they achieve the best performance only on
certain problems while their performances of different
problems is far from optimal. The following summa-
rizes six main disadvantages of existing metaheuristic
algorithms:

• Many metaheuristic algorithms achieve strong explo-
ration performances; however, their exploitation abil-
ity is weak. On the other hand, some metaheuristic
algorithms can exploit the search space well; never-
theless, they have poor exploration capabilities. This
results in undesired exploration-exploitation imbal-
ance that degrades the overall optimization perfor-
mance.

• Some intelligent swarm algorithms can easily cov-
erage to local optima. These algorithms either have
poor strategies that cannot avoid local optima or they
do not have strong mechanisms that can help to redi-
rect the search towards promising regions once the
algorithm is trapped.

• A significant disadvantage of some algorithms is the
requirement of massive number of function evalua-
tions to achieve acceptable solutions.

• Many algorithms have various sensitive parameters
where a slight change in a certain parameter can
affect the performance significantly.

• Some optimization algorithms perform well on low
dimensional problems; however, their performance
substantially degrades as the number of dimensions
increases.

• Although some algorithms can achieve promising
results on unconstrained problems, they face diffi-
culties in solving real-world constrained optimization
problems.

According to the No Free Lunch (NFL) theorem [69],
a meta-heuristic algorithm that performs well on a

Evolutionary Intelligence

1 3

particular class of problems achieves degraded perfor-
mance when it solves different sets of problems. In other
words, there is no meta-heuristic algorithm that can pro-
vide the best solutions for all kind of problems. Many
state-of-the-art meta-heuristic algorithms have shown
promising results on a certain set of problems; how-
ever, they have demonstrated poor performance when
applied to solve a different set of problems. This moti-
vates researchers to develop novel meta-heuristic meth-
ods that achieve higher level of accuracy when applied
to a wide range of optimization problems. Table 1 sum-
marizes some recent optimization algorithms and their
inspirations.

3 Proposed algorithm

This work proposes a novel approach that utilizes only a sin-
gle candidate solution during the whole optimization process
to find better solutions, unlike most of the existing searching
algorithms that rely on a swarm of particles. In the proposed
scheme, the overall optimization process that consists of T
function evaluations or iterations is divided into two phases
where the candidate solution updates its position differently
in each phase. Although single-solution-based algorithms
and two-phase approaches are two established meta-heuristic
optimization methods, they have been implemented sepa-
rately. The developed approach integrates the single candi-
date approach with the two-phase strategy to form a single
robust algorithm. Most importantly, the proposed algorithm
implements a unique set of equations to update the position
of the candidate solution with relying only on its informa-
tion, i.e., its current position.

The purpose of the two-phase strategy is to provide
diversity and balance between exploration and exploita-
tion. The first phase in SCO terminates when � function
evaluations are performed while the second phase con-
sists of � function evaluations where � + � = T . In the
first phase of SCO, the candidate solution updates its
positions as follows:

where r1 is a random variable in the range [0,1].
The mathematical definition of w is given as follows:

(2)xj =

{

gbestj + (w ∣ gbestj ∣) if r1 < 0.5

gbestj − (w ∣ gbestj ∣) otherwise

where b is a constant, t is the current function evaluation or
iteration, and T is the maximum number of function evalu-
ations, respectively.

The second phase of SCO performs a deep search that
starts by extensively exploring the space around the best
position obtained in the first phase. The latter part of
phase two reduces the space to be searched which helps
to focus on promising regions only. The following shows
how the candidate solution updates its position in the
second phase:

where r2 is another random variable in the range of [0,1], ubj
and lbj are the boundary upper and lower bounds, respec-
tively and w is the most important parameter in SCO which
is responsible to balance between exploration and exploita-
tion. From (3), w decreases exponentially as the number of
function evaluations increase. This behaviour is crucial as
a relatively high value of w at the beginning of the search
process helps to explore the search space effectively while a
small value of w strengthens the exploitation abilities at the
latter stages of the optimization process. One of the main
limitations of meta-heuristic algorithms is becoming trapped
in local optima particularly at the latter phases of the search-
ing process. In other words, continuous update of the posi-
tions of candidate solutions does not yield fitness improve-
ment. SCO tackles this issue by updating the position of
the candidate solution differently in the second phase if no
fitness improvement is achieved in m consecutive function
evaluations. A counter c is used to count the number of func-
tion evaluations m that sequentially can not achieve fitness
improvement. A binary parameter p is used to determine
whether the updated candidate can achieve a successful fit-
ness or not where p = 1 indicates successful fitness improve-
ment while p = 0 denotes fitness improvement failure. In
the second phase of SCO, a candidate solution updates its
position based on (4); however, if performing m consecutive
function evaluations does not improve the fitness value, the
candidate solution updates its position as follows:

(3)w(t) = exp
−

(

bt

T

)b

(4)xj =

{

gbestj +
(

(r2w
(

ubj − lbj
))

if r2 < 0.5

gbestj −
(

(r2w
(

ubj − lbj
))

otherwise

 Evolutionary Intelligence

1 3

explained as follows. The process starts by randomly gener-
ating a candidate solution in the search space, evaluating its
fitness, recording this candidate as gbest (global best posi-
tion) and its fitness f(gbest) as the global best fitness. The
initial candidate solution is generated as follows:

(7)xj = lbj + r4(ubj − lbj)

Table 2 Unimodal test functions

Function Range fmin

f1(x) =
∑n

i=1
x2
i

[−100,100] 0
f2(x) =

∑n

i=1
∣ xi ∣ +

∏n

i=1
∣ xi ∣ [−10,10] 0

f3(x) =
∑n

i=1
(
∑i

j−1
xj)

2 [−100,100] 0

f4(x) = maxi{∣ xi ∣, 1 ≤ i ≤ n} [−100,100] 0

f5(x) =
∑n−1

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] [−30,30] 0

f6(x) =
∑n

i=1
([xi + 0.5])2 [−100,100] 0

f7(x) =
∑n

i=1
ix4

i
+ random[0, 1) [−1.28, 1.28] 0

where r3 is a random number that can have a value in the
range of [0,1]. The position update in (5) allows the candi-
date solution to shift from exploitation to exploration which
is helpful to escape from local optimum.

Updating the positions of some variables can sometimes
cause their values to go out of range or boundaries. To
restrict variables from exceeding the boundaries, the updated
positions are set as follows in case their values are higher
than their upper bounds and lower bounds, respectively:

In (6), the updated dimension of a candidate solution
is assigned the same value as the global best value if the
updated position goes out of boundaries.

In SCO, a single candidate solution x is randomly gener-
ated and then it is iteratively updated in order to search for
a better solution. The steps of the proposed algorithm are

(5)xj =

{

gbestj +
(

(r3
(

ubj − lbj
))

if r3 < 0.5

gbestj −
(

(r3
(

ubj − lbj
))

otherwise

(6)xj =

{

gbestj if xj > ubj
gbestj if xj < lbj

Evolutionary Intelligence

1 3

where lbj and ubj are the lower and upper boundaries of the
search space, r4 is a random number in the range of [0,1].

The repetitive process that terminates when it reaches T
function evaluations starts by updating the position of the

Table 3 Multimodal test
functions

Function Range fmin

f8(x) =
∑n

i=1
−xisin(

√

∣ xi ∣) [−500,500] −418.9829 × Dim

f9(x) =
∑n

i=1
[x2

i
− 10cos(2�xi) + 10] [−5.12,5.12] 0

f10(x) = − 20exp

⎛

⎜

⎜

⎝

−0.2

�

�

�

�

1

n

n
�

i=1

x2
i

⎞

⎟

⎟

⎠

− exp

�

1

n

n
�

i=1

cos(2�xi)

�

+ 20 + e

[−32,30] 0

f11(x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�

xi
√

i

�

+ 1
[−600,600] 0

f12(x) =
�

n
{10sin

(

�y1
)

+

n−1
∑

i=1

(

yi − 1
)2[

1 + 10sin2
(

�yi + 1
)]

+
(

yn − 1
)2

+

n
∑

i=1

u
(

xi, 10, 100, 4
)

}

[−50,50] 0

yi = 1 +
xi+1

4

u(xi, a, k,m) =

⎧

⎪

⎨

⎪

⎩

k
�

xi − a
�m

xi > a

0 - a < xi < a

k
�

−xi − a
�m

xi < −a

f13(x) = 0.1{sin2
(

3�x1
)

+

n
∑

i=1

(

xi − 1
)2
[1 + sin2

(

3�xi + 1
)

]

+
(

xn − 1
)2
[1 + sin2

(

2�xn
)

]} +

n
∑

i=1

u
(

xi, 5, 100, 4
)

[−50,50] 0

Table 4 Fixed-dimension
multimodal test functions

Function Dim Range fmin

f14(x) =

�

1

500
+
∑25

j=1

1

j+
∑2

i=1
(xi−aij)

6

�−1 2 [−65,65] 1

f15(x) =
∑11

i=1

�

ai −
x1(b

2

i
+bix2)

b2
i
+bix3+x4

�2 4 [−5,5] 0.00030

f16(x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [−5,5] −1.0316

f17(x) =
(

x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10

(

1 −
1

8�

)

cosx1 + 10
2 [−5,5] 0.398

f18(x) =
[

1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1x2 + 3x2

2
)
]

×
[

30 + (2x1 − 3x2)
2 × (18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2
)
]

2 [−2,2] 3

f19(x) = −
∑4

i=1
ciexp

�

−
∑3

j=1
aij(xj − pij)

2

�

3 [1,3] −3.86

f20(x) = −
∑4

i=1
ciexp

�

−
∑6

j=1
aij(xj − pij)

2

�

6 [0,1] −3.32

f21(x) = −
∑5

i=1

�

(X − ai)(X − ai)
T + ci

�−1 4 [0,10] −10.1532

f22(x) = −
∑7

i=1

�

(X − ai)(X − ai)
T + ci

�−1 4 [0,10] −10.4028

f23(x) = −
∑10

i=1

�

(X − ai)(X − ai)
T + ci

�−1 4 [0,10] −10.5363

candidate solution. The candidate solution x updates its posi-
tion in phase one and phase two based on (2) and (4), respec-
tively. After updating the candidate position, the fitness of
the newly generated candidate solution f(x) is evaluated and

 Evolutionary Intelligence

1 3

compared with f(gbest). If f(x) is better than the gbest fitness
f(gbest), gbest and f(gbest) are replaced by x and f(x), respec-
tively. The iterative process continues until the maximum
number of function evaluations T is reached. The pseudo-
code of the proposed algorithm is presented in Algorithm 1.

3.1 Complexity analysis

The computational complexity of population-based algo-
rithms depends on four parameters: the number of candi-
date solutions and dimensions denoted as N and D, respec-
tively, the cost of evaluating the objective function C and
the maximum number of function evaluations T. In swarm
algorithms, the maximum number of function evaluations
is given as T = Nt where t is the maximum number of itera-
tions. Generally, the minimal computational complexity of
swarm algorithms including PSO, GWO and EO is com-
posed of two main elements: initialization and main loop.
Initialization involves generation of random candidate
solutions and evaluating their fitness. The time complex-
ity of generating candidate solutions is given as O(ND)
while O(NC) represents the complexity of evaluating their

fitness. Thus, the overall initialization complexity is give as
O(ND + NC).

The main loop is mainly composed of function evalua-
tions and position updates. The computational complexity of
evaluating the fitness for all candidate solutions in the main
loop for all iterations is O(tNC) which is equivalent to O(TC)
whereas the complexity of updating positions is O(TD). The
minimal computational complexity of population-based
algorithms can be written as follows:

Besides O(initialization) and O(main loop), other operations
such as memory savings as in PSO and EO are needed which
contribute to increasing the complexity level.

In SCO, the initialization complexity is O(D + C) which is
lower than the initialization complexity of other algorithms
(O(ND + NC)) as SCO has only one candidate solution. The
main loop complexity of SCO is O(TC + TD) which includes
function evaluations and positions update with complexities
of O(TC) and O(TD), respectively. Thus, the overall compu-
tational complexity of SCO is given as follows:

From (8) and (9), it is clear that the computational complex-
ity of SCO is even lower than the minimal complexity of
population-based algorithms.

4 Results and discussion

To validate the effectiveness of the proposed algorithm, it is
tested first on a set of 23 classical benchmarking functions
[9, 11, 70–72] that are divided into three different groups:
unimodal, multimodal and fixed-dimension multimodal
functions. Unimodal functions are used to test the exploita-
tion ability of optimization algorithms since they have only
one global optimum whereas multimodal functions assess
the exploration efficiency as they have multiple local optima.

(8)O(swarmmin) = O(ND + NC + TC + TD)

(9)O(SCO) = O(D + C + TC + TD)

Table 5 CEC2019 test functions No. Function Name Dim Range fmin

F1 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192,8192] 1
F2 Inverse Hilbert Matrix Problem 16 [−16384,16384] 1
F3 Lennard-Jones Minimum Energy Cluster 18 [−4,4] 1
F4 Rastrigin’s Function 10 [−100,100] 1
F5 Griewangk’s Function 10 [−100,100] 1
F6 Weierstrass Function 10 [−100,100] 1
F7 Modified Schwefel’s Function 10 [−100,100] 1
F8 Expanded Schaffer’s F6 Function 10 [−100,100] 1
F9 Happy Cat Function 10 [−100,100] 1
F10 Ackley Function 10 [−100,100] 1

Table 6 Parameter settings of all compared algorithms

Algorithm Parameter Value

SCO � , b 1000, 2.4
EO Generation probability ,

a1 , a2
0.5, 2, 1

GWO a Linearly decreasing from
2 to 0

PSO C1 , C2 , w 2,2,[0.9-0.4]
SSA Position update probability 0.5
MA Population size 15 males and 15 females

g, a1 , a2 , a3 , � , d, fl 0.8,1,1.5,1.5,2,0.1,0.1
AOA C1 , C2 2, 6
GSA Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

Evolutionary Intelligence

1 3

The difference between the multimodal functions (f8 − f13)
and the fixed-dimension multimodal functions (f14 − f23) is
that the number of variables of f14 − f18 are unchangeable,
unlike f8 − f13 . In addition, the fixed-dimension multimodal
functions spans different search range. Tables 2 , 3 and 4 list
the mathematical representations of unimodal, multimodal
and fixed-dimension multimodal functions, respectively.

To further validate the effectiveness of the proposed
algorithm, its performance is evaluated on the CEC 2019
test suite. A summary of the CEC 2019 test functions that
includes function name, dimension, and search range is pro-
vided in Table 5. The performance of the proposed approach
is compared with three well-known optimization algorithms,

i.e., PSO, GWO and GSA. It is also compared with four
recent high-performance approaches: EO, AOA, MA, and
SSA. EO, AOA, MA, and SSA have shown outstanding per-
formance when applied to solve benchmarking functions and
real-world engineering problems. Their results showed that
they can outperform several optimization algorithms such
as Success-History Based Parameter Adaptation Differen-
tial Evolution (SHADE) [73], LSHADE-SPACM, GA, DE,
HHO, and L-SHADE.

The results of all compared algorithms are averaged over
30 independent runs. For all the test functions, the algo-
rithms are compared in terms of the average fitness and
the average standard deviation. All simulation results are

Table 7 Results of average fitness of unimodal functions when D=30

Fun SCO EO GWO PSO SSA MA AOA GSA

f1 Mean 0 4.73E-05 1.25E-02 2.90E+01 1.20E+03 9.38E+00 1.90E-14 2.81E+03
Std 0 4.18E-05 8.20E-03 1.23E+01 4.83E+02 1.78E+01 4.11E-14 6.55E+02

f2 Mean 6.45E-258 8.89E-04 2.27E-02 1.82E+00 1.68E+01 1.37E+00 7.24E-09 1.33E+01
Std 0 3.58E-04 8.41E-03 5.75E-01 4.35E+00 1.22E+00 1.44E-08 4.70E+00

f3 Mean 7.94E-123 6.25E+01 3.59E+02 2.77E+03 6.91E+03 2.36E+03 5.04E-09 5.61E+03
Std 4.35E-122 9.10E+01 3.31E+02 1.03E+03 3.75E+03 1.27E+03 2.18E-08 1.95E+03

f4 Mean 3.28E-20 2.61E-01 1.39E+00 1.01E+01 2.15E+01 8.82E+00 2.89E-07 2.01E+01
Std 1.80E-19 1.52E-01 4.39E-01 2.21E+00 4.39E+00 2.63E+00 8.95E-07 2.79E+00

f5 Mean 2.85E+01 2.83E+01 4.52E+01 1.42E+03 1.61E+05 2.42E+02 2.88E+01 2.61E+05
Std 9.48E-02 4.28E-01 6.82E+01 9.71E+02 1.34E+05 1.82E+02 7.11E-02 1.72E+05

f6 Mean 2.63E-01 1.12E+00 3.18E+00 3.74E+01 1.16E+03 1.84E+01 5.65E+00 2.94E+03
Std 9.25E-02 3.41E-01 6.90E-01 1.91E+01 4.55E+02 4.11E+01 3.28E-01 8.50E+02

f7 Mean 2.87E-04 6.87E-03 1.80E-02 8.15E-02 5.21E-01 1.14E-01 3.56E-03 4.26E-01
Std 2.69E-04 2.94E-03 7.26E-03 2.55E-02 2.21E-01 5.32E-02 2.50E-03 2.30E-01

Mean rank 1.14 2.57 3.85 5.85 7.57 5.14 2.42 7.42
Rank 1 3 4 6 8 5 2 7

Table 8 Results of average fitness of multimodal functions when D=30

Fun SCO EO GWO PSO SSA MA AOA GSA

f8 Mean −8.25E+03 −7.08E+03 −5.34E+03 −6.23E+03 −6.31E+03 −5.73E+03 −3.62E+03 −2.47E+03
Std 5.86E+02 6.39E+02 1.19E+03 7.73E+02 8.54E+02 6.33E+02 4.06E+02 4.98E+02

f9 Mean 0 2.49E+00 3.62E+01 5.78E+01 9.20E+01 2.22E+01 2.02E+01 7.83E+01
Std 0 2.97E+00 1.16E+01 1.52E+01 1.98E+01 7.01E+00 6.20E+01 2.46E+01

f10 Mean 8.88E-16 1.26E-03 2.60E-02 2.94E+00 9.45E+00 7.38E+00 1.87E-08 8.12E+00
Std 0 6.91E-04 6.68E-03 4.40E-01 1.09E+00 1.61E+00 4.28E-08 9.34E-01

f11 Mean 0 5.57E-03 8.47E-02 1.28E+00 1.28E+01 9.59E+00 6.89E-03 4.10E+02
Std 0 1.45E-02 6.36E-02 1.54E-01 5.05E+00 4.95E+00 3.77E-02 4.88E+01

f12 Mean 2.60E-02 3.44E-02 4.06E-01 1.89E+00 2.52E+01 7.40E+00 8.21E-01 4.61E+01
Std 3.77E-02 1.37E-02 2.65E-01 1.21E+00 1.92E+01 3.09E+00 1.98E-01 9.15E+01

f13 Mean 1.45E+00 7.67E-01 2.31E+00 9.20E+00 4.40E+04 3.50E+01 2.92E+00 8.05E+04
Std 5.91E-01 2.82E-01 5.36E-01 5.49E+00 8.36E+04 1.44E+01 8.94E-02 1.00E+05

Mean rank 1.16 2.00 4.16 5.00 6.66 5.50 3.83 7.66
Rank 1 2 4 5 7 6 3 8

 Evolutionary Intelligence

1 3

generated under equal conditions. MATLAB is used to pro-
duce the results for all algorithms on Intel(R) Core(TM)
i5-7200U CPU @ 2.50GHz with 8 GB RAM.

To provide a fair comparison, the maximum number of
function evaluations for all algorithms is set to 3000. For
all algorithms except SCO, the maximum number of itera-
tions are 100 while the number of candidate solutions are
30 which is equivalent to 3000 function evaluations. Similar
to all other algorithms, the maximum number of function
evaluations in SCO is 3000; however, the difference is that
SCO uses only one candidate solution instead of a swarm
of particles. Candidate solutions are known as particles in
PSO, search agents in EO, GWO, and SSA, solutions in MA,
objects in AOA, and mass in GSA. Table 6 summarizes the
parameter settings of all algorithms as recommended by
their original papers.

Tables 7, 8, 9 show the results of the average fitness and
standard deviation for the unimodal, multimodal, and fixed-
dimension functions for the eight compared algorithms,
respectively.

4.1 Exploitation analysis

As mentioned earlier, the purpose of unimodal benchmark-
ing functions is to validate the exploitation ability of an opti-
mization algorithm.

According to the statistical results of unimodal functions
(f1 − f7) in Table 7, it is clear that SCO outperforms all other
compared algorithms on all functions except f5 . For f5 , SCO
is ranked second following EO and its performance is very
close to the performance achieved by EO. The superior per-
formance of the proposed approach is also shown in terms of
standard deviation demonstrating that the proposed method
is a more stable algorithm. The results in Table 7 shows that
the SCO algorithm has strong exploitation ability.

4.2 Exploration analysis

The exploration ability of the proposed algorithm is vali-
dated by testing it on 16 multimodal functions that include
high dimensional (f8 − f13) and fixed dimension (f14 − f23)
functions. Tables 8 and 9 provide the statistical results of all
compared approaches for the f8 − f13 functions and for the
f14 − f23 functions, respectively. The results illustrate that
SCO achieves better solution accuracy than other algorithms
on functions f8 − f12 , f14 , f21 , and f23 while it achieves the
best performance on f16 − f19 equally with a few other algo-
rithms such as EO and MA.

As Tables 8 and 9 show, SCO is able to achieve the opti-
mal solutions for f9 , f11 , f16 , f18 and f19 . It is also evident that
SCO is the only algorithm that provides the optimal solu-
tions for f9 and f11 . For the rest of the multimodal functions,

Table 9 Results of average fitness of fixed-dimension multimodal functions

Fun SCO EO GWO PSO SSA MA AOA GSA

f14 Mean 1.09E+00 1.48E+00 5.10E+00 4.34E+00 2.61E+00 5.60E+00 1.46E+00 9.13E+00
Std 3.03E-01 1.86E+00 4.32E+00 2.64E+00 1.68E+00 3.73E+00 1.06E+00 4.42E+00

f15 Mean 4.53E-03 4.57E-03 5.33E-03 2.04E-03 8.67E-03 2.32E-03 1.31E-03 1.30E-02
Std 1.15E-02 8.03E-03 8.48E-03 4.99E-03 1.34E-02 6.11E-03 1.09E-03 1.00E-02

f16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
Std 6.77E-08 4.70E-16 3.47E-07 4.49E-16 4.00E-13 5.45E-16 1.73E-03 9.82E-05

f17 Mean 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.97E-01 4.18E-01 4.04E-01
Std 6.00E-08 0 2.80E-05 0 1.21E-13 0 3.33E-02 3.27E-02

f18 Mean 3.00E+00 3.00E+00 3.00E+00 5.70E+00 3.00E+00 3.00E+00 4.29E+00 3.00E+00
Std 8.16E-07 3.75E-15 1.93E-03 1.47E+01 1.50E-12 3.92E-15 5.02E+00 1.06E-14

f19 Mean -3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.85E+00 −3.86E+00 −3.80E+00 −3.84E+00
Std 6.99E-05 1.43E-03 2.42E-03 1.97E-15 2.75E-02 2.43E-15 5.84E-02 2.35E-02

f20 Mean −3.30E+00 −3.25E+00 −3.25E+00 −3.29E+00 −3.24E+00 −3.29E+00 −2.73E+00 −3.30E+00
Std 4.98E-02 6.71E-02 7.55E-02 5.11E-02 9.35E-02 4.83E-02 2.86E-01 4.82E-02

f21 Mean −9.47E+00 −7.80E+00 −8.45E+00 −4.81E+00 −6.15E+00 −6.52E+00 −5.39E+00 −4.67E+00
Std 1.76E+00 3.22E+00 2.94E+00 3.12E+00 3.62E+00 3.71E+00 2.04E+00 3.36E+00

f22 Mean -9.61E+00 −8.66E+00 −9.86E+00 −6.04E+00 −7.43E+00 −7.26E+00 −4.70E+00 −8.51E+00
Std 2.07E+00 2.98E+00 1.86E+00 3.68E+00 3.48E+00 3.67E+00 1.70E+00 3.18E+00

f23 Mean −9.54E+00 -8.78E+00 −9.44E+00 −7.43E+00 −7.71E+00 −6.72E+00 −4.79E+00 −8.73E+00
Std 2.28E+00 3.24E+00 2.72E+00 3.68E+00 3.79E+00 3.66E+00 1.96E+00 3.07E+00

Mean rank 1.40 2.60 2.70 3.70 3.80 3.40 4.30 4.00
Rank 1 2 3 5 6 4 8 7

Evolutionary Intelligence

1 3

SCO provides a close to optimum solutions and its perfor-
mance is competitive with other algorithms. Table 8 also
shows that SCO is the best algorithm to solve f8 where f8 is
considered to be one of the most difficult multimodal func-
tions as it has a high number of local optimum.

4.3 Impact of high‑dimensionality

Many metaheuristic algorithms achieve degraded perfor-
mance when they solve high dimensional problems. There-
fore, it is essential to test the high-dimensional performances
of new metaheuristic algorithms. This subsection evaluates
the high-dimensional performance of SCO on f1 − f13 by
increasing the number of dimensions from 30 to 100 and
200. Tables 10 and 11 present the statistical results of
SCO and the other comparative algorithms when D = 100
and D = 200 , respectively. Table 10 shows that SCO out-
performs all algorithms on all functions except f13 when
D = 100 . It also shows that SCO is the only algorithm that
can achieve the optimal solutions for f1 , f9 and f11 . When

D = 200 , Table 11 shows that SCO performs better than all
other algorithms on all functions except f5 and f13 where
SCO is ranked second. Tables 10 and 11 have shown that
SCO is not significantly affected by increasing the number
of dimensions unlike other algorithms.

4.4 Sensitivity analysis

The SCO parameters particularly � and b are expected to
significantly influence its optimization performance. The
impact of � and b on the SCO performance is investigated
in this subsection. Three different cases are studied where
the first phase of SCO in case one, case two and case three
consists of 500, 1000 and 2000 function evaluations, respec-
tively. In each case, eight different scenarios are considered
where the value of b decreases from 3 to 0.9. The statistical
results of unimodal and multimodal functions for the first
case, second case and third case are presented in Table 12,
Table 13, and Table 14, respectively. From these Tables,
it is evident that better exploitation is achieved in the first

Table 10 Results of average fitness of f
1
- f

13
 functions when D=100

Fun SCO EO GWO PSO SSA MA AOA GSA

f1 Mean 0 3.50E-02 6.36E+01 3.52E+03 1.78E+04 4.13E+03 2.45E-12 2.79E+03
Std 0 1.65E-02 1.90E+01 6.12E+02 2.25E+03 1.23E+03 5.34E-12 7.85E+02

f2 Mean 4.73E-238 6.34E-02 3.98E+00 7.28E+01 1.04E+02 3.95E+01 3.31E-07 1.25E+01
Std 0 1.96E-02 6.44E-01 5.18E+01 9.66E+00 7.12E+00 5.12E-07 3.38E+00

f3 Mean 6.25E-147 9.79E+03 4.29E+04 6.85E+04 8.62E+04 3.29E+04 3.10E-06 7.02E+03
Std 3.42E-146 5.99E+03 1.14E+04 1.61E+04 4.61E+04 8.97E+03 1.32E-05 3.68E+03

f4 Mean 2.39E-17 1.84E+01 3.08E+01 3.54E+01 3.22E+01 2.27E+01 1.11E-06 1.93E+01
Std 1.26E-16 7.19E+00 7.30E+00 2.99E+00 3.76E+00 2.05E+00 1.37E-06 2.78E+00

f5 Mean 9.88E+01 1.02E+02 4.05E+03 9.34E+05 6.30E+06 4.82E+04 9.89E+01 2.30E+05
Std 5.58E-02 3.61E+00 2.88E+03 3.18E+05 1.60E+06 1.88E+04 4.14E-02 1.64E+05

f6 Mean 9.27E+00 1.65E+01 8.44E+01 3.59E+03 1.83E+04 3.90E+03 2.28E+01 2.77E+03
Std 1.69E+00 1.00E+00 2.35E+01 6.90E+02 2.23E+03 8.38E+02 5.12E-01 9.53E+02

f7 Mean 6.89E-04 2.13E-02 1.86E-01 2.32E+00 1.17E+01 2.77E+00 3.11E-03 4.41E-01
Std 5.42E-04 8.33E-03 6.18E-02 7.64E-01 4.41E+00 7.28E-01 2.17E-03 2.52E-01

f8 Mean −2.22E+04 −1.61E+04 −1.21E+04 −1.69E+04 -1.28E+04 -1.04E+04 −6.24E+03 −2.56E+03
Std 2.49E+03 1.81E+03 3.93E+03 1.88E+03 1.59E+03 1.74E+03 8.34E+02 5.12E+02

f9 Mean 0 2.46E+00 2.43E+02 4.81E+02 6.20E+02 2.24E+02 2.64E-12 7.68E+01
Std 0 3.38E+00 5.12E+01 4.09E+01 4.27E+01 2.31E+01 5.52E-12 2.36E+01

f10 Mean 8.88E-16 2.77E-02 3.01E+00 8.48E+00 1.33E+01 1.10E+01 1.63E-07 7.87E+00
Std 0 1.02E-02 3.09E-01 4.56E-01 4.43E-01 7.41E-01 3.14E-07 1.02E+00

f11 Mean 0 5.16E-02 1.63E+00 3.27E+01 1.55E+02 9.97E+01 3.29E-02 4.15E+02
Std 0 6.69E-02 2.49E-01 5.06E+00 2.35E+01 2.09E+01 1.35E-01 5.21E+01

f12 Mean 1.87E-01 4.97E-01 5.66E+00 1.31E+04 1.71E+05 1.58E+01 1.04E+00 5.64E+01
Std 4.56E-02 9.61E-02 2.19E+00 1.44E+04 2.08E+05 3.22E+00 7.04E-02 1.74E+02

f13 Mean 9.77E+00 9.08E+00 5.56E+01 3.99E+05 6.26E+06 8.17E+02 9.93E+00 1.01E+05
Std 2.91E-01 5.93E-01 1.95E+01 1.88E+05 2.59E+06 1.47E+03 4.60E-02 1.47E+05

Mean rank 1.07 2.76 4.53 6.23 7.53 5.84 2.61 5.38
Rank 1 3 4 7 8 6 2 5

 Evolutionary Intelligence

1 3

case where the value of � is 500. However, better explora-
tion can be obtained if the value of � increases from 500 to
1000 or 2000.

According to the results, a good balance between explora-
tion and exploitation is achieved when the value of � is 1000.
Considering the parameter b, Tables 12, 13 and 14 show
that the exploration performance of SCO degrades when
b decreases from 3 to 0.9 while the exploitation of SCO
improves. The best performance is achieved when the value
of b is 2.4. Overall, based on the Friedman mean rank, the
best performance of SCO is achieved when the value of � is
1000 and the value of b is 2.4.

4.5 Performance of SCO on the CEC 2019 suite

The performance of SCO on the CEC 2019 test suite is pre-
sented in Table 15. The results in Table 15 show that SCO
outperforms all algorithms on functions F1 , F2 , F5 , and F10 .
It is also clear from Table 15 that SCO achieves the opti-
mal solution on F1 while all other algorithms achieve poor

performance when solving the same function. The proposed
algorithm achieved competitive results on F3 and F8 that
allows it to be ranked second. The performance of SCO on
the rest of the CEC 2019 functions is close to the best perfor-
mance achieved by other algorithms as Table 15 illustrates.

4.6 Statistical significance analysis

The Friedman test as one of the most famous statistical tests
is used to statistically analyze the performance of SCO. The
principle of this test is to rank all compared approaches for
each problem individually. For each problem, the best, sec-
ond best, and third best algorithms are ranked as 1, 2, and 3
and so on. The performance of each algorithm is averaged
over all problems. In Friedman test,the best approach is the
one that achieves the lowest average rank. The Friedman test
results that provide the average rank for all algorithms con-
sidering all test functions in low and high dimensional cases
are shown in Table 16. As Table 16 illustrates, SCO achieves
the lowest average rank with a value of 1.4 demonstrating

Table 11 Results of average fitness of f
1
- f

13
 functions when D=200

Fun SCO EO GWO PSO SSA MA AOA GSA

f1 Mean 9.53E-301 5.18E-01 1.29E+03 2.46E+04 4.54E+04 1.69E+04 1.84E-11 2.89E+03
Std 0 3.53E-01 2.77E+02 2.93E+03 4.20E+03 3.36E+03 4.42E-11 8.08E+02

f2 Mean 6.31E-221 2.71E-01 2.69E+01 4.15E+02 2.35E+02 1.18E+02 1.28E-06 1.22E+01
Std 0 5.73E-02 2.90E+00 8.10E+01 1.10E+01 1.00E+01 1.68E-06 3.96E+00

f3 Mean 2.88E-167 7.98E+04 2.20E+05 2.96E+05 3.63E+05 1.38E+05 1.76E-04 6.33E+03
Std 0 3.99E+04 4.99E+04 7.53E+04 1.83E+05 4.63E+04 9.11E-04 3.77E+03

f4 Mean 2.62E-14 4.17E+01 5.88E+01 4.71E+01 3.64E+01 2.79E+01 2.37E-06 1.92E+01
Std 1.43E-13 7.81E+00 5.17E+00 2.63E+00 2.77E+00 2.65E+00 4.19E-06 2.44E+00

f5 Mean 1.98E+02 2.39E+02 1.90E+05 1.41E+07 2.21E+07 9.26E+05 1.98E+02 1.97E+05
Std 5.91E-02 3.30E+01 7.04E+04 2.74E+06 5.11E+06 2.85E+05 3.45E-02 1.38E+05

f6 Mean 3.35E+01 4.19E+01 1.29E+03 2.48E+04 4.56E+04 1.55E+04 4.75E+01 2.78E+03
Std 2.31E+00 1.50E+00 2.85E+02 2.84E+03 4.60E+03 3.00E+03 6.00E-01 6.64E+02

f7 Mean 5.05E-04 3.63E-02 1.26E+00 4.17E+01 6.95E+01 2.42E+01 3.17E-03 3.86E-01
Std 4.31E-04 1.72E-02 3.90E-01 8.65E+00 1.76E+01 8.11E+00 2.70E-03 2.04E-01

f8 Mean −3.52E+04 −2.33E+04 −2.28E+04 −2.68E+04 −1.93E+04 −1.39E+04 −9.21E+03 −2.54E+03
Std 2.98E+03 2.53E+03 4.25E+03 3.17E+03 2.08E+03 2.36E+03 1.46E+03 4.48E+02

f9 Mean 0 4.85E+00 7.39E+02 1.33E+03 1.51E+03 8.03E+02 1.78E-11 7.80E+01
Std 0 5.29E+00 7.72E+01 6.27E+01 8.35E+01 6.15E+01 4.16E-11 2.25E+01

f10 Mean 8.88E-16 5.83E-02 4.80E+00 1.26E+01 1.42E+01 1.18E+01 1.91E-07 8.14E+00
Std 0 1.69E-02 3.82E-01 4.04E-01 4.59E-01 5.57E-01 3.89E-07 1.03E+00

f11 Mean 0 1.85E-01 1.21E+01 2.31E+02 4.14E+02 2.71E+02 6.89E-03 4.16E+02
Std 0 1.08E-01 2.38E+00 1.96E+01 4.07E+01 4.57E+01 3.77E-02 5.40E+01

f12 Mean 3.23E-01 8.68E-01 2.16E+01 2.20E+06 2.29E+06 3.93E+01 1.11E+00 1.22E+03
Std 4.52E-02 1.25E-01 7.55E+00 1.16E+06 1.34E+06 1.62E+01 4.13E-02 5.75E+03

f13 Mean 1.99E+01 2.32E+01 1.38E+03 1.94E+07 2.61E+07 1.02E+05 1.99E+01 1.02E+05
Std 9.56E-02 2.13E+00 3.26E+03 7.59E+06 8.37E+06 8.19E+04 3.84E-02 1.52E+05

Mean rank 1.15 3.15 4.69 6.53 7.38 5.61 2.38 5.07
Rank 1 3 4 7 8 6 2 5

Evolutionary Intelligence

1 3

the superiority of the proposed approach. The second best
algorithm is EO, followed by AOA, GWO, MA, PSO, GSA
and SSA.

Wilcoxon rank-sum test is another prominent statistical
test that is widely used to validate the effectiveness of novel
metaheuristic algorithms. A pair-wise comparison between
SCO and the comparative algorithms at 0.05 significance
level is carried out. Table 17, Table 18, Table 19, and
Table 20 show the p-values of the Wilcoxon test for f1 − f23
(D=30 for f1 − f13), f1 − f23 (D=100), f1 − f23 (D=200), and
the ten CEC2019 test functions, respectively. From these
Tables, it is obvious that SCO is significantly better as com-
pared with the state-of-the-art algorithms.

4.7 Convergence behavior of SCO

One of the main problems faced by optimization algorithms
is convergence to local optima. To tackle this undesired
convergence behavior, it is essential to balance between
exploration and exploitation which in turns ensures conver-
gence to global optima. The balance between exploration
and exploitation in SCO is achieved by the implementation

of the two phases. Moreover, in the second phase, the param-
eter w is used to control the right amount of space to be
explored or exploited. A relatively high w value allows it to
perform extensive exploration while a low w value is needed
to exploit promising regions. As a result, w is set to have a
high value at the beginning of the search process to enable
efficient exploration and it is decreased as the number of
function evaluations increase in order to achieve successful
exploitation.

To provide a fair and concise comparison, the conver-
gence behaviour of the proposed algorithm is compared with
the best four existing algorithms, i.e, EO, GWO, AOA, and
PSO. The selection of these algorithms is based on their rank
as presented in Table 16. The convergence curves of SCO
and the best four existing algorithms for some unimodal,
multimodal and CEC 2019 functions are shown in Figure 1.
From Fig. 1, it is clear that SCO outperforms all algorithms.
The convergence behaviour of SCO on unimodal functions
(f1 , f3 , f4 , f6 and f7) shows the superiority of SCO to rap-
idly exploit promising regions. From the same figure, it is
evident that SCO requires only a few function evaluations to
reach near optimal solutions while other algorithms require

Table 12 Statistical results of case 1 when � is 500 and b varies from 3 to 0.9

Fun b=3 b=2.7 b=2.4 b=2.1 b=1.8 b=1.5 b=1.2 b=0.9

f1 Mean 0 7.01E-292 2.43E-287 4.72E-264 2.04E-222 5.15E-205 1.89E-167 3.10E-138
Std 0 0 0 0 0 0 0 1.69E-137

f3 Mean 5.18E-197 8.65E-122 3.51E-135 2.35E-160 2.11E-108 7.79E-09 7.94E-47 1.29E-71
Std 0 4.73E-121 1.79E-134 1.28E-159 1.15E-107 4.26E-08 4.35E-46 7.08E-71

f5 Mean 2.86E+01 2.85E+01 2.88E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01
Std 9.46E-02 1.54E-01 1.25E-01 4.06E-02 3.97E-02 9.74E-02 7.28E-02 9.06E-02

f7 Mean 5.01E-04 8.82E-04 8.20E-04 8.31E-04 1.41E-03 1.32E-03 9.32E-04 1.28E-03
Std 4.32E-04 9.29E-04 6.72E-04 1.27E-03 1.40E-03 8.34E-04 9.60E-04 1.39E-03

f9 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f11 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f13 Mean 1.97E+00 1.69E+00 1.59E+00 2.20E+00 2.78E+00 2.82E+00 2.87E+00 2.88E+00
Std 5.82E-01 6.66E-01 5.08E-01 4.53E-01 2.45E-01 2.89E-01 2.52E-01 1.56E-01

f15 Mean 1.85E-02 6.74E-03 1.34E-02 1.07E-02 6.34E-03 5.97E-03 1.09E-02 6.99E-03
Std 3.92E-02 2.27E-02 2.87E-02 2.31E-02 2.00E-02 9.24E-03 2.20E-02 1.29E-02

f17 Mean 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.98E-01 3.98E-01 3.98E-01
Std 0 4.38E-13 3.35E-08 1.23E-05 1.02E-04 5.01E-04 5.69E-04 7.19E-04

f19 Mean −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00
Std 8.22E-05 2.66E-05 7.23E-05 4.48E-04 1.17E-03 7.46E-04 8.34E-04 8.20E-04

f21 Mean −8.80E+00 −9.98E+00 −9.81E+00 −9.64E+00 −9.85E+00 −9.97E+00 −9.45E+00 −9.74E+00
Std 2.54E+00 9.22E-01 1.29E+00 1.54E+00 1.36E+00 1.28E-01 1.86E+00 2.92E-01

f23 Mean −9.28E+00 −8.87E+00 −9.04E+00 −8.89E+00 −9.26E+00 −9.54E+00 −9.43E+00 −9.59E+00
Std 2.87E+00 3.10E+00 3.06E+00 3.33E+00 2.82E+00 2.41E+00 2.34E+00 1.93E+00

Mean rank 2.75 2.50 3.08 4.00 4.66 4.16 5.25 4.91
Rank 2 1 3 4 6 5 8 7

 Evolutionary Intelligence

1 3

higher numbers of function evaluations. For instance, SCO
requires only 199 function evaluations to achieve a value
of 10−10 (a near-optimal value) when solving f1 while all
other algorithms are not able to reach this value with 3000
function evaluations except AOA that requires 1553 func-
tion evaluations. This demonstrates the efficient convergence
behaviour of SCO when dealing with unimodal functions.

Similarly, SCO has shown its ability to escape from local
optima quickly as illustrated in Fig. 1 (f9 , f10 , f11 , f21). Fig-
ure 1 also shows that SCO is a fast optimization algorithm.
Overall, the convergence curves shown in Fig. 1 illustrate
the superiority of SCO in terms of convergence speed when
it is used to solve different kind of optimization problems.

5 Engineering problems

The proposed algorithm is tested on four widely used real-
world engineering problems in order to further validate its
effectiveness. Real-world optimization problems usually
have a number of constraints that must be satisfied. The pres-
ence of constraints divides particles or candidate solutions

into two groups: valid and invalid candidate solutions. A
valid candidate solution is a one that can satisfy all con-
straints whereas a candidate solution that violates one or
more constraints is invalid. To penalize an invalid candidate
solution in minimization problems, its fitness is assigned a
large value, for example 109 . For all engineering problems,
the parameter setting of all algorithms are the same param-
eters presented in Table 6 except that the maximum number
of function evaluations is 15000. The following presents the
engineering problems and the obtained results for all com-
pared algorithms while their mathematical formulations are
provided in [9, 74].

5.1 Welded beam design (WBD)

Welded beam design is one of the most well-known real-
world engineering problems that serves as a benchmark to
validate the effectiveness of meta-heuristic algorithms. This
problem aims to minimize the fabrication cost when design-
ing a welded beam. The welded beam design problem has
four variables and five constraints as shown in Appendix A.

Table 13 Statistical results of case 2 when � is 1000 and b varies from 3 to 0.9

Fun b=3 b=2.7 b=2.4 b=2.1 b=1.8 b=1.5 b=1.2 b=0.9

f1 Mean 0 0 0 0 3.39E-319 5.15E-291 1.28E-250 2.37E-195
Std 0 0 0 0 0 0 0 0

f3 Mean 9.61E-237 1.17E-213 7.94E-123 1.13E-124 6.24E-173 1.91E-58 9.67E-148 3.72E-94
Std 0 0 4.35E-122 6.19E-124 0 1.04E-57 5.29E-147 2.03E-93

f5 Mean 2.86E+01 2.85E+01 2.85E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01
Std 9.11E-02 1.61E-01 9.48E-02 5.20E-02 4.46E-02 6.99E-02 5.15E-02 7.78E-02

f7 Mean 5.94E-04 4.77E-04 2.87E-04 8.19E-04 1.04E-03 8.15E-04 7.10E-04 9.32E-04
Std 7.76E-04 5.91E-04 2.69E-04 5.96E-04 8.34E-04 6.59E-04 8.39E-04 8.56E-04

f9 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f11 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f13 Mean 1.91E+00 1.73E+00 1.45E+00 2.25E+00 2.76E+00 2.84E+00 2.93E+00 2.88E+00
Std 5.19E-01 5.25E-01 5.91E-01 4.93E-01 2.79E-01 3.16E-01 1.20E-01 2.04E-01

f15 Mean 1.90E-02 1.85E-02 4.53E-03 8.81E-03 9.92E-03 1.05E-02 1.07E-02 7.75E-03
Std 3.87E-02 3.22E-02 1.15E-02 2.37E-02 1.73E-02 2.28E-02 2.60E-02 1.32E-02

f17 Mean 3.97E-01 3.97E-01 3.97E-01 3.97E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
Std 0 3.69E-13 6.00E-08 1.94E-05 1.88E-04 3.80E-04 8.23E-04 6.59E-04

f19 Mean −3.76E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00
Std 5.22E-01 2.54E-05 6.99E-05 7.39E-04 2.47E-03 3.06E-03 2.17E-03 3.18E-03

f21 Mean −7.94E+00 −8.79E+00 −9.47E+00 −9.38E+00 −9.92E+00 −9.76E+00 −9.31E+00 −9.41E+00
Std 2.56E+00 2.29E+00 1.76E+00 2.00E+00 9.13E-01 9.16E-01 1.84E+00 1.37E+00

f23 Mean −7.92E+00 −8.45E+00 −9.54E+00 −9.55E+00 −1.02E+01 −9.09E+00 −9.61E+00 −9.03E+00
Std 2.88E+00 3.09E+00 2.28E+00 2.57E+00 1.47E+00 2.87E+00 2.09E+00 2.59E+00

Mean rank 3.83 2.83 2.16 3.50 3.50 4.50 4.75 4.75
Rank 5 2 1 3 4 6 7 8

Evolutionary Intelligence

1 3

Table 21 shows the best solutions obtained by all compared
algorithms including the best variables and the best fitness. From
Table 21, it is clear that SCO provides the best fitness besides
EO, PSO, MA, and AOA. It is also evident from Table 21 that
SCO requires fewer number of function evaluations.

The statistical results of all algorithms for the welded
beam design problem are presented in Table 22.

5.2 Speed reducer design problem (SRD)

SRD deals with designing a speed reducer for small aircraft
engine with the objective of minimizing the weight of the
speed reducer. As shown in Appendix B [75], the number of
constraints and variables of the SRD minimization problem
are 11 and 7, respectively. Table 23 shows the best obtained
solutions in terms of best variables, best weight, and the
number of function evaluations for the proposed and the
state-of-the-art algorithms. From Table 23, it is shown that
SCO outperforms GWO, SSA and GSA algorithms in terms
of the best obtained weight while it achieves the same per-
formance as EO, PSO, MA and AOA. The statistical results
of all compared algorithms are presented in Table 24.

5.3 Pressure vessel design problem (PVD)

The main aim of the PVD problem is to minimize the total
cost when designing a pressure vessel. As shown in Appen-
dix C, four constrains must be satisfied to solve the PVD
problem while four variables are involved to compute the
objective function. The best achieved solutions and the sta-
tistical results of all algorithms are presented in Tables 25
and 26, respectively. The results in Table 25 demonstrates
the superiority of SCO in terms of achieving the best cost.
Moreover, SCO requires fewer number of function evalua-
tions to achieve better cost compared with other algorithms.

5.4 Tension/compression spring design problem
(TSDP)

TSDP involves designing a tension/compression spring
where the main objective is to minimize weight. The TSDP
problem contains 3 variables and 4 constraints as illus-
trated in Appendix D. Table 27 compares the performance
of all compared algorithms in terms of best achieved vari-
ables, best achieved solution, and the number of function

Table 14 Statistical results of case 3 when � is 2000 and b varies from 3 to 0.9

Fun b=3 b=2.7 b=2.4 b=2.1 b=1.8 b=1.5 b=1.2 b=0.9

f1 Mean 0 0 0 0 0 0 3.57E-319 5.32E-291
Std 0 0 0 0 0 0 0 0

f3 Mean 1.96E-239 1.21E-290 2.11E-159 4.15E-240 2.20E-157 7.73E-109 1.49E-177 6.47E-149
Std 0 0 1.15E-158 0 1.20E-156 4.23E-108 0 3.32E-148

f5 Mean 2.86E+01 2.86E+01 2.88E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01 2.89E+01
Std 1.12E-01 1.25E-01 8.36E-02 3.56E-02 6.56E-02 7.99E-02 3.91E-02 6.10E-02

f7 Mean 3.56E-04 2.19E-04 4.37E-04 3.50E-04 6.42E-04 4.71E-04 4.63E-04 5.11E-04
Std 4.36E-04 2.17E-04 4.03E-04 3.33E-04 5.90E-04 4.61E-04 4.78E-04 5.12E-04

f9 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f11 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0

f13 Mean 2.93E+00 2.44E+00 1.68E+00 2.24E+00 2.86E+00 2.92E+00 2.96E+00 2.94E+00
Std 3.86E-02 4.22E-01 5.55E-01 4.70E-01 2.93E-01 2.72E-01 1.41E-01 7.76E-02

f15 Mean 5.26E-02 1.80E-02 3.37E-02 1.83E-02 8.86E-03 1.16E-02 1.59E-02 1.42E-02
Std 4.97E-02 3.60E-02 4.87E-02 3.97E-02 2.21E-02 2.42E-02 3.39E-02 2.71E-02

f17 Mean 4.1E+00 1.26E+00 3.97E-01 3.97E-01 3.98E-01 3.98E-01 3.99E-01 3.99E-01
Std 2.20E+00 1.05E+00 9.30E-08 2.12E-05 3.20E-04 1.43E-03 3.03E-03 3.68E-03

f19 Mean −3.41E+00 −3.00E+00 −3.09E+00 −3.67E+00 −3.00E+00 −3.76E+00 −3.85E+00 −3.85E+00
Std 1.09E+00 1.33E+00 1.28E+00 7.25E-01 1.33E+00 5.21E-01 4.53E-03 6.29E-03

f21 Mean −9.42E-01 −5.04E+00 −5.05E+00 −5.05E+00 −5.02E+00 −8.45E+00 −9.42E+00 −9.01E+00
Std 1.38E+00 3.11E-02 4.58E-06 1.92E-03 3.64E-02 2.16E+00 5.99E-01 9.37E-01

f23 Mean −1.36E+00 −5.08E+00 −5.12E+00 −5.03E+00 −6.17E+00 −8.92E+00 −8.55E+00 −8.12E+00
Std 1.70E+00 1.68E-01 3.74E-06 4.93E-01 2.16E+00 2.03E+00 2.45E+00 2.21E+00

Mean rank 4.50 3.33 3.25 3.33 4.16 3.25 3.66 3.75
Rank 8 3 1 4 7 2 5 6

 Evolutionary Intelligence

1 3

evaluations required to reach the value of the best weight.
It is clear from Table 27 that SCO achieves the best solu-
tion with requiring only 1445 function evaluations while
other algorithms require more than 4170 function evalua-
tions (Table 28).

SCO has achieved significant and remarkable optimiza-
tion improvements because it implements a unique set of
equations that can effectively update the position of the can-
didate solution throughout the entire optimization process.
The proposed unique set of updating equations allows SCO
to extensively explore the search space in the early stages
of the SCO optimization process. In this exploration phase,
SCO updates its position based on an equation that allows
the candidate solution to visit as many new locations as pos-
sible. In other words, SCO broadly yet effectively explores
the search space to discover places where the optimal solu-
tion might be found.

The integration of SCO with the two-phase strategy
has shown its effectiveness in balancing exploration and

exploitation. According to the results, when SCO per-
forms 500 function evaluations only during the exploration
phase and 2500 function evaluations for exploitation, SCO
achieves promising exploitation performances. However,
the exploration performance of SCO degrades. This hap-
pens because SCO did not spend enough time to explore the
space. As a result, SCO skips some regions where the opti-
mal solution might be located. On the other hand, increasing
the number of function evaluations from 500 to 1000 for the
exploration phase has demonstrated that SCO performs well
on unimodal and multimodal functions. This happens as a
result of giving SCO enough time for exploration without
affecting the exploitation process as SCO still spends two-
thirds of the optimization process searching around the dis-
covered promising areas. Overall, the best SCO performance
is achieved when one-third of the optimization process is
dedicated for exploration while the remaining SCO process
focuses on exploitation.

Table 15 Results of average fitness of CEC 2019 benchmarking functions

Fun SCO EO GWO PSO SSA MA AOA GSA

F1 Mean 1 1.29E+05 9.79E+05 1.33E+06 6.03E+06 1.63E+07 1.60E+01 1.88E+09
Std 8.00E-05 3.23E+05 1.90E+06 1.04E+06 5.05E+06 1.73E+07 6.38E+01 8.34E+08

F2 Mean 4.97E+00 5.64E+02 1.42E+03 1.37E+03 3.40E+03 2.88E+03 6.77E+00 3.28E+04
Std 6.06E-01 4.48E+02 6.12E+02 6.52E+02 1.56E+03 1.16E+03 9.56E+00 9.77E+03

F3 Mean 4.29E+00 4.37E+00 5.2779E+00 5.22E+00 6.19E+00 2.52E+00 6.45E+00 8.48E+00
Std 1.56E+00 1.53E+00 2.85E+00 2.19E+00 1.88E+00 1.81E+00 1.14E+00 1.36E+00

F4 Mean 4.25E+01 1.91E+01 2.81E+01 3.12E+01 4.28E+01 2.63E+01 7.69E+01 1.11E+02
Std 2.30E+01 8.07E+00 1.59E+01 1.03E+01 2.34E+01 8.57E+00 1.27E+01 1.68E+01

F5 Mean 1.14E+00 1.23E+00 2.79E+00 1.29E+00 1.22E+00 1.45E+00 5.43E+01 1.20E+02
Std 9.60E-02 1.31E-01 2.20E+00 2.42E-01 1.23E-01 5.00E-01 1.89E+01 3.10E+01

F6 Mean 6.17E+00 2.13E+00 3.94E+00 2.69E+00 7.36E+00 6.27E+00 9.15E+00 1.23E+01
Std 1.67E+00 7.63E-01 1.48E+00 1.31E+00 1.68E+00 1.23E+00 1.04E+00 9.23E-01

F7 Mean 1.14E+03 9.03E+02 1.20E+03 8.99E+02 1.24E+03 1.19E+03 1.79E+03 2.39E+03
Std 3.81E+02 3.12E+02 5.06E+02 3.01E+02 3.01E+02 3.76E+02 2.09E+02 2.85E+02

F8 Mean 4.32E+00 4.12E+00 4.33E+00 4.43E+00 4.61E+00 4.84E+00 4.69E+00 5.38E+00
Std 4.80E-01 4.27E-01 3.06E-01 3.67E-01 4.02E-01 2.63E-01 2.58E-01 1.44E-01

F9 Mean 1.37E+00 1.22E+00 1.32E+00 1.26E+00 1.48E+00 1.24E+00 3.12E+00 4.27E+00
Std 1.29E-01 7.26E-02 1.32E-01 7.83E-02 1.93E-01 1.22E-01 5.56E-01 6.57E-01

F10 Mean 2.03E+01 2.16E+01 2.16E+01 2.15E+01 2.10E+01 2.14E+01 2.14E+01 2.11E+01
Std 3.28E+00 1.10E-01 1.14E-01 1.53E-01 1.04E-01 6.13E-01 2.95E-01 2.02E-01

Mean rank 2.50 2.60 4.50 3.70 5.20 4.30 5.70 7.50
Rank 1 2 5 3 6 4 7 8

Table 16 Friedman test result SCO EO GWO PSO SSA MA AOA GSA

Mean Rank 1.40 2.61 4.07 5.17 6.36 4.96 3.54 6.17
Rank 1 2 4 6 8 5 3 7

Evolutionary Intelligence

1 3

Table 17 The p-values of a
pair-wise comparison between
SCO and the other comparative
algorithms at 0.05 significance
level for f

1
− f

13
 when D=30

and f
14
− f

23

Bold face show the p-values that are higher than 0.05. ‘ + ’, ‘ ≈ ’, and ‘−’ show when SCO achieves sig-
nificant improvements, statically similar performances, and achieves significant degradation compared with
other algorithms, respectively

Fun EO GWO PSO SSA MA AOA GSA

f1 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f2 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f3 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11 1.6179E-11
f4 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f5 1.2870E-09 4.6159E-10 3.0199E-11 3.0199E-11 3.0199E-11 1.9073E-01 3.0199E-11
f6 3.3384E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0180E-11
f7 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 1.3289E-10 3.0199E-11
f8 2.8314E-08 3.0199E-11 6.0658E-11 1.2057E-10 3.0199E-11 3.0199E-11 3.0199E-11
f9 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 5.6375E-09 1.2118E-12
f10 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f11 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.6435E-11 1.2118E-12
f12 1.3272E-02 2.1544E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f13 8.1975E-07 1.7290E-06 3.0199E-11 3.0199E-11 3.0199E-11 3.6897E-11 3.0199E-11
f14 5.0572E-06 7.3846E-11 1.0804E-08 5.7338E-02 9.9186E-11 2.0152E-08 3.0199E-11
f15 2.7071E-01 7.8446E-01 6.5671E-02 1.4128E-01 1.3562E-07 4.7335E-01 1.3594E-07
f16 2.3638E-12 5.0922E-08 3.1578E-12 3.0199E-11 1.2455E-11 3.0199E-11 1.6865E-10
f17 1.2118E-12 3.0199E-11 1.2118E-12 3.0066E-11 1.2118E-12 3.0199E-11 1.2384E-09
f18 2.9654E-11 6.6955E-11 5.5392E-10 3.0199E-11 2.9580E-11 3.0199E-11 3.0066E-11
f19 4.3543E-10 2.8314E-08 1.6933E-11 2.0523E-03 1.2455E-11 3.0199E-11 4.1997E-10
f20 7.3940E-01 8.3520E-08 7.6588E-05 4.8252E-01 1.1706E-05 4.0772E-11 1.3242E-02
f21 8.8830E-01 1.7294E-07 2.8389E-04 4.8252E-03 9.5853E-03 4.1825E-09 1.8515E-03
f22 3.0339E-03 6.5261E-07 2.9047E-02 2.7071E-02 2.8789E-03 1.1023E-08 1.2643E-03
f23 5.2978E-03 2.4913E-06 2.3985E-03 5.7460E-02 8.7607E-01 2.6015E-08 1.3954E-03
+ 18 22 19 20 18 22 21
≈ 0 0 0 0 0 0 0
– 5 1 4 3 5 1 2

Table 18 The p-values of a
pair-wise comparison between
SCO and the other comparative
algorithms at 0.05 significance
level for f

1
− f

13
 when D=100

Bold face show the p-values that are higher than 0.05

Fun EO GWO PSO SSA MA AOA GSA

f1 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f2 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f3 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11 2.8646E-11
f4 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f5 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 1.0315E-02 3.0199E-11
f6 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f7 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 9.0632E-08 3.0199E-11
f8 2.3715E-10 3.3384E-11 1.1737E-09 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f9 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 5.7786E-09 1.2118E-12
f10 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f11 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f12 3.6897E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f13 3.3242E-06 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 8.0727E-01 3.0199E-11
+ 12 13 13 13 13 13 13
≈ 0 0 0 0 0 0 0
– 1 0 0 0 0 0 0

 Evolutionary Intelligence

1 3

SCO does not only avoid local optima entrapment, it
also implements the escape from local optima strategy
to smoothly switch from exploration into exploitation in
case SCO is stagnated. The integration of SCO and this
strategy can help to enhance the performance particu-
larly for problems that have many local optima as results
have shown. In addition, the exploration and exploitation
abilities of SCO heavily relies on the parameter w. This
parameter can help to balance exploration and exploi-
tation if its values during the iterative SCO process is
chosen properly. The parameter w should have a rela-
tively high value at the beginning of the SCO process to

promote exploration. As the number of function evalua-
tions increase, the value of w should decrease to strength
the exploitation abilities.

To summarize, the proposed unique set of updating
equations, the two-phase strategy, the escape from local
optima strategy, and the parameter w are the main con-
tributors that have supported SCO to achieve promising
results.

One of the main strengths of SCO is its strong explora-
tion abilities that is achieved by effectively updating the
position of the candidate solution. In addition, SCO starts
a deep exploitation search after an extensive exploration

Table 19 The p-values of a
pair-wise comparison between
SCO and the other comparative
algorithms at 0.05 significance
level for f

1
− f

13
 when D=200

Fun EO GWO PSO SSA MA AOA GSA

f1 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12 4.1110E-12
f2 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f3 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11 3.0010E-11
f4 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f5 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.6439E-02 3.0199E-11
f6 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0180E-11
f7 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 2.9215E-09 3.0199E-11
f8 3.0199E-11 3.0199E-11 5.5727E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f9 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.9254E-09 1.2118E-12
f10 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f11 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
f12 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11
f13 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 2.4327E-05 3.0199E-11
+ 13 13 13 13 13 11 13
≈ 0 0 0 0 0 0 0
– 0 0 0 0 0 2 0

Table 20 The p-values of a
pair-wise comparison between
SCO and the other comparative
algorithms at 0.05 significance
level for the CEC2019 test
functions

Bold face show the p-values that are higher than 0.05

Fun EO GWO PSO SSA MA AOA GSA

F1 3.8202E-10 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 1.4085E-07 3.0199E-11
F2 2.9822E-11 2.9822E-11 2.9822E-11 2.9822E-11 2.9822E-11 9.1168E-01 2.9822E-11
F3 9.8231E-01 3.1830E-02 9.3341E-02 1.7836E-04 1.0407E-04 1.1937E-06 1.7769E-10
F4 3.0103E-07 7.9590E-03 9.9258E-03 8.8830E-01 1.1738E-03 4.8011E-07 1.4643E-10
F5 4.0330E-03 3.0199E-11 1.3272E-02 1.0315E-02 7.2951E-04 3.0199E-11 3.0199E-11
F6 4.5043E-11 3.3242E-06 8.8910E-10 7.2884E-03 3.6322E-01 3.6459E-08 3.0199E-11
F7 2.6077E-02 8.5338E-01 1.6955E-02 4.1191E-02 4.8252E-02 4.5726E-09 4.0772E-11
F8 8.5000E-02 9.7052E-01 2.8378E-02 2.8129E-02 1.0188E-05 1.0576E-03 4.0772E-11
F9 2.6784E-06 7.4827E-02 3.7704E-04 2.4157E-02 3.3679E-04 6.0658E-11 3.0199E-11
F10 3.0199E-11 3.0199E-11 3.0199E-11 5.5999E-07 4.5726E-09 5.0723E-10 1.5178E-03
+ 5 7 6 10 7 10 10
≈ 0 0 0 0 0 0 0
– 5 3 4 0 3 0 0

Evolutionary Intelligence

1 3

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Convergence curves for some benchmarking functions

 Evolutionary Intelligence

1 3

Table 21 Best results of the
comparative algorithms for the
welded beam design problem

Algorithm x
1

x
2

x
3

x
4

Optimal cost FEs

SCO 0.1988 3.3374 9.1921 0.1988 1.6702 7502
EO 0.1988 3.3374 9.1920 0.1988 1.6702 9660
GWO 0.1981 3.3490 9.2019 0.1988 1.6720 14910
PSO 0.1988 3.3374 9.1920 0.1988 1.6702 11070
SSA 0.1909 3.4946 9.1920 0.1988 1.6789 13320
MA 0.1988 3.3374 9.1922 0.1988 1.6702 14610
AOA 0.1988 3.3374 9.1920 0.1988 1.6702 8820
GSA 0.1762 3.6965 9.6205 0.1969 1.7396 10620

Table 22 Statistical results of the comparative algorithms for the welded beam design problem

Algorithm Mean Best Worst Std

SCO 1.7407 1.6702 2.1182 0.0888
EO 1.6720 1.6702 1.6875 0.0042
GWO 1.6764 1.6720 1.6863 0.0036
PSO 1.6754 1.6702 1.8100 0.0255
SSA 1.8305 1.6789 2.2434 0.1472
MA 1.6744 1.6702 1.7316 0.0118
AOA 1.6915 1.6702 1.8235 0.0354
GSA 2.3702 1.7396 3.1031 0.3133

Table 23 Best results of the
comparative algorithms for the
speed reducer problem

Algorithm x
1

x
2

x
3

x
4

x
5

x
6

x
7

Optimal weight FEs

SCO 3.5000 0.7000 17.0000 7.3018 7.7153 3.3505 5.2867 2994.4 7203
EO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 6720
GWO 3.5012 0.7000 17.0036 7.3527 7.8575 3.3542 5.2919 3003.4 15000
PSO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 10080
SSA 3.5044 0.7000 17.0000 7.3018 7.8773 3.3531 5.2867 3000.4 12720
MA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 9870
AOA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3505 5.2867 2994.4 7410
GSA 3.5266 0.7052 18.1755 8.2003 7.8907 3.5628 5.3968 3384.4 6510

Table 24 Statistical results of the comparative algorithms for the speed reducer problem

Algorithm Mean Best Worst Std

SCO 2995.8 2994.4 2999.3 1.0883
EO 2995.9 2994.4 3007.4 3.9136
GWO 3416.8 3003.4 5238 705.2673
PSO 3026.6 2994.4 3149.3 31.4321
SSA 3038.4 3000.4 3115.6 24.2014
MA 13334 2994.4 1.0000e+09 3.4574e+08
AOA 3000.3 2994.4 3034.6 8.6124
GSA 4287.3 3384.4 5598.8 653.4043

Evolutionary Intelligence

1 3

search is performed. SCO also have a higher potential to
avoid local optimum. However, it might be stuck at local
optima. SCO can tackle this problem by the implementa-
tion of the escape from local optima strategy which allows
SCO to smoothly switch from the exploitation process into
an exploration mission. In terms of computational com-
plexity, SCO has lower complexity compared with swarm
algorithms as shown in (9). Moreover, SCO does not require
a massive number of function evaluations to achieve good
performances. In this work, only 3000 function evaluations
are needed to produce optimal and near-optimal solutions.

Although SCO has shown superior performances on
most of the investigated unconstrained and constrained
problems, it still suffers from two main limitations. Simi-
lar to swarm algorithms, SCO replaces the entire global
best position once a new candidate solution can achieve
a better fitness even if a few dimensions of the newly
candidate solution obtained at iteration tare worse than
their corresponding dimensions of the global best position
found at iteration t − 1 . In some cases, combining the best
dimensions (not necessarily all) of the candidate solution
at iteration t and the best dimensions of the candidate
solutions at iteration t − 1 might generate a new candidate
solution that can achieve a better fitness compared with
the fitness of the best candidate solution found so far.
This combination has been investigated in [76] for PSO
and its implementation has shown significant improve-
ments. However, the approach in [76] is computationally
expensive. Therefore, it is needed to develop new meth-
ods to tackle this issue for SCO and swarm algorithms.
Another limitation of SCO is that careful selections of
the parameters b and � are required to achieve the best
performances.

6 Conclusions and future research

This paper proposes a novel optimization algorithm called
Single Candidate Optimizer (SCO) that implements a
unique set of equations to effectively update the position
of the candidate solution. To balance between exploration

Table 25 Best results of the
comparative algorithms for the
pressure vessel design problem

Algorithm x
1

x
2

x
3

x
4

Optimal cost FEs

SCO 0.7784 0.3848 40.3323 199.8267 5885.8 8644
EO 0.8163 0.4035 42.2963 174.1997 5953.8 9690
GWO 0.7823 0.3896 40.5307 197.0943 5901.3 15000
PSO 0.7909 0.3909 40.9773 191.0422 5903.4 11280
SSA 0.7876 0.3893 40.8104 196.3365 5968.9 14220
MA 0.8196 0.4051 42.4661 172.1333 5960.1 8340
AOA 0.7801 0.3856 40.4173 198.6448 5888.6 8250
GSA 1.7248 0.8526 89.3684 69.5338 24708 8370

Table 26 Statistical results of the comparative algorithms for the
pressure vessel design problem

Algorithm Mean Best Worst Std

SCO 6534.0 5885.8 7299.0 505.5225
EO 6607.2 5953.8 7319 522.7266
GWO 6075.8 5901.3 7263.1 335.0595
PSO 6346.8 5907.4 7319.0 386.8015
SSA 9430.1 5968.9 71768 11908
MA 6320.9 5960.1 6914.6 278.9480
AOA 6513.6 5888.6 7319 516.5846
GSA 2.2155E+05 2.4708E+04 4.9272E+05 1.0874E+05

Table 27 Best results of the comparative algorithms for the tension/
compression spring design problem

Algorithm x
1

x
2

x
3

Optimal weight FEs

SCO 0.0530 0.3885 9.6450 0.0127 1445
EO 0.0550 0.4427 7.5922 0.0129 4170
GWO 0.0527 0.3827 9.9155 0.0127 14610
PSO 0.0505 0.3286 13.1501 0.0127 4350
SSA 0.0521 0.3663 10.7795 0.0127 8040
MA 0.0516 0.3552 11.3775 0.0127 4440
AOA 0.0527 0.3827 9.9138 0.0127 5280
GSA 0.0567 0.4732 7.7796 0.0149 2580

Table 28 Statistical results of the comparative algorithms for the ten-
sion/compression spring design problem

Algorithm Mean Best Worst Std

SCO 0.0159 0.0127 0.0178 0.0017
EO 0.0138 0.0129 0.0178 0.0011
GWO 0.0129 0.0127 0.0136 0.0002
PSO 0.0136 0.0127 0.0177 0.0011
SSA 0.0143 0.0127 0.0220 0.0026
MA 0.0131 0.0127 0.0178 0.0009
AOA 0.0133 0.0127 0.0172 0.0010
GSA 0.0235 0.0149 0.0406 0.0070

 Evolutionary Intelligence

1 3

and exploitation, the two-phase strategy is applied where
the candidate solution updates its position differently eat
each phase. SCO also implements a escape from local
optima strategy which permits the candidate solution to
shift from an exploitation mode into an exploration mode
in the second phase of SCO. The integration of SCO with
the two-phase strategy and the escape from local opti-
mum method allows the candidate solution to explore and
exploit the search space well. The effectiveness of SCO is
validated by testing it on thirty-three classical benchmark-
ing functions and four real-world engineering problems.
The performance of SCO is compared with 7 well-known
and recent optimization algorithms including PSO, GWO,
EO and AOA. Results of unimodal and multimodal func-
tions have demonstrated that SCO can effectively explore
the search space in the first phase and it then switches to
the second phase to perform deep exploitation. Moreover,
SCO has shown that it can avoid and escape from local
optima particularly when it solves functions with multiple
optima. For most of the studied problems, results have
shown that SCO can achieve optimal and near-optimal
solutions and its performance is significantly better than
other algorithms in terms of solution accuracy and con-
vergence speed. According to the results, the best SCO
performance is achieved when it spends one-third of the
optimization process exploring the search space while
the remaining SCO process focuses on exploitation. In
addition, it has been demonstrated that the computational
complexity of SCO is lower than the complexity of swarm
algorithms. Another advantage of SCO is that it does
not require massive number of functions evaluations to
achieve significant performances. This work has shown
that single-solution-based algorithms can outperform
population-based algorithms if designed well.

Further work is needed to further improve the perfor-
mance of single-solution-based algorithms. The following
present some potential research directions that can further
improve the performance of SCO:

• SCO can be hybridized with other algorithms such as
PSO, GWO and EO.

• A new version of SCO can be developed to solve multi-
objective problems.

• A binary version of SCO can be developed to solve
binary problems such as the problem of feature selection.

• SCO can be applied to solve a wide range of real-world
optimization problems such as lot-sizing optimization
[77, 78], data clustering [79], optimizing the hyper-
parameters of convolutional neural networks [80],
designing supply-chain network [81], and maintenance
scheduling [82].

• SCO can be integrated with chaotic maps and levy flight
random walk [83].

• SCO be applied to solve well-known constrained opti-
mization problems such as cantilever beam design and
three-bar truss design.

Appendix A: Welded beam design problem

minx f (x) = 1.10471x2
1
x2 + 0.04811x3x4

�

14 + x2
�

s.t. g1(x) = �(x) − �max ≤ 0

g2(x) = �(x) − �max ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = 0.10471x2
1
+ 0.04811x3x4

�

14 + x2
�

− 5 ≤ 0

g5(x) = 0.125 − x1 ≤ 0

g6(x) = �(x) − �max ≤ 0

g7(x) = P − Pc(x) ≤ 0

range 0.1 ≤ xi ≤ 2 i = 1, 4

0.1 ≤ xi ≤ 10 i = 2, 3

where �(x) =

�

(��)2 + 2�����
x2

2R
+ (���)2

�� =
P

√

2x1x2
, ��� =

MR

J

M = P
�

L +
x2

2

�

R =

�

x2
2

4
+

�

x1+x3

2

�2

J = 2

�

√

2x1x2

�

x2
2

12
+

�

x1+x3

2

�2
��

�(x) =
6PL

x4x
2
3

, �(x) =
4PL3

Ex3
3
x4

Pc(x) =
4.013E

�

x2
3
x6
4

36

L2

�

1 −
x3

2L

�

E

4G

�

�max = 13600psi �max = 30000psi

�max = 0.25in, P = 6000lb

E = 30 × 106psi, L = 14in

G = 12 × 106psi

Evolutionary Intelligence

1 3

Appendix B: Speed reducer design problem

Appendix C: Pressure vessel design problem

minx f (x) = 0.7854x1x
2
2

(

3.3333x2
3
+ 14.9334x3

− 43.0934 − 1.508x1
(

x2
6
+ x2

7

)

+ 7.4777
(

x3
6
+ x3

7

)

+ 0.7854
(

x4x
2
6
+ x5x

2
7

)

s.t. g1(x) =
27

x1x
2
2
x3
− 1 ≤ 0

g2(x) =
397.5

x1x
2
2
x3
− 1 ≤ 0

g3(x) =
1.93x3

4

x2x
4
6
x3
− 1 ≤ 0

g4(x) =
1.93x3

5

x2x
4
7
x3
− 1 ≤ 0

g5(x) =

√

(

745x4

x2x3

)2

+16.9×106

110x3
6

− 1 ≤ 0

g6(x) =

√

(

745x5

x2x3

)2

+157.5×106

85x3
7

− 1 ≤ 0

g7(x) =
x2x3

40
− 1 ≤ 0

g8(x) =
5x2

x1
− 1 ≤ 0

g9(x) =
x1

12x2
− 1 ≤ 0

g10(x) =
1.5x6+1.9

x4
− 1 ≤ 0

g11(x) =
1.1x7+1.9

x5
− 1 ≤ 0

range 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8

17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5

min
x

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4

19.84x2
1
x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = x4 − 240 ≤ 0

g4(x) = −�x2
3
x4 −

4

3
�x3

3
+ 1296000 ≤ 0

range 0 ≤ xi ≤ 100, i = 1, 2

10 ≤ xi ≤ 200, i = 3, 4

Appendix D: Tension/compression spring
design problem

Funding Not applicable.

Availability of data and materials My manuscript has no associated
data.

Declaration

Conflict of interest The authors declare that they have no financial or
personal relationships related to this work.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

min
x

f (x) = x2
1
x2
(

x3 + 2
)

s.t. g1(x) =
x1 + x2

1.5
− 1 ≤ 0

g2(x) = 1 −
x3
2
x3

71785x4
1

≤ 0

g3(x) =
4x2

2
− x1x2

12566
(

x2x
3
1
− x4

1

) +
1

5108x2
1

− 1 ≤ 0

g4(x) = 1 −
140.45x1

x2
2
x3

≤ 0

range 0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30

2.00 ≤ x3 ≤ 15.00

http://creativecommons.org/licenses/by/4.0/

 Evolutionary Intelligence

1 3

References

 1. Afshar M, Faramarzi A (2010) Size optimization of truss struc-
tures by cellular automata. J Comput Sci Eng 3(1):1–9

 2. Faramarzi A, Afshar M (2014) A novel hybrid cellular automata-
linear programming approach for the optimal sizing of planar truss
structures. Civil Eng Environ Syst 31(3):209–228

 3. Shami TM, Grace D, Burr A, Vardakas JS (2019) Load balanc-
ing and control with interference mitigation in 5G heterogeneous
networks. EURASIP J Wireless Commun Netw 2019(1):1–12

 4. Feng S, Chen Y, Zhai Q, Huang M, Shu F (2021) Optimizing com-
putation offloading strategy in mobile edge computing based on
swarm intelligence algorithms. EURASIP J Adv Signal Process
2021(1):1–15

 5. Pham Q-V, Mirjalili S, Kumar N, Alazab M, Hwang W-J (2020)
Whale optimization algorithm with applications to resource
allocation in wireless networks. IEEE Trans Vehicular Technol
69(4):4285–4297

 6. Al-Tashi Q, Akhir EAP, Abdulkadir SJ, Mirjalili S, Shami TM,
Alhusssian H, Alqushaibi A, Alwadain A, Balogun AO, Al-Zidi
N (2021) Classification of reservoir recovery factor for oil and gas
reservoirs: a multi-objective feature selection approach. J Marine
Sci Eng 9(8):888

 7. Moayedi H, Nguyen H, Kok Foong L (2021) Nonlinear evolution-
ary swarm intelligence of grasshopper optimization algorithm and
gray wolf optimization for weight adjustment of neural network.
Eng Comput 37(2):1265–1275

 8. Singh P, Chaudhury S, Panigrahi BK (2021) Hybrid mpso-cnn:
multi-level particle swarm optimized hyperparameters of convo-
lutional neural network. Swarm Evol Comput 63:100863

 9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61

 10. Shami TM, El-Saleh AA, Alswaitti M, Al-Tashi Q, Summakieh
MA, Mirjalili S (2022) Particle swarm optimization: a compre-
hensive survey. IEEE Access

 11. Mirjalili S, Lewis A (2016) The whale optimization algorithm.
Adv Eng Softw 95:51–67

 12. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN’95-international conference on neural net-
works 4:1942–1948 . IEEE

 13. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.
IEEE Comput Intell Mag 1(4):28–39

 14. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mir-
jalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv Eng Softw 114:163–191

 15. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired
optimization algorithm. Commun Nonlinear Sci Numer Simul
17(12):4831–4845

 16. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel
approach for global optimization. Soft Comput 23(3):715–734

 17. Dhiman G, Kumar V (2019) Seagull optimization algorithm:
theory and its applications for large-scale industrial engineering
problems. Knowl Based Syst 165:169–196

 18. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009
World congress on nature and biologically inspired computing
(NaBIC), pp 210–214. IEEE

 19. Holland J (1975) Adaptation in natural and artificial systems. The
University of Michigan Press, Ann Arbor

 20. Fogel DB (1998) Artificial intelligence through simulated evolu-
tion. Wiley-IEEE Press, London

 21. Storn R, Price K (1997) Differential evolution-a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Opt 11(4):341–359

 22. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing
the time complexity of the derandomized evolution strategy

with covariance matrix adaptation (CMA-ES). Evol Comput
11(1):1–18

 23. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1987) Optimization by
simulated annealing. In: Readings in computer vision, pp 606–
615. Elsevier

 24. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravi-
tational search algorithm. Inf Sci 179(13):2232–2248

 25. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020)
Equilibrium optimizer: a novel optimization algorithm. Knowl
Based Syst 191:105190

 26. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili
S (2019) Henry gas solubility optimization: a novel physics-based
algorithm. Future Generation Comput Syst 101:646–667

 27. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H
(2019) Harris hawks optimization: algorithm and applications.
Future Generation Comput Syst 97:849–872

 28. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and
its application to solve a hydrogeologic parameter estimation
problem. Knowl Based Syst 163:283–304

 29. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer:
pathfinder algorithm. Appl Soft Comput 78:545–568

 30. Shadravan S, Naji H, Bardsiri VK (2019) The sailfish optimizer:
a novel nature-inspired metaheuristic algorithm for solving con-
strained engineering optimization problems. Eng Appl Artif Intell
80:20–34

 31. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020)
Marine predators algorithm: a nature-inspired metaheuristic. Exp
Syst Appl 152:113377

 32. Askari Q, Saeed M, Younas I (2020) Heap-based optimizer
inspired by corporate rank hierarchy for global optimization. Exp
Syst Appl 161:113702

 33. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based
optimizer: a new metaheuristic optimization algorithm. Inf Sci
540:131–159

 34. Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algo-
rithm. Comput Ind Eng 145:106559

 35. Ghasemi-Marzbali A (2020) A novel nature-inspired meta-heuris-
tic algorithm for optimization: bear smell search algorithm. Soft
Comput 24(17):13003–13035

 36. Askari Q, Younas I, Saeed M (2020) Political optimizer: a novel
socio-inspired meta-heuristic for global optimization. Knowl
Based Syst 195:105709

 37. Zhang Y, Jin Z (2020) Group teaching optimization algorithm: a
novel metaheuristic method for solving global optimization prob-
lems. Exp Syst Appl 148:113246

 38. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH
(2021) The arithmetic optimization algorithm. Comput Methods
Appl Mech Eng 376:113609

 39. Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany
W (2021) Archimedes optimization algorithm: a new metaheuris-
tic algorithm for solving optimization problems. Appl Intell
51(3):1531–1551

 40. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA,
Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic
optimization algorithm. Comput Ind Eng 157:107250

 41. Połap D, Woźniak M (2021) Red fox optimization algorithm. Exp
Syst Appl 166:114107

 42. MiarNaeimi F, Azizyan G, Rashki M (2021) Horse herd optimiza-
tion algorithm: a nature-inspired algorithm for high-dimensional
optimization problems. Knowl Based Syst 213:106711

 43. Jia H, Peng X, Lang C (2021) Remora optimization algorithm.
Exp Syst Appl 185:115665

 44. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mon-
goose optimization algorithm. Comput Methods Appl Mech Eng
391:114570

Evolutionary Intelligence

1 3

 45. Hashim FA, Hussien AG (2022) Snake optimizer: a novel meta-
heuristic optimization algorithm. Knowl Based Syst 242:108320

 46. Oyelade ON, Ezugwu AE-S, Mohamed TI, Abualigah L
(2022) Ebola optimization search algorithm: a new nature-
inspired metaheuristic optimization algorithm. IEEE Access
10:16150–16177

 47. Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH
(2022) Reptile search algorithm (rsa): a nature-inspired meta-
heuristic optimizer. Exp Syst Appl 191:116158

 48. Mirjalili S (2016) SCA: a sine cosine algorithm for solving opti-
mization problems. Knowl Based Syst 96:120–133

 49. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water
cycle algorithm—a novel metaheuristic optimization method for
solving constrained engineering optimization problems. Comput
Struct 110:151–166

 50. Hatamlou A (2013) Black hole: a new heuristic optimization
approach for data clustering. Inf Sci 222:175–184

 51. Kaveh A, Dadras A (2017) A novel meta-heuristic optimiza-
tion algorithm: thermal exchange optimization. Adv Eng Softw
110:69–84

 52. Borji A (2007) A new global optimization algorithm inspired by
parliamentary political competitions. In: Mexican international
conference on artificial intelligence, pp 61–71 . Springer

 53. Rao RV, Savsani VJ, Vakharia D (2011) Teaching-learning-based
optimization: a novel method for constrained mechanical design
optimization problems. Comput Aided Des 43(3):303–315

 54. Lv W, He C, Li D, Cheng S, Luo S, Zhang X (2010) Election cam-
paign optimization algorithm. Proc Comput Sci 1(1):1377–1386

 55. El-Abd M (2017) Global-best brain storm optimization algorithm.
Swarm Evol Comput 37:27–44

 56. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl
Soft Comput 19:177–187

 57. Bodaghi M, Samieefar K (2019) Meta-heuristic bus transportation
algorithm. Iran J Comput Sci 2(1):23–32

 58. Das B, Mukherjee V, Das D (2020) Student psychology based
optimization algorithm: a new population based optimization
algorithm for solving optimization problems. Adv Eng Softw
146:102804

 59. Akyol S, Alatas B (2017) Plant intelligence based metaheuristic
optimization algorithms. Artif Intell Rev 47(4):417–462

 60. Alatas B, Bingol H (2020) Comparative assessment of light-based
intelligent search and optimization algorithms. Light Eng 28(6)

 61. Alatas B, Bingol H (2019) A physics based novel approach for
travelling tournament problem: optics inspired optimization. Inf
Technol Control 48(3):373–388

 62. Bingol H, Alatas B (2020) Chaos based optics inspired optimiza-
tion algorithms as global solution search approach. Chaos Solitons
Fractals 141:110434

 63. Glover F, Laguna M (1998) Tabu search. In: Handbook of com-
binatorial optimization, pp 2093–2229. Springer

 64. Mirjalili S (2015) Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

 65. Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany
W (2022) Honey badger algorithm: New metaheuristic algo-
rithm for solving optimization problems. Math Comput Simul
192:84–110

 66. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw
83:80–98

 67. Ayyarao TS, RamaKrishna N, Elavarasan RM, Polumahanthi N,
Rambabu M, Saini G, Khan B, Alatas B (2022) War strategy opti-
mization algorithm: a new effective metaheuristic algorithm for
global optimization. IEEE Access 10:25073–25105

 68. Alatas B (2011) Acroa: artificial chemical reaction opti-
mization algorithm for global optimization. Exp Syst Appl
38(10):13170–13180

 69. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evolut Comput 1(1):67–82

 70. Yao X, Liu Y, Lin G (1999) Evolutionary programming made
faster. IEEE Trans Evol Comput 3(2):82–102

 71. Digalakis JG, Margaritis KG (2001) On benchmarking functions
for genetic algorithms. Int J Comput Math 77(4):481–506

 72. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer
functions for binary particle swarm optimization. Swarm Evol
Comput 9:1–14

 73. Tanabe R, Fukunaga A (2013) Success-history based parameter
adaptation for differential evolution. In: 2013 IEEE congress on
evolutionary computation, pp 71–78 . IEEE

 74. He X, Zhou Y (2018) Enhancing the performance of differential
evolution with covariance matrix self-adaptation. Appl Soft Com-
put 64:227–243

 75. Pant M, Thangaraj R, Singh V (2009) Optimization of mechanical
design problems using improved differential evolution algorithm.
Int J Recent Trends Eng 1(5):21

 76. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach
to particle swarm optimization. IEEE Trans Evol Comput
8(3):225–239

 77. Gharaei A, Hoseini Shekarabi SA, Karimi M (2020) Modelling
and optimal lot-sizing of the replenishments in constrained, multi-
product and bi-objective EPQ models with defective products:
Generalised cross decomposition. Int J Syst Sci Oper Logist
7(3):262–274

 78. Gharaei A, Karimi M, Hoseini Shekarabi SA (2020) Joint eco-
nomic lot-sizing in multi-product multi-level integrated supply
chains: Generalized benders decomposition. Int J Syst Sci Oper
Logist 7(4):309–325

 79. Alswaitti M, Albughdadi M, Isa NAM (2018) Density-based par-
ticle swarm optimization algorithm for data clustering. Exp Syst
Appl 91:170–186

 80. Wang Y, Zhang H, Zhang G (2019) cPSO-CNN: An efficient pso-
based algorithm for fine-tuning hyper-parameters of convolutional
neural networks. Swarm Evol Comput 49:114–123

 81. Rabbani M, Foroozesh N, Mousavi SM, Farrokhi-Asl H (2019)
Sustainable supplier selection by a new decision model based
on interval-valued Fuzzy sets and possibilistic statistical refer-
ence point systems under uncertainty. Int J Syst Sci Oper Logist
6(2):162–178

 82. Duan C, Deng C, Gharaei A, Wu J, Wang B (2018) Selective
maintenance scheduling under stochastic maintenance quality with
multiple maintenance actions. Int J Prod Res 56(23):7160–7178

 83. Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M
(2020) Lévy flight distribution: a new metaheuristic algorithm for
solving engineering optimization problems. Eng Appl Artif Intell
94:103731

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Single candidate optimizer: a novel optimization algorithm
	Abstract
	1 Introduction
	2 Literature review
	3 Proposed algorithm
	3.1 Complexity analysis

	4 Results and discussion
	4.1 Exploitation analysis
	4.2 Exploration analysis
	4.3 Impact of high-dimensionality
	4.4 Sensitivity analysis
	4.5 Performance of SCO on the CEC 2019 suite
	4.6 Statistical significance analysis
	4.7 Convergence behavior of SCO

	5 Engineering problems
	5.1 Welded beam design (WBD)
	5.2 Speed reducer design problem (SRD)
	5.3 Pressure vessel design problem (PVD)
	5.4 Tensioncompression spring design problem (TSDP)

	6 Conclusions and future research
	References

