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Abstract

Single-carrier frequency domain equalization (SC-FDE) has been shown to be an attractive transmission scheme for

broadband wireless channels. However, its performance would degrade a lot if the channel is fast time-varying. In

this paper, we analyzed the single-carrier fractional Fourier domain equalization (SC-FrFDE) system and applied it to

the fast time-varying channel. It can solve the time-varying problem by selecting the optimal fractional Fourier

transform order. To this SC-FrFDE system, its transmitter uses chirp-periodic circular prefix to eliminate ISI and this

has an evident disadvantage that the receiver need to feedback the optimal fractional Fourier transform order to

the transmitter through a feedback channel. To simplify the system, we propose to use zero padding (ZP) at the

transmitter. There is already the overlap-add method as ZP in SC-FDE system. But the overlap-add method cannot

be used in fast time-varying channels. Thus, we propose a new method as ZP. Simulation results show that our

proposed method can significantly improve the system performance.

Keywords: Single-carrier fractional Fourier domain equalization; Chirp-periodic circular prefix; ZP; Fast time-varying

channels

1 Introduction
Single-carrier frequency-domain equalization (SC-FDE)

has been shown to be an attractive equalization scheme

for broadband wireless channels which have very long

impulse response memory [1]. SC radio modems with

frequency domain equalization have very similar perform-

ance, efficiency, and low signal processing complexity ad-

vantages as OFDM, and in addition are less sensitive than

OFDM to RF impairments [2]. So the SC-FDE system has

the favorable advantages than the OFDM system. And this

arises the use of SC modulation [2,3]. However, when met

with fast-moving channels in broadband wireless commu-

nications, the performance of SC-FDE will degrade a lot

because orthogonality among different subchannels at the

receiver is destroyed and ICI arises.

The concept of fractional Fourier transform (FrFT)

was first introduced by N. Wiener in 1929. Then it ap-

pears as a mathematical tool for solving quantum me-

chanics problems [4,5], but this method did not gain

much attention. Until fractional Fourier transform was

introduced in the field of image analysis in optics and

signal processing by Mendlovic [6], Ozaktas [7], and

W. Lohmann [8,9] and had it attracted great attention.

Much research has been done in the multicarrier system.

FrFT was first applied in the multicarrier system by

M. Martone in 2001 [10]. Afterwards, Tomaso Erseghe

proposes to use affine Fourier transform to remove ICI

in the multicarrier system under time-varying channel

models in 2005 [11]. Sufficient research [12,13] has been

done in the multicarrier system compared to the re-

searches done in the single-carrier (SC) system. In 2012,

the FrFT was applied in the SC system [14], but it

mainly discusses the FrFT to cope with the deep fading

problem. The detailed procedure of the system is not

discussed. Based on this, we will discuss the SC-FrFDE

system in detail and expand this system to the fast time-

varying channels.

In SC-FrFDE, discrete fractional Fourier transform

(DFrFT) and inverse discrete fractional Fourier trans-

form (IDFrFT) replace fast Fourier transform (FFT)

and inverse fast Fourier transform (IFFT) correspondingly.
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Because of the chirp periodicity of the sampled signals,

it is needed to add a chirp-periodic circular prefix

(chirp CP) instead of the traditional cyclic prefix at the

transmitter. By selecting the optimal fractional Fourier

transform order, the chirp CP can remove the ISI as

well as transform the linear convolution of the signal

and the time-varying channel into fractional circular

convolution. Thus, the SC-FrFDE system can cope with

fast time-varying channels well.

The SC-FrFDE with chirp CP has an evident disadvan-

tage that the calculation formula of chirp CP includes

the transform order. So there needs a feedback channel

between the transmitter and receiver to feedback the

optimal fractional Fourier transform order. This will in-

crease the complexity of the whole system. To simplify

the system, we propose to use zero padding (ZP) at the

transmitter. There is already the overlap-add method as

ZP in SC-FDE system. But the overlap-add method cannot

be used in fast time-varying channels. Thus, we propose a

new method as ZP.

The rest of the paper is organized as follows: In section 2,

we introduce the basic definitions of DFrFT and fractional

circular convolution. In section 3, the SC-FrFDE system

model with chirp CP is detailedly described and repre-

sent that this system can deal with fast time-varying

channels. In section 4, the expression of ZP is given.

And the principle of selecting the optimal fractional

Fourier transform order is introduced in section 5. To

show the validity of the proposed scheme, Monte Carlo

simulation results are presented in section 6. Lastly, in

section 7, we make a conclusion.

2 Preliminaries - discrete fractional Fourier
transform and fractional circular convolution
2.1 Discrete fractional Fourier transform

2.1.1 Fractional Fourier transform

x(t) is the time domain signal. The pth-order FrFT signal

Xp(u) is defined as

Xp uð Þ ¼ Fp x tð Þð Þ
� �

uð Þ ¼
Zþ∞

−∞

x tð ÞKp u; tð Þdt ð1Þ

where

Kp u; tð Þ

¼
Ap⋅ exp

h
jπ u2 cota−2ut cscaþ t2 cotað Þ

i
; a≠nπ

δ t−uð Þ; a ¼ 2nπ
δ t þ uð Þ; a ¼ 2n� 1ð Þπ

8
><
>:

ð2Þ

In that expression, Ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−j cota

p
; a ¼ π

2
p . Since the

FrFT is periodic with the period of 4, the transform

order p can be limited to the interval of [−2, 2].

2.1.2 Discrete time fractional Fourier transform (DTFrFT)

The above is the FrFT of the continuous signal. However,

in the SC system, the signal that we are going to deal with

is discrete signal. So, it is required to know the DFrFT of

the discrete signal.

First, let us see the definition of DTFrFT. Assuming x(t)

is analog, we can obtain the time domain sampled signal

xs tð Þ ¼ x tð Þ
X∞

n¼−∞

δ t−nΔtð Þ ð3Þ

Δt is the sampling interval of time domain. Δt = 1/ml/

sr. Among which ml represents the modulation method.

For example, ml = 1 corresponds to the BPSK modulation;

ml = 2 corresponds to QPSK modulation. sr is the symbol

transmission rate. In this paper, the symbol transmission

rate is set to be sr = 250,000 symbol/s.

According to Equation 20 in [15], the DTFrFT of the

sampled signals is shown as:

Xsp uð Þ ¼ 1

Δt
⋅ej cota=2ð Þu2

⋅ Xp uð Þe−j cota=2ð Þu2 �
X∞

n¼−∞

δ u−n
2π sin a

Δt

� �" #

¼ 1

Δt
⋅ej cota=2ð Þu2

⋅
X∞

n¼−∞

Xp u−n
2π sin a

Δt

� �
e
−j cota=2ð Þ u−n

2π sin a

Δt

� �2
2
664

3
775

ð4Þ

It is readily seen that the sampled signal is discrete in

the time domain. But its FrFT is still analog in the FrFD.

To get the DFrFT of the time domain discrete signal, it

is required to sample in the FrFD.

2.1.3 Discrete fractional Fourier transform (DFrFT)

Assuming the sampling points in the time domain and

the fractional Fourier domain are N and M. Generally

M =N. We can get Xp(m) := Xp(mΔu), m = 0, 1, …, N − 1.

The FrFD sampling interval is u ¼ 2π sina
Δt�N

.

Let F be the DFrFT matrix whose (m, n)th element is

F m; nð Þ ¼ ρm
2

1 �Wmn � ρn
2

2 ;m; n ∈ 0;N−1ð Þ ð5Þ

ρm
2

1 :¼ ej cotα�Δu2�m2=2; ρn
2

2 :¼ ej cotα�Δt2�n2=2 ð6Þ

W :¼ e−j2π=N ð7Þ

Then the definition of DFrFT is

Χp ¼ F⋅x ð8Þ

According to the FrFT sampling theorem, the discretization

of time domain and FrFD respectively cause chirp periodic

extension of the FrFD and the time domain. This process

is given as follows:

Xp m−Nð Þe−j12 cotα m−Nð Þ2Δu2 ¼ Xp mð Þe−j12 cotαm2
Δu2 ð9Þ
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x n−Nð Þe j 12 cotα n−Nð Þ2Δt2 ¼ x nð Þe j 12 cotαn
2
Δt2 ð10Þ

This chirp periodicity is very important because it will

be used in the guard interval (GI).

2.2 Discrete fractional Fourier transform

Let x1(n), x2(n) be the time domain discrete finite se-

quences. Let us define ⊗
P

N
as the pth-order fractional

circular convolution with the period of N. According

to [16], its mathematical expression is

x1 nð Þ⊗
N

P
x2 nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin α−j cos α

N

r
e−j cotan

2
Δt2=2

⋅

XN−1

i¼0

x1 ið Þe−j cotai2Δt2=2x2 n−ið Þð Þp;NRN nð Þe−j cota n−ið Þ2Δt2=2

ð11Þ

In which x2((n))p,N is the pth-order chirp periodic ex-

tension sequence with period of N and RN(n) is used to

get the principal value interval.

The DFrFT of x1 nð Þ⊗
P

N
x2 nð Þ is

Fp x1 nð Þ⊗
P

N
x2 nð Þ

�
¼ X1;p mð ÞX2;p mð Þe−j cotam2

Δu2=2

�

ð12Þ

This is the fractional circular convolution theorem.

3 SC-FrFDE system
The SC-FrFDE system is shown as Figure 1. After QPSK

modulation, the current block contains N samples x(n),

n = 0, 1, ⋯, N − 1. In order to reduce the symbol inter-

ference, GI is needed to insert in. The cyclic prefix

(CP) of x(n) is not just the copy of its tail data but

should have the chirp periodicity. This kind of CP is

called chirp-periodic circular prefix; for simplicity, it is

denoted as chirp CP. The signal being added chirp CP

is expressed as

xcp ¼
h
x −N cð Þ; x −N c þ 1ð Þ;…; x 0ð Þ;…; x N−1ð Þ

iT

ð13Þ

In this paper, {⋅}T, {⋅}H, {⋅}* stand for transpose, conjugate

transpose and conjugate. Nc is the length of chirp CP.

According to (10), the chirp CP is written as

x −N c þ nð Þ ¼ x N−N c þ nð Þ⋅e j 12 cot α
	
N−N cþnð Þ2− −N cþnð Þ2



Δt2 ; n

¼ 0; 1;…;N c−1

ð14Þ

To describe this process in matrix form, we finally get

xcp ¼ T cp � x ð15Þ

in which

T cp ¼
0N c� N−N cð Þ CN c�N c

IN�N

� �

NþN cð Þ�N

ð16Þ

0N c� N−N cð Þ is a Nc × (N−Nc) matrix with elements of

zeroes. IN × N represents the identity matrix.

CN c�N c
¼ diag ej

1
2 cotα N−N cþNð Þ2− −N cþnð Þ2½ �Δt2

h i
; n

¼ 0; 1;…;N c−1 ð17Þ

After inserting chirp CP, the signal is transmitted to

the fast time-varying channels H. It varies during one data

block, and its time domain impulse response is h(n, l) with

length of L. Then the received signal is given by

ycp ¼ H⋅xcp þ γcp ð18Þ

γcp is the additive white Gaussian noise.

Figure 1 SC-FrFDE system.
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In SC-FrFDE system, the removal of chirp CP is the

same with that in SC-FDE system and is expressed as

follows:

y ¼ Rcp⋅ycp ¼ Rcp⋅H⋅T cp⋅xþ γ ¼ Η ⋅xþ γ ð20Þ

Rcp ¼ 0N�N c
IN

i
N � N þ N cð Þ

h
ð21Þ

y ¼
h
y 0ð Þ; y 1ð Þ;…; y N−1ð Þ

iT
ð22Þ

By adding and removing chirp CP, the time domain

channel matrix H is transformed to (23)

Through the process above, the linear convolution will

be turned into fractional circular convolution of the sig-

nal and the equivalent channel response. Let us unfold

(20) to explain this problem.

y nð Þ ¼
XL‐1

l¼0

h n; lð Þx N þ n−lð Þ

⋅e j
1
2 cotα Nþ n−lð Þ½ �2Δt2− j 12 cotα n−lð Þ2Δt2

þ γ nð Þ 0≤ n ≤ L ð24Þ

y nð Þ ¼
XL‐1

l¼0

h n; lð Þx n−lð Þ þ γ nð Þ Lþ 1 ≤ n ≤N−1 ð25Þ

Because of the chirp periodicity shown in (10), we can

combine Equations 24 and 25 into one.

y nð Þ ¼
XL‐1

l¼0

h n; lð Þ⋅x n−lð Þð Þp;N ⋅RN nð Þ þ γ nð Þ

¼
XN−1

l¼0

h n; lð Þ⋅x n−lð Þð Þp;N ⋅RN nð Þ þ γ nð Þ 0 ≤ n ≤N−1

ð26Þ

Equation 26 indicates that by adding and removing

chirp CP, the linear convolution is turned into circular

convolution (It is not fractional circular convolution). It

is the circular convolution about h(n, l) and one chirp

periodic extension sequence x((n))p,N.

H ¼

h −N c; 0ð Þ 0 ⋯ 0 0
h −N c þ 1; 1ð Þ h −N c þ 1; 0ð Þ ⋯ 0 0

⋮ h −N c þ 2; 1ð Þ ⋱ ⋮ ⋮

h −N c þ L−1; L−1ð Þ ⋮ ⋱ ⋮ ⋮

0 h −N c þ L; L−1ð Þ ⋮ ⋮ ⋮

⋮ 0 ⋮ 0 ⋮

⋮ ⋮ ⋮ h N−2; 0ð Þ 0
0 0 ⋯ h N−1; 1ð Þ h N−1; 0ð Þ

2
66666666664

3
77777777775

ð19Þ

�H ¼

h 0; 0ð Þ 0 ⋯ 0 h 0; L−1ð Þe
j
1

2
cot α

n
N− L−1ð Þ½ �2− L−1ð Þ2

o
Δt2

⋯ h 0; 1ð Þe
j
1

2
cot α

n
N−1ð Þ2

	 

− −1ð Þ2

o
Δt2

⋮ h 1; 0ð Þ ⋯ 0 0 ⋱ ⋮

h L−2; L−2ð Þ ⋮ ⋱ ⋮ ⋮ ⋮ h L−2; L−1ð Þe
j
1

2
cot α

n
N−1ð Þ2

	 

− −1ð Þ2

o
Δt2

h L−1; L−1ð Þ h L−1; L−2ð Þ ⋮ h N−L; 0ð Þ ⋮ ⋮ 0
0 h L; L−1ð Þ ⋮ ⋮ h N−Lþ 1; 0ð Þ ⋱ ⋮

⋮ ⋮ ⋱ h N−2; L−2ð Þ ⋮ ⋱ ⋮

0 0 ⋯ h N−1; L−1ð Þ h N−1; L−2ð Þ ⋯ h N−1; 0ð Þ

2
6666666666664

3
7777777777775

N�N

ð23Þ
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Now let us turn this circular convolution into fractional

circular convolution.

Define hp n; lð Þ ¼ h n; lð Þej cota⋅nlΔt2e−j cota⋅l2Δt2 as the

equivalent channel response. By selecting the proper

FrFT order, hp(n, l) will be time-invariant or varies

very slowly. In this circumstances, hp(n, l) ≈ hp(l); and

Equation 27 can be seen as the fractional circular con-

volution. According to the fractional circular convolu-

tion theorem, we can get

Y p kð Þ ¼ e−j cota⋅k
2
Δu2=2

⋅Hp kð Þ
h i

⋅Xp kð Þ þ eϒ kð Þ ð28Þ

In which Hp kð Þ ¼
XL−1

l¼0

hp lð Þ⋅ej cota⋅l2⋅Δt2=2⋅ej cota⋅k2⋅Δu2=2⋅

e−j⋅2πlk=N . Yp(k) and Xp(k) is the fractional Fourier domain

data of y(n) and x(n). The fractional circular convolution

is very useful in the FrFD equalization.

Taking DFrFT of the received signal,

Y p ¼ F⋅y ¼ F⋅ �H ⋅F−1⋅Xp þ ~γ ¼ ~H ⋅Xp þ ~γ ð29Þ

F−1 is the IDFrFT matrix. F−1 = F H. According to (28),
~H is a diagonal matrix. And its diagonal elements are

e−j cota⋅k
2
Δu2=2⋅Hp kð Þ. The final expression is

Y p kð Þ ¼ ~H k; kð Þ⋅Xp kð Þ þ eϒ kð Þ
¼ e−j cota⋅k

2
Δu2=2⋅Hp kð Þ

h i
⋅Xp kð Þ þ eϒ kð Þ

ð30Þ

It is assumed that we know the perfect knowledge of

FrFD channel response ~H . Then the FrFD data X̂ p can

be obtained via

X̂ p kð Þ≈Y p kð Þ= ~H k; kð Þ ð31Þ

At last, the FrFD data X̂ p is transformed to time-

domain data x̂ by taking IDFrFT. The estimation of

time-domain data is

x̂ ¼ F−1⋅X̂ p ð32Þ

4 Zero padding method
If the transmitter uses chirp CP as guard interval, the

receiver need to feedback the optimal fractional Fourier

transform order to the transmitter through a feedback

channel. It will increase the complicity of the system. To

solve this problem, the transmitter could adopt ZP which

has no information about the optimal fractional Fourier

transform order. If the channel is slow time-varying, we

could use the well-known overlap-add technique as ZP to

make the circulant Toeplitz matrix [17]. But if the channel

is fast time-varying, this method cannot be applied. First,

let us show the invalid of overlap-add method under fast

time-varying channels.

4.1 The invalid of the traditional overlap-add method

For simplicity, we will consider the overlap-add method

under fast time-varying channels in the SC-FDE system.

Just like channel matrix for zero padding in [17], we will

y nð Þ ¼
XN−1

l¼0

h n; lð Þ⋅x n−lð Þð Þp;N ⋅RN nð Þ þ γ nð Þ

¼ e

−j cot a⋅n2Δt2

2
XN−1

l¼0

e

j cot a⋅n2Δt2

2 h n; lð Þ

2
64

3
75x n−lð Þð Þp;N ⋅RN nð Þ þ γ nð Þ

¼ e

−j cot a⋅n2Δt2

2
XN−1

l¼0

e

j cot a⋅n2Δt2

2 h n; lð Þe
−j cot a⋅ n−lð Þ2Δt2

2 e

−j cot a⋅l2Δt2

2

2
64

3
75

e

j cot a⋅l2Δt2

2 ⋅x n−lð Þð Þp;N ⋅RN nð Þe
j cot a⋅ n−lð Þ2Δt2

2 þ γ nð Þ

¼ e

−j cot a⋅n2Δt2

2
XN−1

l¼0

hp n; lð Þe
j cot a⋅l2Δt2

2 ⋅x n−lð Þð Þp;N ⋅RN nð Þe
j cot a⋅ n−lð Þ2Δt2

2 þ γ nð Þ

ð27Þ
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observe the variations of the channel matrix H. For sim-

ple case N = 4, Nc = 2. Channel matrix for zero padding

in [17] can be rewritten as

Step 1:

Step 2:

If the channel is invariant or varies slowly during

one data block, h(4, 1) ≈ h(0, 1) and �H can be ap-

proximately seen as a circular matrix and thus can

be diagonalized through the FFT/IFFT. But if the

channel is fast time-varying, �H is obvious not a cir-

cular matrix and would not be diagonalized. This

situation is exactly the same with the sC-FrFDE sys-

tem. So the overlap-add method is not suitable for

fast time-varying channels. We need to think of other

ways to add ZP.

4.2 Proposed method of zero padding

4.2.1 Transmitter

After QPSK modulation, the symbol is of size N. Assume

Nc is the length of GI. According to the knowledge of

chirp CP, the fractional Fourier transform order α exists

in the GI x nð Þ ¼ x N þ nð Þ⋅e j 12 cotα Nþnð Þ2−n2½ �Δt2 ;−N c≤n≤−1

.If the last Nc elements of x(n) are x(n) = 0, N −Nc ≤ n ≤

N − 1; then x(n) = 0, −Nc ≤ n ≤ −1 which indicates that

the transmitter did not include α. To this method, the

valid data length is N −Nc. So, the ZP method is based

on the decrease of the data transmission efficiency. The

data structure can be seen in process ① Figure 2.

Then the data is fed into the zero padding modules.

Assume the data being added ZP is of the length N +

Nc. And this process can be seen as ② in Figure 2.

The expressions about the signal being added ZP is

shown as

xzp ¼ 0;…; 0; x 0ð Þ;…; x N−N c−1ð Þ; 0;…; 0½ �T ð35Þ

To describe the process in matrix form, it is

xzp ¼ T zp⋅x ð36Þ

T zp ¼
0N c�N

IN�N

� �

NþN cð Þ�N

ð37Þ

Then the signal is transmitted to the fast time-varying

channel H. H is shown in Equation 19.

(33)

(34)
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4.2.2 Receiver

The received signal is

yzp ¼ H⋅xzp þ γzp ð38Þ

γzp is the additive white Gaussian noise.

The removal of GI is the same with the chirp CP-SC-

FrFDE system. After the received signals corresponding

to the ZP are removed at the receiver, the N-point data

is expressed in the matrix form as

y ¼ Rzp⋅yzp þ γ1 ¼ Rzp⋅H⋅T zp⋅xþ γ1 ¼ �H 1⋅xþγ1

ð39Þ

where

Rzp ¼ 0N c�N IN�N½ �N� NþN cð Þ ð40Þ

To have a more detailed description of the problem,

let us unfold Equation 39.

y nð Þ ¼
XL−1

l¼0

h n; lð Þx n−lð Þð ÞN ⋅RN nð Þ þ γ nð Þ

¼
XL−1

l¼0

h n; lð Þ⋅x n−lð Þð Þp;N ⋅RN nð Þ þ γ nð Þ 0≤n≤N−1

ð42Þ

x((n − l))N is a periodic signal with period N. It can be

seen that Equation 42 is just the same with (26). And the

following operation is very much like that of (27) which is

the fractional circular convolution.

y nð Þ ¼ e
−j cota⋅n2Δt2

2

XN−1

l¼0

hp n; lð Þe
j cota⋅l2Δt2

2

⋅x n−lð Þð Þp;N ⋅RN nð Þe
j cota⋅ n−lð Þ2Δt2

2 þ γ nð Þ
ð43Þ

�H 1 ¼ Rzp⋅H⋅T zp

¼

h 0; 0ð Þ 0 0 0 ⋯ 0
⋮ h 1; 0ð Þ 0 ⋯ ⋱ ⋮

h L−2; L−2ð Þ ⋮ ⋱ ⋮ ⋮ 0
h L−1; L−1ð Þ h L−1; L−2ð Þ ⋮ h N−L; 0ð Þ ⋮ 0

0 h L; L−1ð Þ ⋮ ⋮ ⋱ ⋮

⋮ ⋮ ⋱ h N−2; L−2ð Þ ⋱ ⋮

0 0 ⋯ h N−1; L−1ð Þ ⋯ h N−1; 0ð Þ

2
666666664

3
777777775
N�N

ð41Þ

Figure 2 ZP-SC-FrFDE system.
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In Equation 43 hp n; lð Þ ¼ h n; lð Þej cota⋅nlΔt2e−j cota⋅l2Δt2 . If
hp(n, l) ≈ hp(l), then Y p kð Þ ¼ e−j cota⋅k

2Δu2=2⋅Hp kð Þ⋅Xp kð Þþ
ϒ kð Þ
So the transmitted signal can be obtained by

Xp kð Þ≈Y p kð Þ= e−j cota⋅k
2Δu2=2

⋅Hp kð Þ
� �

ð44Þ

By taking IDFrFT, this signal will be transformed to

time domain. When the signals get into the QPSK demodu-

lation module, it is only essential for us to demodulate the

first N −Nc data (the last Nc signals of the transmitting

signal are zeros). And its BER performance is measured by

its useful signals which are the first N −Nc elements of the

transmitted signals.

5 Optimal fractional Fourier transform order
In conventional SC-FDE system, the signal is modulated by

the exponential bases. When met with fast-fading chan-

nels, the Fourier-domain matrix cannot be diagonalized.

To solve this problem, we can think of the fast-fading

channel as a channel with ‘time-varying’ frequency response.

The optimal transmission/reception methodology should

be able to ‘diagonalize’ nonstationary signals [10]. So, we

propose to use the chirp basis instead of traditional expo-

nential basis. By selecting the optimal fractional Fourier

transform order, it can effectively cope with fast time-

varying channels. In this section, we will give the principle

that selects the optimal order.

First, let us write ~H in Equation 29 as this

~H ¼ ~H u þ ~H ICI ð45Þ

Where ~H u is made up of the diagonal elements of ~H .
~H ICI represents the subchannel interference. By substitu-

tion of (45) into (29), we can get

Y p ¼ ~H u þ ~H ICI

 �

⋅F ⋅xþ ~γ ¼ su þ sICI þ ~γ ð46Þ

su ¼ ~H u⋅F ⋅x and sICI ¼ ~H ICI⋅F ⋅x represent desired

signal and the inter-carrier interference signal.

To get the optimal equalization performance, we need

to try to increase the power of the desired signal and

decrease the power of the inter-carrier interference

signal. So our proposed method of choosing the opti-

mal fractional Fourier transform order is selecting the

fractional Fourier domain that makes the desired signal

and the interference signal having the highest ratio.

The target function is

f target pð Þ ¼ E su
Hsu½ �

E sICIHsICI½ � ð47Þ

Because the transmitted signal is independent and

identically distributed, so E[xHx] = I (I is the identity

matrix). It is already known that E[FHF] = I. The target

function can also be written as

f t arget pð Þ ¼
~H u

�� ��2

~H ICI
�� ��2 ð48Þ

‖ · ‖ is the Frobenius norm. The fractional Fourier

transform order that carries signals should make (47)

have the largest value, i.e.

popt

n o
¼ argmax

p

f target pð Þ ð49Þ

This is the principle of choosing the optimal fractional

Fourier transform order. In the engineering, if we search

the order one by one, the computation complexity is

very high. To degrade the complexity, we adopt the variable

step searching method. At first, search 0 < p < 2 at a big step

to find the region that contains the optimal order. Then, we

Figure 3 The target function versus the fractional Fourier

transform order p under channel 2.

Table 1 Simulation parameters of channels

Path Delay (μs) Power (dB)

Channel 1 1 0 0

2 6 −5

Channel 2 1 0 0

2 5 −3

3 9 −6

4 12 −9

Channel 3 1 0 0

2 2 −3

3 3 −5

4 5 −10

5 8 −15

6 11 −20

Chen and Chu EURASIP Journal on Wireless Communications and Networking 2014, 2014:74 Page 8 of 10

http://jwcn.eurasipjournals.com/content/2014/1/74



can search the optimal region with a small step to find the

accurate optimal order.

Figure 3 shows the target function versus the fractional

Fourier transform order. The channel parameters are

shown in section 6. Without losing generality, the channel

model is channel 2. It can be seen that there exists an op-

timal order to cope with the fast-fading channel.

6 Simulation results
In this section, we present the simulation results of the

ZP-SC-FrFDE, compared with chirp CP-SC-FrFDE and

the conventional cyclic prefixed SC-FDE. The performance

of the system is measured by bit error rate (BER) with

1,000 realizations. We consider an uncoded single-carrier

transmission with N = 64 and QPSK constellation. The time

domain sampling interval is Δt = 2 × 10−6 s. The length of

the guard interval is 16 which is larger than the channel's

maximum propagation delay.

The channels we used in the simulation are listed as

Table 1.

Figure 4 compares the BER performance of the con-

ventional SC-FDE system with the chirp CP-SC-FrFDE

system and the ZP-SC-FrFDE system. Without loss of

generality, the simulation is conducted under channel 2.

The max Doppler shift is 1,000 Hz. It can be seen that

the chirp CP-SC-FrFDE system exceeds the conventional

0 2 4 6 8 10 12 14 16
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

SC−FDE

chirp CP SC−FrFDE

ZP SC−FrFDE

Figure 4 Comparison of the SC-FDE, chirp CP-SC-FrFDE and ZP-SC-FrFDE system under channel 2.

Figure 5 Comparison of SC-FDE, chirp CP-SC-FrFDE, and

ZP-SC-FrFDE system under different channels.

Figure 6 Comparison of SC-FDE, chirp CP-SC-FrFDE, and

ZP-SC-FrFDE system under different Doppler frequency.
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SC-FDE system. And the ZP-SC-FrFDE system outper-

forms the chirp CP-SC-FrFDE system significantly. But

this improvement is achieved on the sacrifice of decreasing

its transmission efficiency.

Figure 5 gives the BER performance of the conventional

SC-FDE system with the chirp CP-SC-FrFDE system

and the ZP-SC-FrFDE system under different channels.

The max Doppler shift is fixed at 1,000 Hz. To each

channel, the fractional Fourier order is correspondingly

the optimal. It is worthwhile noting that for each channel,

the ZP-SC-FrFDE system performs the best BER perform-

ance. And the chirp CP-SC-FrFDE system can cope with

fast-fading channels much better than the SC-FDE system.

Figure 6 compares the three systems under different

Doppler frequencies. The FrFT orders in the simulation

are correspondingly the optimal orders to each Doppler

frequency. It can be seen that the ZP-SC-FrFDE system

performs best among the three systems. If the max Doppler

frequency is large, the chirp CP-SC-FrFDE system out-

performs the SC-FDE system significantly. While the

max Doppler frequency is small, the performance im-

provement will gradually decrease. When the Doppler

shift is 50 Hz, the curves of the chirp CP-SC-FrFDE almost

coincide with the SC-FDE system. In this condition, the op-

timal fractional Fourier transform order p ≈ 1. The DTFrFT

would degenerate into DFT.

7 Conclusions
In this paper, we introduce the SC-FrFDE system to fast

time-varying channels to solve the fast time-varying

problem. Because this system needs to know the fractional

Fourier transform order at the transmitter and there needs

to be a feedback channel between the transceiver. The

complexity forced us to find the zero padding method.

The traditional overlap-add method cannot be used in fast

time-varying channels. And we propose a new method to

add ZP. The ZP-SC-FrFDE is discussed afterwards. Both

of the two systems need to know the optimal fractional

Fourier transform order, so we discussed the method

of choosing the optimal fractional Fourier transform

order. By using the optimal order, the fast time-varying

channel matrix can be diagonalized in the FrFT do-

main. Simulation results show that the ZP-SC-FrFDE

system outperforms the other two systems despite of

the channel model and the max Doppler frequency.
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