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Less than half of human zygotes survive to birth, primarily due to aneuploidies of meiotic or mitotic origin. Mitotic errors

generate chromosomal mosaicism, defined by multiple cell lineages with distinct chromosome complements. The incidence

and impacts of mosaicism in human embryos remain controversial, with most previous studies based on bulk DNA assays or

comparisons of multiple biopsies of few embryonic cells. Single-cell genomic data provide an opportunity to quantify mo-

saicism on an embryo-wide scale. To this end, we extended an approach to infer aneuploidies based on dosage-associated

changes in gene expression by integrating signatures of allelic imbalance. We applied this method to published single-cell

RNA sequencing data from 74 human embryos, spanning the morula to blastocyst stages. Our analysis revealed widespread

mosaic aneuploidies, with 59 of 74 (80%) embryos harboring at least one putative aneuploid cell (1% FDR). By clustering

copy number calls, we reconstructed histories of chromosome segregation, inferring that 55 (74%) embryos possessed mi-

totic aneuploidies and 23 (31%) embryos possessed meiotic aneuploidies. We found no significant enrichment of aneuploid

cells in the trophectoderm compared to the inner cell mass, although we do detect such enrichment in data from later post-

implantation stages. Finally, we observed that aneuploid cells up-regulate immune response genes and down-regulate genes

involved in proliferation, metabolism, and protein processing, consistent with stress responses documented in other stages

and systems. Together, our work provides a high-resolution view of aneuploidy in preimplantation embryos, and supports

the conclusion that low-level mosaicism is a common feature of early human development.

[Supplemental material is available for this article.]

Genetic surveys of in vitro fertilized (IVF) human embryos consis-

tently reveal substantial levels of aneuploidy—whole chromosome

gains and losses that trace their origins to diverse mechanisms of

chromosome mis-segregation. These include (primarily maternal)

meiotic mechanisms such as nondisjunction, precocious separa-

tion of sister chromatids, and reverse segregation (Ottolini et al.

2015), as well as mitotic mechanisms such as mitotic nondisjunc-

tion, anaphase lag, and endoreplication (Vázquez-Diez and

FitzHarris 2018). In contrast to meiotic errors, which uniformly af-

fect all embryonic cells, mitotic errors generate chromosomal

mosaicism, whereby different cells possess distinct chromosome

complements. Such mitotic aneuploidies may propagate to de-

scendant cells in a clonal manner and may also contribute to

fitness variation. Although severe chromosomal mosaicism is le-

thal to early embryos (McCoy et al. 2015b; Ottolini et al. 2017),

low levels ofmosaicismappear compatible, andperhaps even com-

mon, with live birth (Greco et al. 2015; McCoy 2017).

One major limitation in studying the incidence and implica-

tions of chromosomal mosaicism is that most inferences are based

on bulk DNA assays or comparisons of multiple biopsies of a few

embryonic cells. As a result, current estimates of mosaicism in hu-

man embryos range from4% to 90% (Capalbo et al. 2017). This has

provoked intense debate over the true incidence of mosaicism at

various developmental stages, its classification as a pathologic ver-

sus physiologic state, and its corresponding management in the

context of preimplantation genetic testing for aneuploidy (PGT-

A) of IVF embryos (Rosenwaks et al. 2018). Specifically, PGT-A

seeks to prioritize IVF embryos for transfer based on the ploidy sta-

tus of embryo biopsies, with current implementations involving

biopsies of approximately five trophectoderm cells of Day-5 or

Day-6 blastocysts. This approach is based on the premise that a bi-

opsy is representative of the embryo as awhole and predictive of its

developmental outcome. Although this premise may be violated

by chromosomal mosaicism, the impact of such confounding

remains obscure. A more complete picture of aneuploidy across

many embryonic cells is therefore critical to a basic understanding

of human development, as well as for guiding fertility applications

such as PGT-A.

Single-cell genomic data sets offer promising resources for

studying mosaic aneuploidy, as they potentially contain valuable

information about both cell type and chromosome copy number.

Moreover, characteristics of aneuploidies observed in single-cell

data may suggest meiotic or mitotic mechanisms of origin.

Previous studies have established proof-of-principle for detecting

mosaic aneuploidy using single-cell RNA sequencing (scRNA-seq)

data. Griffiths et al. (2017), for example, developed a statistical ap-

proach to discover aneuploidies based on chromosome dosage-

induced changes in gene expression, validating their method us-

ing genome and transcriptome sequencing (G&T-seq) data

(Macaulay et al. 2015). Other studies have developed similar ap-

proaches for the purpose of studying chromosome instability in

cancer (Fan et al. 2018). In addition to changes in overall expres-

sion, aneuploidy is expected to generate allelic imbalance (i.e., al-

lele-specific expression)—deviations from the null 1:1 ratio of

expression from maternally and paternally inherited homologs.

Here, we extended the expression-based method of Griffiths
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et al. (2017) to incorporate this complementary signature of allelic

imbalance.

Applying this method to scRNA-seq data from 74 embryos

(Petropoulos et al. 2016), we sought to quantify the incidence of

meiotic and mitotic aneuploidy at single-cell resolution. Such

knowledge is fundamental to uncovering downstream gene ex-

pression and fitness consequences of aneuploidy among the

emerging cell lineages of the differentiating embryo. Together,

our work provides an embryo-wide census of aneuploidy across

early development and quantifies parameters of chromosomal

mosaicism that have proven elusive to biopsy-based studies.

Results

Detection of aneuploidy in scRNA-seq data

Building upon the foundations of Griffiths et al. (2017) (scploid

software package), we developed an approach to integrate signa-

tures of gene expression changes and allelic imbalance to discover

aneuploidy in scRNA-seq data (Fig. 1; Methods). We assessed the

value of this combined signature by simulating aneuploidies under

a range of variance scenarios, finding that sensitivity was substan-

tially improved without sacrificing (and often modestly improv-

ing) specificity compared to using the expression signature alone

(Supplemental Figs. S1, S2; Supplemental Table S1).

Seeking to characterize aneuploidy at single-cell resolution

throughout preimplantation development, we applied this ap-

proach to published scRNA-seq data from 88 human preimplan-

tation embryos (1529 total cells) spanning the cleavage to late

blastocyst stages (E3–E7) (Petropoulos et al. 2016). Cell type anno-

tations were obtained from Stirparo et al. (2018) and, along with

embryonic stage, were used to define strata for scploid.We removed

cells in the lower 10th percentile of mapped reads or percent

mapped reads, as well as two cell groups (E3 undifferentiated and

E6 epiblast/primitive endoderm intermediate) that failed quality

control due to their small numbers of sufficiently expressed genes

(Supplemental Fig. S3). Exclusion of E3 cleavage-stage embryos

may also be justified on the basis that thematernal-to-zygotic tran-

sition is not yet complete at this stage (Petropoulos et al. 2016).

These quality control procedures resulted in the retention of

1115 cells from 74 embryos, spanning the E4 morula to E7 late

blastocyst stages (Supplemental Table S2). Retained stages and

cell types exhibited low expression variance, comparable tomouse

embryo data used for benchmarking by Griffiths et al. (2017)

(Supplemental Fig. S4). Evidence of aneuploidy based on signa-

tures of expression alteration and allelic imbalance was correlated

(Supplemental Fig. S5) but with the latter exhibiting greater sensi-

tivity for detecting monosomy. We combined the two signatures

using Fisher’s method (Fisher 1925) to obtain P-values for every

cell-chromosome combination (see Methods).

As highlighted in a previous review (Capalbo et al. 2017), the

failure to account for multiple hypothesis testing has the potential

to inflate estimates of mosaic aneuploidy based on multiple em-

bryo biopsies. This challenge is magnified in single-cell analysis,

where each cell-chromosome combination constitutes a separate

statistical test (1115 cells × 22 autosomes=24,530 tests in our

study). Meanwhile, answering the most relevant biological ques-

tions requires integrating the output of many correlated statistical

tests. For example, what proportion of embryos harbor at least

one aneuploid cell?What proportion of cells within such embryos

are aneuploid? We addressed this challenge using the method

TreeBH (Bogomolov et al. 2017), an extension of the Benjamini–

Hochberg procedure (Benjamini andHochberg 1995) to tree-struc-

tured hypotheses. This allowed us to control the false discovery

rate (FDR) at multiple levels (chromosomes, cells, and embryos)

while accounting for the hierarchical dependency structure of

the data.

Across all cell types and developmental stages, we estimated

that 80% (59 of 74) of embryos contained at least one aneuploid

cell and that 39% (433 of 1115) of all cells tested across the 74 em-

bryoswere aneuploid at an FDR threshold of 1% (Fig. 2A). A total of

4.8% (1172 of 24,530) of all cell-chromosome combinations were

called as aneuploid. Patterns of aneuploidy across cells of individ-

ual embryos can help distinguish meiotic versus mitotic errors.

Because they affect gametes and resulting zygotes, meiotic errors

are expected to produce uniformaneuploidies across all embryonic

cells. Mitotic aneuploidies meanwhile affect only a fraction of

cells, depending upon the timing of their occurrence as well as

the possibility of selection against aneuploid cells within mosaic

embryos. We found that embryos displayed diverse patterns of an-

euploidy, ranging fromminor meiotic errors involving one or two

chromosomes to chaotic mosaic abnormalities affecting many

cells and chromosomes simultaneously (Figs. 2, 3; Supplemental

Fig. S6). To allow for false negatives, we defined meiotic-origin an-

euploidies using 75% as a heuristic cutoff for the percentage of

cells per embryo with a particular aneuploidy (i.e., gain or loss of

a particular chromosome). All other aneuploidies were classified

as mitotic in origin. Based on these criteria, we observed that

5% (four of 74) embryos possessed only

meiotic aneuploidies, 49% (36 of 74) of

embryos possessed only mitotic aneu-

ploidies, and 26% (19 of 74) of embryos

possessed bothmeiotic andmitotic aneu-

ploidies. An alternative meiotic error

criterion defined as fewer than two nor-

mal cells of a given chromosome pro-

duced similar estimates (8% [six of 74

embryos] onlymeiotic, 51% [38of 74 em-

bryos] onlymitotic, 22% [16of 74 embry-

os] both meiotic and mitotic).

The proportion of aneuploid cells

per embryo exhibited a characteristic

“U”-shape, suggesting that, in addition

to euploid embryos (e.g., Fig. 3A), meiot-

ic aneuploidies (e.g., Fig. 3B) and low-

level mosaic aneuploidies are relatively

GATK HaplotypeCaller

GATK ASEReadCounter

TreeBH

Figure 1. Approach for detecting aneuploidy in single-cell RNA-seq data based on complementary sig-
natures of chromosome-wide gene expression alteration as well as allelic imbalance.
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common but high-level mosaic aneuploidies are relatively rare

(Fig. 2B). The paucity of high-levelmosaic aneuploidiesmay reflect

selection against such abnormalities prior to blastocyst formation

—through embryonic mortality and/or exclusion of aneuploid

cells (McCoy et al. 2015b; Bolton et al. 2016; Ottolini et al.

2017). Blastocyst E7.17 provides an example of multiple forms

of aneuploidy within a single embryo (Fig. 3C). Specifically,

Chromosomes 4 and 13 displayed evidence of meiotic origin

monosomy, whereas Chromosome 8 displayed evidence ofmosaic

monosomy affecting approximately half of cells. The latter obser-

vation is potentially consistent with chromosome loss (e.g., via

anaphase lag) during the first embryonic cleavage. Meanwhile,

other chromosomes of this embryo displayed evidence of sporadic

low-level aneuploidy. These include reciprocal monosomies and

trisomies on Chromosomes 9 and 10, consistent with formation

by mitotic nondisjunction. An even more extreme form of mosai-

cism was detected in blastocyst E7.5, which we inferred to be mo-

saic near-haploid (Fig. 3D). Eight of the nine cells showed

chromosome-wide monoallelic expression, whereas one cell

showed mostly biallelic expression. Due to its severe nature, this

abnormality was only detectable based on signatures of allelic im-

balance, as analysis based on overall expression alteration lacked a

baseline for comparison (Supplemental Fig. S7). Allelic states of ex-

pressed SNPs in the near-haploid cells indicated a common paren-

tal origin of haploidy, as opposed to a mixture of haploid cells of

distinct parental origins (Supplemental Fig. S8).

Although we observed a negative correlation between chro-

mosome-specific aneuploidy rates and the number of protein-cod-

ing genes per chromosome (Pearson’s r=−0.546, P=8.64× 10−3)

(Supplemental Fig. S9), differences in aneuploidy rates among

chromosomes were not significant upon accounting for noninde-

pendence among chromosomeswithin cells within embryos (χ2[df

= 21, n=24,530] = 29.0, P=0.114) (see Methods).

No significant differences in aneuploidy rates among cell types

of preimplantation embryos

Long-standing questions in the field of preimplantation genetics

include how aneuploid cells are distributed among different cell

types and how this changes throughout development. Cell-type-

specific propensities and/or tolerances for aneuploidy could help

explain observations such as confined

placental mosaicism observed at later

developmental stages (Toutain et al.

2018). Meanwhile, selection against an-

euploid cells within mosaic embryos

could help explain recent reports that

some embryos that test mosaic with

PGT-A can result in healthy live births af-

ter intrauterine transfer (Greco et al.

2015). Bolton et al. (2016) previously

used a chimeric mouse model to address

these questions, demonstrating that an-

euploid cells of the inner cellmass under-

go apoptosis, whereas aneuploid cells of

the trophectoderm are tolerated but ex-

perience proliferative defects. Although

groundbreaking, the relevance to human

development has remained uncertain,

as mouse embryos are known to exhibit

lower rates of chromosome instability

and higher rates of blastocyst formation

than their human counterparts (Daughtry and Chavez 2016).

Investigating these processes in human embryos is therefore essen-

tial for understanding the cellular and organismal fitness conse-

quences of chromosomal mosaicism.

We obtained cell type annotations of the Petropoulos et al.

(2016) data set from Stirparo et al. (2018) and confirmed that these

groups formed clusters based on uniformmanifold approximation

and projection (UMAP) dimension reduction of the gene expres-

sion matrix (Fig. 4A,B). Cells did not noticeably cluster by aneu-

ploidy status (Fig. 4C,D). We directly examined the relationship

between aneuploidy and cell type using a binomial generalized lin-

earmixedmodel (GLMM)with embryo as a random effect and em-

bryonic stage (days post-fertilization) and cell type annotation as

fixed effects (see Methods). We estimated the average marginal ef-

fect (AME) for a given predictor variable as its effect per cell, aver-

aged across cells (see Methods). We compared this model to a

reduced model without the cell type term to test whether aneu-

ploidy rates varied across cell types.We detected no significant dif-

ference in aneuploidy rates across cell types (χ2[df = 5, n =1115] =

6.19, P= 0.288) (Fig. 4E,F) or across days of development (E4 to

E7; AME=−0.071, SE =0.046, P=0.124). We similarly detected

no significant enrichment of aneuploidy in the trophectoderm

versus the inner cell mass and its descendant lineages (AME=

0.012, SE=0.039, P=0.765).We note, however, that the wide con-

fidence interval (95% CI [−0.064, 0.087]) signifies that we cannot

rule out modest differences.

Global gene expression responses to aneuploidy

In addition to the primary (i.e., cis-acting) and secondary (i.e.,

trans-acting) dosage effects, aneuploidy may induce tertiary tran-

scriptional changes, including responses to proteotoxic, oxida-

tive, and hypo-osmotic stresses (Dürrbaum et al. 2014; Tsai

et al. 2019). To investigate this phenomenon in the context of

human preimplantation development, we used a negative bino-

mial mixed model to test for differential expression between eu-

ploid and aneuploid cells (see Methods). Embryo and cell type

were specified as random effects to again account for the correla-

tion among cells within embryos, whereas embryonic stage (days

post-fertilization) and aneuploidy status were specified as fixed

effects (see Methods).

BA

Figure 2. Aneuploidies discovered in scRNA-seq data from human preimplantation embryos
(Petropoulos et al. 2016). (A) Proportions of aneuploid chromosomes, cells, and embryos detected at
varying false discovery rates (FDR). Error rates were controlled while accounting for the hierarchical
dependency structure of the data (chromosomes within cells within embryos) using TreeBH
(Bogomolov et al. 2017). (B) Distribution of proportions of aneuploid cells per embryo at a 1% FDR.
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Using thismodel, we identified 2925 genes that were differen-

tially expressed between euploid and aneuploid cells (5% FDR)

(Fig. 5A; Supplemental Table S3). The most significant associa-

tion involved up-regulation of growth differentiation factor 15

(GDF15) in aneuploid relative to euploid cells (β=1.118, SE=

0.144, P=6.6 ×10−15) (Supplemental Fig. S10). This gene was pre-

viously discovered to be up-regulated in aneuploid human cell

lines compared to diploid cell lines fromwhich they were derived,

suggesting that GDF15 may serve as a biomarker of aneuploidy

across stages and cell types (Dürrbaum et al. 2014). Beyond this

embryonic context, GDF15 is well established as a cytokine that

is up-regulated in response to cellular stress, with potential anti-

proliferative and anti-apoptotic functions (Kempf et al. 2006).

The gene ZFP42 exhibited the most significant down-regulation

in aneuploid versus euploid cells (β=−0.262, SE= 0.037, P=1.6 ×

10−12) (Supplemental Fig. S11). This gene encodes a zinc finger

protein that is a classic marker of pluripotency and whose expres-

sion contributes to lineage specification during early development

(Son et al. 2013). The role of aneuploidy in altering such lineage

decisions via ZFP42 down-regulation may therefore merit future

investigation.

We next tested for cell-type-specific gene expression respons-

es to aneuploidy by fitting a separatemodel that included an inter-

actionbetweencell type andaneuploidy status (seeMethods). Such

cell-type-specific responsesmay contribute to downstreamhetero-

geneity in the developmental and fitness consequences of aneu-

ploidy. We discovered 866 genes that exhibited significant

aneuploidy × cell type interactions (5% FDR). The top such interac-

tion involved the noncoding RNA LINC00907, whichwas strongly

up-regulated in aneuploid blastomeres of undifferentiated cleav-

age-stage embryos (AME=1.924, SE =0.201, P=1.1 ×10−21), in

contrast to itsnegligible response to aneuploidy invariousdifferen-

tiated cell types (Supplemental Fig. S12).Otherexamples of interac-

tions included the trophectoderm lineage marker GATA3, which

exhibited up-regulation in undifferentiated aneuploid cells (AME

=0.818, SE= 0.239, P=6.3 ×10−4) but down-regulation in aneu-

ploid cells of the inner cell mass (AME=−0.940, SE =0.326, P=

4.0 ×10−3) and descendant epiblast (AME=−0.973, SE=0.249, P=

9.3 ×10−5) (Supplemental Fig. S12). Despite high baseline ex-

pression, GATA3 exhibited no significant response to aneuploidy

within the trophectoderm (AME=0.023, SE=0.077, P=0.761)

(Supplemental Fig. S12).

To gain further insight into global responses to aneuploidy in

human embryos, we performed gene set enrichment analysis on

the hallmark gene sets from the Molecular Signatures Database

(MSigDB). This analysis revealed 20 gene sets that were

BA

C D

P

Figure 3. Examples of chromosome abnormalities detected based on scRNA-seq data from human embryos. Each heat map represents data from an
individual embryo. Rows of the heat maps represent single cells, whereas columns represent chromosomes (autosomes only). Dendrograms depict hier-
archical clustering of aneuploidy signatures, roughly reflecting common ancestry among aneuploid cells. (A) Embryo E7.3 was called euploid with negli-
gible deviations from the null observed for all chromosomeswithin all cells. (B) Embryo E5.13 exhibits a putativemeiotic-origin trisomy of Chromosome 21.
(C) Embryo E7.17 exhibits putative meiotic-origin monosomies of Chromosomes 4 and 13, mosaic monosomy of Chromosome 8, and sporadic low-level
aneuploidies of other chromosomes. (D) Embryo E7.5was inferred asmosaic near-haploid, with haploid or near-haploid signatures in eight of nine cells, but
near-diploidy in one cell.
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significantly enriched among the tails of genes differentially ex-

pressed in aneuploid versus euploid cells (5% FDR) (Fig. 5B–E).

We observed fewer gene sets significantly enriched for genes that

are up- (two gene sets) versus down-regulated (18 gene sets) in an-

euploid cells. Down-regulated gene sets included those related to

cell proliferation, protein processing, and metabolism. Gene sets

enriched for genes up-regulated in aneuploid cells included those

that are down-regulated by KRAS signaling (again potentially re-

flecting an antiproliferation response) as well as genes regulated

byNF-kB in response to TNF, broadly consistentwith cellular stress

and inflammatory signals previously reported in aneuploid cell

lines (Liu et al. 2017; Santaguida et al. 2017).

Aneuploidy calls based on scDNA-seq data corroborate

our findings

Although informative of cell type, the sparse and bursty nature

of scRNA-seq data poses a challenge for aneuploidy inference,

E F

BA

C D

Figure 4. Comparisons of aneuploidy across cell types. (A) Individual cells plotted on the first and second UMAP dimensions, colored by cell type anno-
tations from Stirparo et al. (2018). (B) Same as panel A, but for the second and third UMAP dimensions. (C) Cells plotted on the first and second UMAP
dimensions, colored by aneuploidy status. (D) Same as panel C, but for the second and third UMAP dimensions. (E) Proportions of aneuploid cells, stratified
by cell type. (F ) Average marginal effects (AME) of cell types on aneuploidy rates relative to aneuploidy rates of trophectoderm cells—the source for PGT-A
biopsies. Confidence intervals of all estimates overlap zero, indicating no significant difference for any cell type.
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placing practical limits on sensitivity and specificity (Griffiths et al.

2017). We thus sought to replicate the qualitative patterns of mo-

saic aneuploidy that we previously described using published data

from additional disaggregated embryos that were analyzed by sin-

gle-cell post-bisulfite adaptor tagging (PBAT) DNA methylome se-

quencing (Zhu et al. 2018). The fact that these data were based on

single-cell DNA-sequencing (scDNA-seq) lends confidence to the

aneuploidy calls. To facilitate comparison with our scRNA-seq re-

sults above, we focused on the 20 embryos from the morula and

blastocyst stages of development. A total of 65% (13 of 20) of these

embryos possessed at least one cell called as aneuploid. Applying

the same definitionwepreviously described (75%of cells of an em-

bryo possessing a particular monosomy or trisomy), nine (45%) of

these embryos possessed only mitotic aneuploidies, one (5%) em-

bryo possessed onlymeiotic aneuploidies, and three (15%) embry-

os possessed both meiotic and mitotic aneuploidies. Hierarchical

clustering of these aneuploidy calls revealed patterns qualitatively

consistent with our scRNA-based results, including prevalent low-

levelmosaicism (Supplemental Fig. S13). Among the 12 blastocyst-

stage embryos that could be tested, we detected no significant dif-

ference in the rates of aneuploidy between cells of the trophecto-

derm versus the inner cell mass (AME=0.014, SE =0.058, P=

0.811), again consistent with our scRNA-seq-based results.

Cell-type-specific variation in aneuploidy may arise and intensify

during postimplantation development

A recent study by Zhou et al. (2019) developed an extended in vitro

culture system to produce the first single-cell genomic data from

postimplantation human embryos spanning days 6–14 of

E

B

A C

D

P

P

Figure 5. Transcriptional responses to aneuploidy in human embryos. (A) Volcano plot depicting differential expression between euploid and aneuploid
cells. Positive values indicate increased expression in aneuploid cells, whereas negative values indicate reduced expression. (B) Hallmark gene sets from the
Molecular Signatures Database (MSigDB) that are significantly enriched for genes that are up- or down-regulated in aneuploid cells based on gene set
enrichment analysis (GSEA; 5% FDR). (C ) Gene set enrichment plot demonstrating that genes regulated by NF-kB in response to tumor necrosis factor
are significantly up-regulated in aneuploid cells. (D) Same as panel C, but demonstrating that MYC targets exhibit reduced expression in aneuploid cells.
(E) Same as panel C, but demonstrating that genes involved in oxidative phosphorylation are down-regulated in aneuploid cells.
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development. This included Trio-seq data (including single-cell

bisulfite sequencing) from 17 embryos, as well as scRNA-seq data

from an additional 48 embryos. Applying the GLMM described

above to published single-cell aneuploidy calls from these postim-

plantation embryos, we detected a significant enrichment of aneu-

ploid cells in the trophectoderm compared to the epiblast and

primitive endoderm (lineages derived from the inner cell mass).

This enrichment was detected in scDNA-based calls from 286 cells

of the 17 bisulfite-sequenced embryos (AME=0.142, SE =0.064,

P =0.028), as well as scRNA-based calls from 5911 cells of the 48

additional embryos (AME=0.049, SE=0.022, P=0.024). Although

we detected no overall change in per-cell aneuploidy rates across

days 6 through 14 of development (AME=0.021, SE =0.012, P=

0.088), the scRNA-based calls revealed that the enrichment of an-

euploid cells in the trophectoderm became stronger over time

(βlineage × stage=0.212, SE=0.068, P=1.84×10−3). We note that

this interaction model includes a random effect of embryo, thus

addressing correlations among cells by allowing embryos to vary

in their baseline rates of aneuploidy.

Discussion

One key limitation of most previous studies of aneuploidy in hu-

man preimplantation embryos has been their reliance on biopsies

of one or few cells. Many studies have adopted an operational

definition ofmosaicism based on PGT-A results that are intermedi-

ate between those expected of uniform euploid and uniform

aneuploid biopsies (Cram et al. 2019). This narrow definition of

mosaicism ignores the possibility of aneuploidy among the non-

biopsied cells that compose the rest of the embryo. In contrast, a

biological definition of mosaicism denotes the presence of cells

with distinct chromosome complements anywhere within the

embryo. Although mathematical modeling approaches can help

reconcile studies based on disparate definitions, such models re-

quire assumptions about unknown parameters including the spa-

tial and lineage-specific distributions of aneuploid cells within

mosaic embryos (Gleicher et al. 2017).

We sought to overcome these limitations by leveraging pub-

lished scRNA-seq data from disaggregated human embryos. By

combining signatures of gene expression alteration and allelic im-

balance, we revealed patterns of meiotic andmitotic aneuploidy at

single-cell resolution. A total of 31%of embryos displayed uniform

or near-uniform aneuploidy of at least one chromosome across all

cells—a pattern attributable to meiotic errors, which largely trace

to maternal oogenesis. Meanwhile, low-level mosaicism was prev-

alent across all cell types and developmental stages, with 74% of

embryos inferred to possess at least one cell affected by mitotic er-

ror. Although substantially higher thanmost biopsy-based studies,

this estimate is roughly in line with the few previous studies to

quantify aneuploidy in single cells of disaggregated embryos, albe-

it with different methodologies or at different stages. A landmark

study by Vanneste et al. (2009) used SNP genotyping and array

comparative genomic hybridization (CGH) to analyze 86 single

cells from 23 disaggregated cleavage-stage embryos, finding that

only three embryos were uniformly diploid, whereas the rest

were either diploid-aneuploidmosaics or mosaics of entirely aneu-

ploid cells. A recent study of 49 disaggregated cleavage-stage rhesus

macaque embryos used scDNA-seq to demonstrate that 13were eu-

ploid, nine were affected by solely meiotic errors, and the remain-

ing 27 by mitotic errors or errors of ambiguous origin (Daughtry

et al. 2019). Our estimates are also roughly consistent with aneu-

ploidy calls based on scDNA- and scRNA-seq of human blastocysts

(Zhu et al. 2018; Zhou et al. 2019), which reported evidence of

mitotic-origin aneuploidy in more than half of embryos.

Our discoveries included one example of a mosaic near-hap-

loid embryo (embryo E7.5) in which eight of nine cells appeared

haploid or near-haploid, but one cell appeared near-diploid. This

extreme form of mosaicism escaped detection based on gene ex-

pression analysis alone but was evident based on signatures of

allelic imbalance. Hydatidiformmoles are known to affect approx-

imately one in 600 pregnancies, half of which are triploid disper-

mic (two paternal and one maternal set of chromosomes) and

half of which are diploid androgenetic (two paternal sets of chro-

mosomes). An estimated 85% of the latter type are monospermic

and may arise via the extrusion of maternal chromosomes to the

first polar body, followed by “diploidization” of the paternal chro-

mosomes (Nguyen et al. 2018). The mosaic near-haploid constitu-

tion of embryo E7.5 is theoretically consistent with a dispermic

origin, as a result of postzygotic diploidization of a triploid zygote

(Golubovsky 2003). Uniparental diploidy is indistinguishable

from haploidy with our approach. Fertilization with two sperm

would explain the biallelic nature of the diploid cell, whereas the

dispermic transmission of supernumerary centrioles could also in-

duce mosaicism via multipolar mitosis. Although the IVF proce-

dures used to produce the embryos sequenced by Petropoulos

et al. (2016) were not reported, the growing use of intracytoplas-

mic sperm injection (ICSI) has reduced the prevalence of dis-

permy. Meanwhile, work in bovine embryos has revealed that

even normally fertilized zygotes may produce mixoploid embryos

by a mechanism termed “heterogoneic division” (Destouni et al.

2016). Specifically, chromosomes may segregate on an atypical

gonomeric spindle to produce a mixture of androgenetic, gynoge-

netic, and normal diploid daughter cells, thus providing one alter-

native mechanism to explain embryo E7.5. We anticipate that

future large-scale studies of disaggregated human embryos will re-

veal novel forms of mosaicism whose mechanisms of origin re-

main to be described.

By leveraging cell type information contained within

scRNA-seq data, we also evaluated the long-standing question

of how aneuploidy rates vary among cell types. Such compari-

sons provide insight into the developmental landscape of gene

essentiality and dosage sensitivity, while also shedding light on

the representativeness of PGT-A biopsies obtained from trophec-

toderm tissue. We detected no significant enrichment of aneu-

ploidy within the trophectoderm but note that the wide

confidence interval (AME=0.012, 95% CI [−0.064, 0.087]) indi-

cates that we cannot rule out modest differences. Indeed, the

∼6% enrichment of aneuploidy observed in trophectoderm cells

of mature mouse blastocysts by Bolton et al. (2016) falls within

this interval. Nevertheless, our study places bounds on any po-

tential differences and provides a useful quantitative framework

for testing such hypotheses in future single-cell data sets.

Although we replicated this lack of enrichment using scDNA-

seq-based calls from additional preimplantation embryos (Zhu

et al. 2018), we detected significant enrichment of aneuploidy

in the trophectoderm versus the primitive endoderm and epiblast

(lineages derived from the inner cell mass) in published data from

postimplantation embryos (Zhou et al. 2019). The latter data set

included nearly 6000 cells, lending greater statistical power to

such comparisons. The aneuploidy calls from Zhou et al. (2019)

also revealed a significant interaction with day of development,

indicating that the enrichment of aneuploidy in the trophecto-

derm becomes more extreme as development proceeds.

Whether this observation reflects cell-type-specific apoptosis
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and/or proliferation defects of aneuploid cells is an open ques-

tion for future study.

The transcriptional consequences of aneuploidy are known

to extend beyond direct dosage effects to trans-acting impacts

on other chromosomes as well as tertiary stress responses

(FitzPatrick 2005; Sheltzer et al. 2012). Several recent studies

have examined these responses using bulk RNA-seq analysis of

embryos with specific aneuploidies (Kawai et al. 2018; Licciardi

et al. 2018; Groff et al. 2019; Sanchez-Ribas et al. 2019;

Weizman et al. 2019). However, bulk RNA-seq averages effects

across cells, and studies of specific aneuploidies may conflate pri-

mary, secondary, and tertiary effects, thus hindering interpreta-

tion. We used a negative binomial mixed effects model to

examine indirect responses to aneuploidy in single cells through-

out early human development. This statistical method effectively

accounts for nonindependence among cells within embryos. Such

sampling designs are common among scRNA-seq data sets, and

mixed effects models may be broadly applicable to differential ex-

pression analysis in this context. Our analysis revealed thousands

of genes that are differentially expressed in aneuploid versus eu-

ploid cells. The top associated gene (GDF15) is a known biomarker

of aneuploidy (Dürrbaum et al. 2014), thus supporting our ap-

proach. Although statistically robust, the distributions of GDF15

expression in euploid and aneuploid cells overlapped sub-

stantially (Supplemental Fig. S10), underscoring the conclusion

that no individual gene is diagnostic of aneuploidy status.

Nevertheless, our results may be useful for exploring signatures

of aneuploidy and associated stress responses, which could in

turn be correlated with developmental outcomes. Indeed, multi-

ple previous studies have suggested the utility of gene expression

signatures for IVF embryo selection but have yet to be validated in

large independent data sets (Vera-Rodriguez et al. 2015; Groff et al.

2019). In addition to main effects of aneuploidy on gene expres-

sion, we discovered hundreds of genes with significant cell-type-

specific responses to aneuploidy. Among the top aneuploidy×

cell type interactions was the transcription factorGATA3, a known

trophectoderm lineage marker with a role in promoting trophec-

toderm fate (Home et al. 2017). GATA3 was significantly up-re-

gulated in undifferentiated aneuploid cells of cleavage-stage

embryos. It is thus tempting to speculate that aneuploidy itself

may bias lineage decisions, although our previous analysis sug-

gests that any such biases are not sufficient to drive large differenc-

es in aneuploidy incidence among cell types.

A keymethodological advance describedherewas the integra-

tion of signatures of expression alteration and allelic imbalance to

detect aneuploidy in single cells. Consideration of allelic imbal-

ance bolsters confidence in our results, especially in cases ofmono-

somies, which generate monoallelic expression across entire

chromosomes (allowing for technical artifacts such as barcode

swapping, spurious SNPs, and mismapped reads). Despite this ad-

vance, inference of aneuploidy from scRNA-seq data remains chal-

lenging. One caveat is that any deviation of expression and allelic

balance from diploid expectations could lead us to reject the null

hypothesis, whereas phenomena other than whole-chromosome

aneuploidy may occasionally induce such deviations. For exam-

ple, large structural variation may be falsely classified as aneuploi-

dy by our approach. Although the effect size thresholds that we

implemented help mitigate this concern, approaches to explicitly

distinguish segmental and whole-chromosome aneuploidies are

priorities for future development. Additional opportunities for

methodological improvement include the integration of popula-

tion-based and/or read-based phasing into allelic imbalance anal-

ysis, which could be especially beneficial for the inference of

trisomies (Loh et al. 2018).

The Petropoulos et al. (2016) data set used in our study was

generated using the Smart-Seq2 platform, which captures full-

length transcripts, albeit with 3′ bias. This contrasts with recent

droplet-based platforms such as Chromium (10x Genomics) that

achieve higher throughput (i.e., number of cells) but are limited

to 3′ end sequences upstream of poly(A) tails (Haque et al. 2017).

The full transcript coverage of Smart-Seq2 is advantageous for

our application, as it enhances SNP discovery and enables quanti-

fication of allelic imbalance. Smart-Seq2 and other plate-based

protocols also generally achieve higher capture efficiency than

droplet-based platforms, which is important for low input applica-

tions such as sequencing of embryos composed of few cells.We an-

ticipate that future improvements in the sensitivity and precision

of scRNA-seq platforms will enhance the downstream accuracy of

aneuploidy detection. Moreover, application of methods such as

G&T-seq (Macaulay et al. 2015) to human embryos will combine

the accuracy of aneuploidy detection using scDNA-seq with the

rich biological insights enabled by scRNA-seq.

One additional caveat is that the data analyzed in our study

derive from IVF embryos obtained from relatively few patients,

about whom no demographic or clinical information was pub-

lished. We therefore urge caution in extrapolating these findings

to a broader population. Previous studies have established a strong

association betweenmaternal age and incidence ofmeiotic error in

preimplantation embryos (Hassold and Hunt 2001). Studies have

also revealed significant, albeit modest, associations between an-

euploidy rates and various fertility diagnoses (McCoy et al.

2015b; Kort et al. 2018), as well as patient genotypes (McCoy

et al. 2015a; Chernus et al. 2019). One persistent concern with

all studies of preimplantation embryos is the possibility that IVF

culture conditions impact chromosome stability. Indeed, such im-

pacts have been documented by comparing in vitro versus in vivo

matured bovine embryos (Tšuiko et al. 2017), although no such

differences have been detected in humans during preimplantation

development (Munné et al. 2020) or at live birth (Zamani Esteki

et al. 2019).

Aneuploidy is the leadingcauseofpregnancy loss andcongen-

ital birth defects in humans (Hassold and Hunt 2001). As genetic

testing platforms have improved, the existence of chromosomal

mosaicism is increasingly acknowledged, but the prevalence of

this phenomenon remains disputed, and the impacts on human

development remain unclear (McCoy 2017). Here, we developed

an approach to use scRNA-seq data from disaggregated human

embryos to quantify aneuploidy andmosaicism at single-cell reso-

lution. Our results support the conclusion that meiotic aneuploi-

dies and low-level mosaic aneuploidies are common, but high-

level mosaic aneuploidies are relatively rare. Aneuploidy rates

among various cell types are similar during preimplantation devel-

opment but may arise and intensify throughout postimplantation

development. Together, our study reconciles disparate estimates of

mosaicism based on different definitions and provides a quantita-

tive framework for investigating aneuploidy in ever-growing sin-

gle-cell data sets.

Methods

Aneuploidy inference on scRNA-seq data

Aneuploidy inference was based on complementary signatures of

chromosome-wide differential expression and allelic imbalance.
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The differential expression signature is the basis of the software

package scploid (Griffiths et al. 2017), whichwas previously bench-
marked using genome and transcriptome sequencing data from
mosaic aneuploid mouse embryos.

Gene expression quantifications from the Petropoulos et al.
(2016) data set were obtained from conquer (Soneson and

Robinson 2018) as input to scploid. Analysis was limited to the au-
tosomes, as required by the software. Cells in the lower 0.1 quan-
tile of mapped reads and/or percent mapped reads were excluded

from analysis. Cell type annotations were obtained from Stirparo
et al. (2018) and visualized on both principal component

(Supplemental Fig. S3A) and UMAP (Fig. 4A,B) dimensions using
Monocle (Trapnell et al. 2014) to confirm their clustering.
Embryonic stage and cell type annotations were used to define

strata as input to scploid, thereby limiting cell-type- and stage-spe-
cific variation that may confound aneuploidy inference. Groups

that failed scploid quality control procedures were dropped from
the analysis (Supplemental Fig. S3B). This resulted in the inclusion
of 1115 cells from 74 embryos across 11 stage/cell type groups.

Each group expressed between 3053 and 3351 genes at a median
of 50 counts per million reads mapped (CPM) or greater per cell.

Allelic imbalance Z-scores

Raw single-cell RNA-seq data from Petropoulos et al. (2016) were
obtained from EMBL-EBI ArrayExpress (E-MTAB-3929). Reads were

mapped to the reference genome using STAR (v2.7.1a) (Dobin
et al. 2013). Single-cell alignments from the same embryowere then
merged using SAMtools (v1.9) (Li et al. 2009) and processed for var-

iant discoverywithGATK (v4.0.12.0) (McKenna et al. 2010), accord-
ing to the following workflow: https://gatkforums.broadinstitute

.org/gatk/discussion/3891/calling-variants-in-rnaseq. Using em-
bryo-level heterozygous SNPs and corresponding single-cell align-
ments as input, allelic read counts were then computed at every

heterozygous SNP in every cell using the ASEReadCounter tool of
GATK (Castel et al. 2015). Theminimumof the counts of reference

and alternative allele-supporting reads was obtained for every het-
erozygous SNP, summed across the chromosome, then divided
by the total read count for that chromosome toobtain anallelic im-

balance ratio.
To convert the observed allelic imbalance ratios to Z-scores,

we first regressed out the effect of the number of reads on allelic im-
balance since we observed a positive correlation between the ob-
served proportions and the number of reads used to generate

them. Then, under the assumption that most cell-chromosome
combinations would lie under the null, we identified all null

data points as those whose allelic imbalance estimates lie between
the first quartile and the third quartile of the empirical distribu-
tion. We then estimated the residual at the null proportion as

the mean of all the generated residuals for the null data points.
To estimate the variance under the null, we further assumed that
the residuals were approximately normally distributed. With this

assumption and recalling that we already assumed that most
cell-chromosome combinations would lie under the null, we de-

rived the variance of the residual of the allelic imbalance under
the null using the formula below:

s2 =
IQR

2 ∗ F−1(0.75)

( )2

,

where IQR is the empirical interquartile range of the residuals, and

Φ−1 is the inverse of the standard normal cumulative distribution
function. This is motivated by the fact that under the normal dis-

tribution, the interval, I, contains the middle 50% of the data as

I = m + s ∗ F−1(0.75).

This interval has length

L = 2 ∗ s ∗ F−1(0.75) ≈ IQR.

Hence, solving for σ and squaring it, we obtain the result above.

With the mean and variance obtained under the null, we then
converted the residuals to Z-scores by subtracting this mean
from each point and dividing by the square root of the variance.

We then computed one-sided P-values, based on the expectation
that bothmonosomy and trisomywill have the effect of increasing
allelic imbalance.

Omnibus test combining allelic imbalance and scploid results

We conducted an omnibus test for each cell-chromosome using
the P-values obtained from the scploid and allelic imbalance anal-

yses described above. We note that, as a last step, scploid imposes
an effect size threshold (|1−sij|≥0.2) to classify a chromosome as
aneuploid (Griffiths et al. 2017). To incorporate this threshold

into our analysis, we set scploid P-values for cell-chromosomes be-
low this threshold to 1. We combined allelic imbalance and
scploid P-values using Fisher’s method (Fisher 1925). Correction

for multiple testing was then carried out using TreeBH
(Bogomolov et al. 2017) to account for the hierarchical nature

of the data. Hypothesis tree structure was defined as chromo-
somes nested within cells nested within embryos, and FDR was
controlled at 1% at each level. To assign aneuploid chromo-

somes to the categories of monosomy and trisomy, we applied
k-means clustering (k=2) to the Z-scores from the allelic imbal-

ance and scploid analyses. Cell-chromosomes composing the clus-
ter with lower mean Z-scores were classified as monosomic, and
cell-chromosomes composing the other cluster were classified as

trisomic.

Simulation studies

We performed simulations to investigate the impact of integrat-
ing signatures of allelic imbalance with signatures of overall gene

expression alteration. We generated data using a previously de-
scribed simulation framework (Griffiths et al. 2017) with modifi-

cations to extend the simulation to allelic imbalance data.
Specifically, we used our previously inferred ploidy states for
each cell-chromosome combination to simulate new gene expres-

sion counts and allelic imbalance ratios expected given those
ploidy states. Allelic ratios were randomly drawn from beta distri-

butions whose mean and variance parameters were inferred from
the data, stratified by inferred ploidy state. We then inferred the
ploidy state of each simulated cell-chromosome combination us-

ing the gene expression signature alone, as well as using the com-
bined gene expression and allelic imbalance signatures, integrated
using the aforementioned omnibus test. By comparing inferred

aneuploidies to the truth set from which we simulated, we could
then test whether integrating allelic imbalance information pro-

vided any improvement relative to using the expression signature
alone. In addition to simulating data using variance parameters
for gene expression and allelic imbalance informed by the

Petropoulos et al. (2016) data, we also evaluated performance un-
der scenarios of reduced or inflated variance.We implemented this

scaling by multiplying the baseline variance of each signature by
an overdispersion factor, set to 0.3, 1, and 5. We repeated our sim-
ulations 100 times for each combination of overdispersion param-

eters and calculated mean sensitivity, specificity, and other
performance metrics reported in Supplemental Figures S1 and S2

and Supplemental Table S1.
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Cell-type-specific propensity for aneuploidy

We assessed the effect of cell type on aneuploidy status using
mixed-effects logistic regression. We applied these models to our

own aneuploidy calls based on the Petropoulos et al. (2016)
scRNA-seq data, as well as aneuploidy calls based on single-cell
DNA- and RNA-sequencing of additional embryos, obtained

from supplemental tables of Zhu et al. (2018) and Zhou et al.
(2019).We fit twomodels to each data set. In bothmodels, our out-

come was a binary variable indicating aneuploidy status (defined
as aneuploid if the cell possessed one or more aneuploid chromo-
some) and embryonic stage (days postfertilization), which was

treated as a fixed effect continuous variable. In the first model,
we included cell type (categorical variable), and in the second
model, we included an indicator variable for the trophectoderm

cells (with all other cell types grouped as nontrophectoderm).
We treated embryo as a random effect to account for correlation

among cells within embryos and estimated the random intercept
for both models. Embryos were meanwhile assumed independent
of one another.

Average marginal effects

Let E(Yij| Xi, bj) represent the fitted values from each of the gener-
alized linear mixed models defined above for the ith cell with the
jth random effect (e.g., in the cell-type-specific propensity analy-

sis, j refers to the jth embryo) and X is the covariate whose AME
wewish to calculate. The AME is defined for a binary covariateX as

1

n1

∑

n

i

I(Xi = 1)E(Yij| Xi, bj) −
1

n2

∑

n

i

I(Xi = 0)E(Yij| Xi, bj),

where n1 =
∑n

i I(Xi = 1) and n2 =
∑n

i I(Xi = 0). We estimated
these values and their standard errors using the margins package

in R (https://CRAN.R-project.org/package=margins).

Differential expression and gene set enrichment analysis

Global transcriptional responses to aneuploidy were investigated
by testing for differential expression between cells called as euploid

versus aneuploid. Single-cell expression counts were normalized
using SCnorm (Bacher et al. 2017), with cell type annotations spec-

ified as biological conditions. Analysis was limited to broadly ex-
pressed genes with ≥1 normalized expression count for at least
half of the cells. To mitigate direct dosage (i.e., cis-acting) effects

of aneuploidy, we restricted each test to cells called as euploid
for the chromosome containing the respective gene. For each

gene, we then fit a negative binomial mixed model, implemented
with lme4 (Bates et al. 2015). Normalized read counts (plus a pseu-
docount) were specified as the response variable, cell type and em-

bryowere specified as crossed random effects, and embryonic stage
(i.e., day postfertilization) and aneuploidy status were specified as
fixed effects. We fit both a random slope and intercept, as well as a

random intercept-only model for the cell type variable, retaining
the more complex model only if it significantly improved fit

over the reduced model based on analysis of deviance (α= 0.05).
Coefficients, test statistics, and P-values were evaluated for the an-
euploidy status term. Models producing convergence warnings

(2.1% or 383 of 17,970 genes) were dropped from the analysis.
To identify genes with cell-type-specific differences in gene

expression between euploid and aneuploid cells, we added an in-
teraction term to our previous model. Our outcome variable was
the normalized read counts of a given gene across cells.We assume

a negative binomial distribution for the counts, to account for pos-
sible overdispersion in our data, and fit a generalized linear mixed

model with embryo-specific random intercepts and fixed indepen-

dent variables consisting of (1) the aneuploidy status (defined as

aneuploid if the cell possessed one or more aneuploid chromo-
some), (2) embryonic stage (days postfertilization), treated as a
fixed effect continuous variable, and (3) the cell type (epiblast, in-

ner cell mass, intermediate, primitive endoderm, trophectoderm,
or undifferentiated), which was treated as a categorical variable.

In addition, we added an interaction termbetween aneuploidy sta-
tus and each cell type to obtain cell-type-specific estimates of dif-
ferential expression between euploid and aneuploid cells. We

accounted for correlation among cells within embryos by treating
embryo as a random effect. For each gene, we used a likelihood ra-

tio test to evaluate the joint effect of all interaction terms in our
model. For genes where our likelihood ratio tests were significant,
we ran additional analyses to estimate the cell-type-specific AMEs.

Gene set enrichment analysis (Subramanian et al. 2005) was
performed using the FGSEA (Korotkevich et al. 2019) package in

R (R Core Team2019). In order to limit the number of tests and im-
prove biological interpretability, we focused our analysis on
the Molecular Signatures Database hallmark gene sets (Liberzon

et al. 2015), accessed via msigdbr (https://CRAN.R-project.org/
package=msigdbr). Genes were ranked by signed P-value as input

to GSEA, which was run using the adaptive multilevel splitting
option to compute arbitrarily small P-values.

Software availability

All codes necessary for reproducing our analyses are available at
GitHub (https://github.com/mccoy-lab/aneuploidy_scrnaseq) and

Zenodo (DOI: 10.5281/zenodo.3790930) and also provided as
Supplemental Code.
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