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Single-cell analysis of patient-derived PDAC
organoids reveals cell state heterogeneity and a
conserved developmental hierarchy
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Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of

cancer mortality by 2030. Bulk transcriptomic analyses have distinguished ‘classical’ from

‘basal-like’ tumors with more aggressive clinical behavior. We derive PDAC organoids from

18 primary tumors and two matched liver metastases, and show that ‘classical’ and ‘basal-

like’ cells coexist in individual organoids. By single-cell transcriptome analysis of PDAC

organoids and primary PDAC, we identify distinct tumor cell states shared across patients,

including a cycling progenitor cell state and a differentiated secretory state. Cell states are

connected by a differentiation hierarchy, with ‘classical’ cells concentrated at the endpoint. In

an imaging-based drug screen, expression of ‘classical’ subtype genes correlates with better

drug response. Our results thus uncover a functional hierarchy of PDAC cell states linked to

transcriptional tumor subtypes, and support the use of PDAC organoids as a clinically rele-

vant model for in vitro studies of tumor heterogeneity.
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P
ancreatic ductal adenocarcinoma (PDAC) is the most com-
mon pancreatic cancer type1, with a current 5-year survival
rate of just 9%2, and is predicted to be the second leading cause

of cancer mortality by 20303. Only 10–20% of PDAC are resectable at
diagnosis, and response to chemotherapy is generally poor although
long-term survival is achieved in a small fraction of patients4,5.

Large-scale genomic studies have identified recurrent genetic
alterations in PDAC, with KRAS driver mutations detected in
over 90% and inactivating mutations or deletions of TP53,
SMAD4, and CDKN2A in over 50% of tumors6–9. These altera-
tions converge onto a limited number of aberrant signaling
pathways10,11. Metastatic lesions have been shown to share
identical driver gene mutations with the primary tumor12, further
supporting a high level of genomic uniformity in PDAC. Defining
the origins of clinical heterogeneity in PDAC to enable patient
stratification and appropriate patient-specific treatment choices,
therefore, remains a key challenge.

Transcriptomic analyses of PDAC have resulted in several sub-
type classification schemes11,13,14, with most evidence supporting a
distinction between ‘classical’ and ‘basal-like’ tumors15. The ‘clas-
sical’ subtype is associated with a higher level of mucinous features
in histopathological assessment and longer survival14. Whether
these subtypes reflect genetically distinct cells, different evolutionary
pathways, or different progression status, remains unclear.

Whereas most earlier studies of transcriptional features of human
PDAC were limited to a single sample per patient, recent RNA
sequencing data from multi-region-sampled biopsies or even single
tumor cells demonstrate a previously unappreciated degree of
intratumoral heterogeneity in PDAC. In particular, transcriptionally
and histologically defined subpopulations exhibiting ‘classical’ or
‘basal-like’ features were found to coexist in metastases from the
same patient or even within the same tumor sample16. Further-
more, evidence from multi-region-sampled metastatic pancreatic
cancers suggests that basal-like cell populations may emerge as a
subclonal population within classical PDAC tumors17.

Regardless of sampling resolution, attempts to delineate tran-
scriptional tumor subtypes or distinct functional cell types in
primary PDAC are often confounded by differences in neoplastic
cellularity, resulting in the erroneous inclusion of transcriptional
features present in stromal or normal pancreas cells18. Differences
in cell-type composition were also described in recent single-cell
RNA sequencing (scRNA-seq) efforts, which identified distinct
populations of cells within surgically resected PDAC; these
include immune cells, fibroblasts, and endothelial cells as well as
abnormal and malignant ductal cells19,20. To simplify the study of
PDAC tumor cells, patient-derived organoid models of human
PDAC were introduced within the past five years, which reflect
histopathologic, proteomic, genomic, and transcriptomic features
of the original tumors yet remain experimentally tractable21–23.
Such models offer great potential for detailed analyses of PDAC
biology and developing therapeutic approaches.

To investigate the functional identity and hierarchical rela-
tionships of PDAC cells, we here performed scRNA-seq of PDAC
organoids of primary tumors and metastatic samples from 18
patients. We show that ‘classical’ and ‘basal-like’ cells may coexist
within the same sample, and the level of subtype heterogeneity is
linked to tumor grade. Despite transcriptional differences
between tumors, patient-derived organoids share functional
tumor cell states that are connected by a differentiation hierarchy
also present in primary PDAC samples. Our results support the
use of PDAC organoids to model tumor heterogeneity in vitro.

Results
PDAC organoids comprise malignant ductal cells. To enable
the in vitro study of human PDAC, we derived 24 tumor

organoid lines from samples taken during surgery. Eighteen
samples were obtained from primary tumors from individual
patients. In one case, distinct organoid lines were derived from
two pancreatic sites within the same primary tumor, providing a
biological replicate (p080 and p081), and in another case, a
technical replicate was generated by analyzing one organoid line
at different passage numbers (p039 and p039b). We also obtained
samples of two different liver metastases in addition to the pan-
creatic primary tumor from one patient (p083, p084 and p085),
and two samples from unmatched metastases (Supplementary
Table 1 and Fig. 1a, b). All tumors were classified as PDAC based
on histological assessment. Patient-derived PDAC organoids, as
well as nine of the biopsy samples, were classified based on bulk
RNA sequencing as either basal-like or classical PDAC according
to the subtypes defined by Moffitt et al.14; in each case, the PDAC
organoid subtype corresponded to the biopsy sample subtype
(“Methods” and Supplementary Table 1).

Single-cell RNA sequencing of all 24 tumor organoid lines
resulted in transcriptomic information for a total of 93,096 cells
after quality control, with a median of 3,877 cells from each
organoid line and a median of 4,162 genes detected per cell
(“Methods” and Supplementary Fig. 1a).

To determine the cell type identity of PDAC organoid cells, we
compared single-cell transcriptomes from PDAC organoids with
recent data from primary PDAC19. Across all patients, PDAC
organoid cells were uniformly identified as malignant ductal cells
by reciprocal principal component analysis and expression of
characteristic genes (Supplementary Fig. 1b), consistent with
previous observations that the in vitro culture conditions promote
ductal cell growth21.

PDAC organoids show patient-specific gene expression. PDAC
is characterized by a small number of recurrent genetic alterations
that occur at high frequency, and therefore cannot account fully
for differences in disease progression and therapeutic response
between patients9. To investigate distinguishing features of PDAC
organoids at the transcriptional level, we constructed a shared
nearest neighbor (SNN) graph of all cells and found that cells
from the same patient clustered together (Fig. 1c), even if they
derived from different biopsies or metastatic sites processed
separately. This indicates that transcriptional differences between
patients are larger than within patients and are not merely due to
technical batch effects. Patient-specific differences in transcrip-
tional profiles were also not explained by individual known
expression quantitative trait loci24 (Supplementary Fig. 1c).

To further investigate the origin of transcriptional hetero-
geneity between PDAC tumors, we determined genes that were
differentially expressed in organoid models of primary tumor
cells derived from each patient compared to all others. While
expression of the most highly upregulated genes in each PDAC
organoid was often patient-specific (Fig. 1d, e and Supplementary
Table 2), we observed that many of these genes belonged to the
same gene families. Analysis of gene family membership of the
top 20 enriched genes for each patient, excluding gene families
defined by specific molecular domains, showed that the most
highly represented gene families included cell surface and
transmembrane proteins (CD molecules, claudins, and solute
carriers), secreted proteins that interact with the extracellular
matrix (mucins, kallikreins), enzymes that metabolize a range of
substrates and potential drug targets (serine proteases, aldo-keto
reductases), and type-I keratins (Fig. 1f). In PDAC organoids
where these genes were detected, they were frequently expressed
in a large proportion of cells, but with very low or zero expression
in other lines (Fig. 1g). Since many of the gene families we
identified have previously been proposed as indicators of tumor
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identity and/or prognosis in PDAC patients25–30, these results
have important implications for biomarker identification in
PDAC, highlighting that samples from a large enough cohort of
patients need to be analyzed in order to overcome interpatient
transcriptional heterogeneity.

Subtype heterogeneity correlates with poor prognosis. PDAC is
commonly classified into ‘classical’ and ‘basal-like’ transcriptional
subtypes, with the latter carrying a poorer prognosis14. Bulk
RNA-seq of PDAC organoids from our cohort grouped organoid
lines into basal-like, classical, and intermediate subtypes (Sup-
plementary Table 1). To elucidate subtypes at the single-cell level,

cells from all patient-derived organoids were scored for the
expression of published subtype signatures consisting of 25 genes
per subtype14. Overall, subtype annotation correlated well with
bulk results (Supplementary Table 3). For the majority of patient-
derived organoids, following PCA-based clustering of cells, sub-
type signature scores were homogeneous across cell clusters and
reflected the subtype determined by bulk RNA-seq (Fig. 2a).
Conversely, we identified a subset of patient-derived organoids
containing both ‘basal-like’ and ‘classical’ cells (Fig. 2b), with
corresponding marker gene expression (Fig. 2c). Notably, we
found that PDAC organoids exhibiting heterogeneous subtype
identity had been classified as WHO grade 3 or 4 tumors in
histopathological assessments, whereas PDAC organoids with
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Fig. 1 Intertumor heterogeneity in patient-derived PDAC organoids. a Schematic of the experimental workflow. b Example images of four patient-derived

PDAC organoid lines after 10 days of culture. Scale bars, 100 µm. c UMAP embedding of 24 scRNA-seq samples from 18 patients, showing that cells cluster

by patient origin (p039 is a technical replicate of p039b; p080 is a biological replicate of p081; p084 and p085 derive from liver metastases matched to

p083). d Heatmap showing the expression of the 20 most highly differentially expressed genes per patient. e Expression of selected patient-specific genes,

using the same UMAP representation as in (c). f Gene group analysis of the 20 most highly differentially expressed genes per patient. Bar plots show the

proportion of patients in which the indicated gene groups were overrepresented (blue), and the number of unique genes from each gene group (green).

g Expression of selected patient-specific genes across all patients.
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homogeneous subtype identity had been classified as grade 2 or 3
(Fig. 2d). Moreover, patients in our cohort with homogeneous
classical PDAC tended to have longer overall survival whereas the
outcome of basal-like tumors tended to be poorest (Supplemen-
tary Fig. 1d). Homogeneous enrichment for ‘classical’ subtype
marker genes in PDAC organoid lines, therefore, correlates with
more differentiated tumors, which are associated with a better
prognosis.

Functional cell states are shared across patients. To identify
cellular states that are shared across tumors, we performed reci-
procal PCA-based integration of 18 primary PDAC organoid
transcriptomes (“Methods”). Clustering of cells revealed nine
functional cell states that were conserved across patients (Fig. 3a
and Supplementary Fig. 2a).

We evaluated the characteristics of each cluster by differential
expression analysis (Fig. 3b and Supplementary Table 4). Five
clusters represented cell moving through the different cell cycle
phases (labeled Cycling-1 to Cycling-5). Two clusters were
devoid of cycling cells (labeled Nonycling-1 and Noncycling-2),
but comprised cells expressing cyclin-dependent kinase inhibitor
1 (Supplementary Fig. 3a). These clusters showed increased
expression of genes involved in secretion, digestion, cell
adhesion, and locomotion. While immune response signaling
was generally upregulated across the noncycling clusters, one
additional cluster (labeled IFN-1) showed specific expression of
genes involved in type I interferon signaling. The smallest cluster
(labeled CXC-1) was enriched for cells expressing CXC motif
ligands such as CXCL1, CXCL2, and CXCL8, which are thought
to stimulate cancer cell proliferation and migration31–33. Clusters
IFN-1 and CXC-1 both comprised cycling and quiescent cells
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Fig. 2 Expression of PDAC subtype signatures. a Heatmap showing the expression of Moffitt subtype signature genes across individual clusters from all

patients. b Distribution of Moffitt subtype scores across PDAC organoid cells, shown for two homogeneous (top) and two heterogeneous (bottom)

samples. Blue indicates classical subtype scores, red basal-like (“Methods”). c Top: eight distinct clusters of cells were identified in p100. Bottom:

expression of characteristic genes for the basal-like (top) and classical (bottom) subtype across clusters, showing significantly higher expression of

classical genes and lower expression of basal-like genes in cluster 8 compared to all others. d Proportion of homogeneous and heterogeneous organoids

that were classified as grade 2, 3, or 4 by histopathological assessment of the original tumor.
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Fig. 3 Functional cell states shared across PDAC patients. a UMAP representation of clusters shared across patients, after PCA-based integration of

PDAC transcriptomes from 18 primary PDAC organoid lines. b Gene ontology (GO) term enrichment analysis using the top 100 upregulated genes per

cluster. Gray boxes indicate no significant enrichment. c Cell cycle scores for each cell, computed based on the expression of S and G2/M phase

genes, were visualized using the same UMAP representation as in (a). d Expression of characteristic genes across all cells from primary PDAC organoid

lines, visualized using the same UMAP representation as in (a). e The heatmap shows the average expression per cluster of genes specifically enriched

in clusters CXC-1 and IFN-1 with interactions recorded in the STRING database55. f Networks representing gene interactions considered in (e).

g Representative images of RNA fluorescence in situ hybridization (FISH) staining for KRT19 indicating PDAC cells (magenta) together with either TFF3,

MKI67, or S100A2 (green) in primary tumor sections from p027 and p100. Nuclei are stained with DAPI (blue). Scale bar, 50 µm. FISH staining was

repeated twice on individual sections with similar results. h Quantification of RNA FISH stainings shows the signal density per nucleus for each transcript in

PDAC cells (identified by KRT19 staining), normalized to the density in sample p027 (p027: n= 339 nuclei for MKI67 and TFF3, 369 nuclei for S100A2;

p100: n= 176 nuclei for MKI67 and TFF3, 306 nuclei for S100A2; each from three separate images, with error bars showing standard errors in the mean).
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(Supplementary Fig. 3b). Notably, the cycling and noncycling
clusters contained cells from all patient samples, but only five
patients (p006, p018, p027, p047, and p089) contributed at least
1% of sampled cells to cluster IFN-1 and only two patients (p064
and p100) contributed similarly to cluster CXC-1 (Supplemen-
tary Table 5). RNA in situ hybridization confirmed the
differential representation of clusters IFN-1 and CXC-1 in
patient-derived cultures as well as primary tumors (Supplemen-
tary Fig. 2b).

We thus concluded that all patient-derived PDAC organoids
contained cycling cells, which we resolved into different cell cycle
phases (Fig. 3c), and differentiating cells assuming functional
characteristics reminiscent of their pancreatic origin (Fig. 3d). In
addition, a subset of patients also harbored cell clusters with
specific expression of cytokines thought to contribute to tumor
progression by autocrine and paracrine mechanisms (Fig. 3e, f).

RNA in situ hybridization of surgical primary tumor samples
for KRT19 (a marker of neoplastic PDAC cells), TFF3 (a marker
of secretory cells and of the classical PDAC subtype), S100A2 (a
marker of the basal-like PDAC subtype), and MKI67 (a
proliferation marker) showed higher TFF3 expression in the
classical subtype and higher S100A2 expression in the basal-like
subtype (Fig. 3g, h), confirming that PDAC organoids reflect the
original patient tumors.

Differentiation hierarchy in PDAC organoids. Based on the
observation that a subset of clusters shared across PDAC organoid
lines contained cycling cells, we sought to identify the differ-
entiation trajectory of PDAC organoid cells. Applying the recent
concept of RNA velocity34, we determined changes over time in
gene expression, as estimated by the relative abundance of
unspliced and spliced mRNA in each sample (Fig. 4a). By Markov
chain tracing, we identified probable startpoints and endpoints of
differentiation trajectories (Fig. 4b). Across all patients, trajectory
startpoints coincided with cycling clusters, with most trajectories
converging onto cluster Cycling-4 as the cell population of origin
(Fig. 4b, c). Trajectory endpoints, on the other hand, were pre-
dominantly located in the distant cluster Noncycling-2 (Fig. 4b, c).

Notably, when relating the Moffitt subtype identity of cells to
their position along the lineage trajectory, we found that the
‘classical’ gene signature was enriched in the differentiated
secretory compared to the cycling cells (Fig. 4d, e).

As our in vitro organoid model is enriched for progenitor-like
cells compared to primary tumor samples (Supplementary
Fig. 1b), different cell cycle phases could be resolved in our data,
and we identified a bifurcation point in G1 phase at which cells
either re-enter the cell cycle or differentiate towards the secretory
state (Fig. 4f). To further investigate the fate behavior of PDAC
organoid cells, we calculated a minimum spanning tree linking all
cells in clusters Cycling-1, Cycling-5, Noncycling-1, and Non-
cycling-2, and assigned each cell a pseudotime value along the
bifurcating path. In addition to ubiquitous cell cycle-related
genes, this approach identified potential drivers of cellular fate;
for example, GGCT (gamma-glutamylcyclotransferase) and
RANBP1 (Ran-binding protein 1) show increased expression
soon after the bifurcation point in cells re-entering the cell cycle,
whereas the cell adhesion gene CEACAM6 and S100A6 encoding
a calcium-binding protein are upregulated in differentiating cells
(Fig. 4g).

We thus conclude that PDAC organoid growth is fueled by a
large pool of cycling cells, which sustain a population of
differentiating progeny that assume secretory function. Notably,
this functional hierarchy is conserved in PDAC organoids from
all patients in our cohort, as well as in scRNA-seq data from
primary PDAC (Supplementary Fig. 2c).

Liver metastases re-establish aspects of the primary tumor.
PDAC is frequently metastatic at diagnosis, with only 10−20% of
patients qualifying for a potentially curative surgery35. While
most patients with advanced PDAC receive palliative che-
motherapy, the benefit of neoadjuvant chemotherapy is a subject
of current debate36,37. A recent bulk whole-genome sequencing
study of treatment-naïve PDAC tumors and metastatic lesions
found identical known driver gene mutations in primary tumors
and all matched metastases12, spurring hope that targeted
therapies could therefore provide a clinical benefit in advanced
PDAC by simultaneously eliminating genetically homogeneous
cells at multiple sites.

Here, we addressed the question of cellular heterogeneity in
metastatic PDAC at the transcriptional level, by deriving PDAC
organoid lines from two liver metastases (M1 and M2) and from
the same patient’s primary tumor (P). After merging single-
cell transcriptome data from the three samples by reciprocal PCA,
we identified five cell clusters with differential representation in
the three PDAC organoid lines (Fig. 5a). All samples contained
cycling cells, as indicated by MKI67 expression (Fig. 5b). Other
functional aspects of PDAC, including secretion (e.g., FABP1,
SCG5), digestive enzymes (e.g., PRSS1, PGC), cytoskeleton or cell
adhesion genes (e.g., ANXA6, TUBB2B, and CEACAM6), MHC
complex members (e.g., CD74, HLA-DQB1, and HLA-DRB1) and
putative inflammasome inhibitory genes (e.g., TMEM176A,
TMEM176B)38, were heterogeneously expressed between clusters
(Fig. 5c). For example, cluster 2, which was enriched for genes
related to secretion and digestion, was detected in P and M2, but
not in M1.

Bulk RNA-seq suggested that both metastasis-derived organoid
lines showed more ‘basal-like’ gene expression than organoid
lines derived from the primary tumor (Supplementary Table 1),
consistent with earlier observations of ‘basal-like’ phenotype
enrichment in metastatic tissues14. Conversely, at the single-cell
level, we found transcriptional subtype heterogeneity even within
a single metastasis-derived organoid line, with a subset of cells
from M2 showing more ‘classical’ gene expression than a subset
of cells derived from the primary tumor (Fig. 5d).

By projecting scRNA-seq data from both metastasis-derived
organoid lines onto the PCA of all primary PDAC organoid
transcriptomes, we further observed a depletion of differentiated
cells (cluster ‘Noncyling-2’) especially in M1 (Fig. 5e), corre-
sponding to the depletion of functional cluster 2 identified above
(Supplementary Fig. 3c).

These observations suggest that metastatic PDAC lesions in the
liver re-build diverse aspects of the original tumor, including the
differentiation hierarchy identified in primary samples. Since both
M1 and M2 express genes also detected in the primary tumor but
not shared between the metastases, the observed gene expression
pattern is consistent with an underlying homogeneous mutational
landscape in combination with differential epigenetic control,
possibly driven by the local microenvironment or chance events.
While PDAC metastases thus appear more heterogeneous at the
transcriptional compared to the genomic level12, differences in
gene expression may not be the result of de novo events, with
encouraging implications for future targeted therapies.

PDAC organoids provide an in vitro model for drug screens. In
the quest to develop novel chemotherapies for PDAC patients
with advanced metastatic disease or unfavorable transcriptional
subtypes, organoid models offer great potential for in vitro drug
response screens. To illustrate the utility of our PDAC organoid
lines for screening applications, we applied a recent automated
microscopy‐based live-cell assay and quantification workflow
(DeathPro)39. In this workflow, all cells are stained with Hoechst

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26059-4

6 NATURE COMMUNICATIONS |         (2021) 12:5826 | https://doi.org/10.1038/s41467-021-26059-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 4 Differentiation hierarchy of PDAC cell states in vitro and in vivo. a RNA velocity trajectory shown for p039, using the same UMAP representation

as in Fig. 3a. b Startpoint (top) and endpoint (bottom) probabilities shown for p039. c Difference between the average startpoint (red) and endpoint (blue)

probabilities within each cluster (columns) across all PDAC organoid samples (rows). d Distribution of PDAC subtypes in single cells along the lineage

trajectory. Colors indicate whether a cell exhibits higher expression of ‘classical’ (blue) or ‘basal-like’ (red) subtype marker genes. e Correlation of PDAC

subtype scores with cell embeddings in the first principal component, which distinguishes cycling cells (negative values in PC1) from differentiating cells

(positive values in PC1). f Projection of all cells onto a linear combination of PC1, PC2, and PC3 to visualize cycling and differentiating cells (top). Cells in the

four clusters around the trajectory bifurcation point were linked by a minimum spanning tree (bottom). g Expression of genes with dynamic changes along

the bifurcation branches (red: high, blue: low), with hierarchical clustering of gene expression shown on the left. Column annotations indicate position

along the branches.
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33342 and propidium iodide (PI) to distinguish live and dead
cells; the total areas covered by dead cells (PI) and all cells
(Hoechst 33342 or PI stained) are then measured from projected
confocal images and used to calculate area-under-curve values for
cell death (AUCd) and proliferation inhibition (AUCpi). Com-
pared to simpler luminescent cell viability assays, this approach
resolves drug-induced cell death and proliferation inhibition39.
Here, we measured PDAC organoid cell death and proliferation
inhibition induced by six drugs in clinical use for PDAC therapy;
these were 5-FU, Gemcitabine, Irinotecan, Paclitaxel, Erlotinib,
and Oxaliplatin (Fig. 6a and Supplementary Table 6).

5-FU and Gemcitabine elicited the most cell death and
proliferation inhibition across all organoid lines included in the
screen, with Erlotinib and Oxaliplatin the least effective, although
significant heterogeneity in drug responses was observed between
organoid lines (Supplementary Fig. 4a). For each drug, ‘classical’
subtype gene expression was correlated with more pronounced
proliferation inhibition in response to drug treatment, whereas
drug-induced cell death showed less correlation with PDAC
subtype (Fig. 6b and Supplementary Fig. 4b).

Taken together, our results indicate that the ‘classical’ subtype
signature is linked to better drug responses and a higher level of
differentiation, while the ‘basal-like’ signature with poorer
prognosis is linked to cell proliferation and reduced drug
responses (Fig. 6c and Supplementary Fig. 4c).

Discussion
PDAC remains a challenging entity for experimental study;
ex vivo tumor samples are difficult to access and often have low
malignant cell content15. Recent advances in in vitro organoid
technologies have therefore sparked hope for an alternative route.
We have shown here that PDAC organoids established with our
protocol are transcriptionally equivalent to malignant ductal cells.
Notably, our results strongly overlap with previously published
primary PDAC scRNA-seq data19, suggesting that PDAC orga-
noid cells recapitulate key aspects of cell state heterogeneity in the
malignant ductal cell compartment in vitro. They are also con-
sistent with a recent scRNA-seq study highlighting substantial
intratumor heterogeneity in human primary PDAC tumors40.

a

c

P
M1
M2

UMAP 1

U
M

A
P

 2

2

1

5

3
4

e

b

0.0

0.5

1.0

1.5

1   2   4   5   1   2   3   1   2   4

Classical – basal-like scores

P           M1          M2

M
K

I6
7

P
R

S
S

1

F
A

B
P

1
P

G
C

C
D

7
0

T
M

E
M

1
7
6
B

q0             q90

HIST1H4C
TUBA1B

PTTG1
H2AFZ
UBE2C
CCNB1
HMGB2
STMN1

CDK1
PCNA
REG4

NEAT1
LY6D

GDF15
SLPI

TM4SF4
TFF3

PHGR1
FABP1

NDUF4AL2
SNCG

MALAT1
ADIRF

TSC22D1
PHLDA2

SSLCO4A1
ISG20
CD74

PRSS1
PRSS3
CRIP2
CAPS
LCN2

FGFBP1
CTD-2228K2.5

LGALS1
TMSB4X

ANXA1
RGS5

CCL20
PGC

KRT15
BST2
LAP3

SULT1C2
FTL

TFF2
SERPINA1
AKR1B10

Cluster
1
2
3
4
5

Sample

P
M1
M2

2

1

0

-1

-2

-(PC2+PC3) + PC1

-(
P

C
2

+
P

C
3

) 
- 

P
C

1

40

20

0

-20

-25        0        25       50

25

0

-25

-25        0         25       50

M1 M2 Cycling-1

Cycling-2

Cycling-3
Cycling-4

Cycling-5

Noncycling-1
Noncycling-2

Cycling-4

Cycling-5

Noncycling-1

Cycling-4

Cycling-5

Noncycling-1

d Bulk scores

P  M1 M2

c
la

s
s
ic

a
l 
 <

--
--

>
  
b

a
s
a

l-
lik

e

1

0.75

0.5

0.25

0

Fig. 5 Functional and transcriptional subtype heterogeneity in liver metastases. a For one patient, organoid lines were derived from the primary tumor

(P) as well as two liver metastases (M1 and M2). Shown is a UMAP representation of transcriptomes integrated by reciprocal PCA, with shared and

organoid line-specific cell clusters identified by unsupervised clustering. Cells are colored by sample origin (left) and cluster membership (right).

b Expression of genes involved in cell cycle (MKI67), secretion and digestion (FABP1, PRSS1, and PGC), and immune regulation (CD70, TMEM176B) across

cells from P, M1, and M2 organoids. c Expression of the top 10 enriched genes for each cluster. dMoffitt subtype scores from bulk RNA-seq data (left) and

single-cell RNA-seq data (right) for P, M1, and M2 organoids. Blue indicates classical subtype scores, red basal-like (“Methods”). Cells are grouped by

cluster identity according to (a) in the violin plots. e Projection of M1 and M2 transcriptomes onto the primary PDAC organoid data (see Fig. 4f and

“Methods”) shows the distribution of cells across cycling and differentiating clusters.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26059-4

8 NATURE COMMUNICATIONS |         (2021) 12:5826 | https://doi.org/10.1038/s41467-021-26059-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


By deriving primary PDAC organoids from 18 patients, we
found that PDAC organoids show patient-specific differences that
mask the shared cell state heterogeneity we also identified. This
observation highlights the need to include a sufficiently large
number of patient samples in single-cell studies in order to dis-
tinguish common features from individual variation, enabling
extrapolation to a larger patient collective. We observed frequent
differential expression of genes encoding cell surface and secreted
proteins between patients, often from the same gene families (e.g.,
claudins, mucins). These transcriptional differences may thus not
always have functional relevance, but could reflect underlying

genetic or epigenetic heterogeneity, different cells of origin or
microenvironments of the tumor, lifestyle and comorbidities of
the patient, or differences in therapy and immune response. It
will be interesting to explore the origin of patient-specific tran-
scriptome profiles in future studies and determine if this het-
erogeneity is also present in healthy pancreas cells or arises
during tumorigenesis.

To categorize transcriptional heterogeneity in PDAC, an
established classification scheme distinguishes ‘classical’ from
‘basal-like’ tumors. In line with recent results from other
groups17,41, our cohort comprised PDAC organoids with
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uniformly ‘classical’ gene expression, but also a subset of orga-
noids with heterogeneous expression of subtype marker genes
across cells. The latter was associated with a poorer prognosis of
the patient, as determined by histopathological grading of the
original tumor and patient outcomes. As our cohort did not
include any tumors that were purely ‘basal-like’, it was impossible
to resolve whether poorer prognosis simply results from higher
‘basal-like’ cell content or whether the extent of subtype hetero-
geneity is an independent predictor, which thus remains an
interesting question for future studies. It should also be noted that
the relative paucity of basal-like cells in our PDAC organoids may
reflect selective pressure exerted by the in vitro culture conditions
towards ‘classical’ subtype gene expression, which represents an
emerging limitation of PDAC organoids42. Nevertheless, the
broad agreement of organoid subtype assignments with original
tumor subtypes indicates that differences between PDAC samples
are retained in culture, consistent with an earlier study in which
PDAC organoid drug responses paralleled patient outcomes43.

Despite substantial interpatient heterogeneity, our results
identified functional cell states that are shared across patients, and
are linked by a differentiation hierarchy conserved in vitro and
in vivo. Proliferating cells may either re-enter the cell cycle, or
give rise to differentiating cells that acquire characteristics of
pancreatic tissue including digestive and secretory functions.
Expression of genes involved in digestion and secretion has
previously also been observed in primary PDAC, again con-
firming that our organoid model captures key aspects of this
entity44. While our analyses provide initial insight into differ-
ential gene expression at the bifurcation point, future studies
should address whether the fate choice of tumor cells could be
exogenously biased towards differentiation in order to constrain
tumor growth. In addition, it will be interesting to investigate
whether a subset of cells in clusters ‘Noncycling-1’ and ‘Non-
cycling-2’ may be able to re-enter the cell cycle, which would
enhance the growth potential of the tumor.

Importantly, malignant cells may express a combination of
transcriptional programmes that are not normally found within
the same cell type in the healthy pancreas. By comparing scRNA-
seq data from organoid lines derived from two liver metastases to
the matched primary tumor, we also found that metastases may
activate different combinations of pancreatic transcriptional
programmes. As PDAC metastases are known to share the same
driver mutations as the primary tumor12, heterogeneity in PDAC
metastases therefore most likely arises from differential epigenetic
regulation activating or deactivating transcriptional programmes.

The expression of pancreatic programmes in liver metastases of
PDAC also resolves a debate regarding the role of normal pan-
creas genes in PDAC transcriptome data. Due to the frequently
low tumor cellularity of PDAC, it has been questioned whether
genes that are normally expressed in mature pancreatic tissue
should be excluded from analyses of PDAC pathophysiology,
assuming that they represent normal tissue contamination18. Not
surprisingly, a recent study found an association between the
presence of normal pancreatic transcripts and the presence of
healthy tissue contamination on PDAC tumor slides45. Our
results indicate that such genes may in fact be expressed by
malignant cells in PDAC tumors, even in distant metastatic
lesions, and their inclusion in future studies of PDAC patho-
physiology is therefore warranted.

In addition to proliferating cells and differentiating cells with
pancreatic expression programmes, a subset of PDAC organoid
lines contained distinct clusters of cells that may mediate type I
interferon signaling (cluster IFN-1) or CXC motif cytokine sig-
naling (cluster CXC-1). As these signaling pathways have been
implicated in cancer progression and metastasis as well as therapy
responses31–33,46, resolving the presence of corresponding cell

populations by single-cell transcriptome studies could improve
prognostic accuracy for patients in the future.

Our drug screen showed that drug response, both at the level of
cell death and proliferation inhibition, was positively correlated
with the expression of ‘classical’ subtype genes, and negatively
correlated with ‘basal-like’ gene expression. PDAC organoid lines
with higher drug response also tended to display a more differ-
entiated transcriptome, whereas lower drug response was asso-
ciated with higher cell cycle scores. These results are consistent
with ‘basal-like’ PDAC tumors showing poorer response to
standard therapy and worse prognosis in the clinic. In particular,
a recent study suggests that FOLFIRINOX combination che-
motherapy induces a shift towards a more ‘basal-like’ state in
PDAC cell lines and patient tumors47, suggesting that ‘basal-like’
cells may be intrinsically more resistant to chemotherapy or
selected for as an adaptive response. Our organoid-based assay
represents a promising approach for the in vitro identification of
compounds that could improve therapeutic outcomes for PDAC
patients in a subtype-dependent manner.

Methods
PDAC organoid generation and maintenance. Pancreatic tumor organoid cul-
tures were established using an adaptation of the previously described protocol21.
Pancreatic tumor specimens were obtained from patients undergoing surgical
resection at the Surgical Department of the Heidelberg University Hospital fol-
lowing approval by the Ethics Committee of Heidelberg University (ethic votes
301/2001, 159/2002, S-206/2011, S-708/2019). Written informed consent from all
patients was obtained prior to acquisition of tissue. Tumor specimens were minced
and digested for up to 4 h at 37 °C in AdMEM/F12 medium (Gibco) containing
2 mM GlutaMAX (Gibco), 10 mM HEPES (Gibco), 1× Primocin (InvivoGen)),
1 mg/ml Collagenase type IV (Sigma-Aldrich), 100 µg/ml DNase I (AppliChem),
1× B27 (Gibco), 1 mM N-acetylcysteine (Sigma-Aldrich) and 10 µM Y-27632
(Selleckchem). Dissociated cells were seeded in Growth Factor Reduced Matrigel
(Corning) and cultured in growth organoid medium consisting of AdMEM/F12
medium, 2 mM GlutaMAX, 10 mM HEPES, 1× Primocin, 1× B27, 1 mM N-
acetylcysteine, 10% RSPO1-conditioned medium48, 100 ng/ml FGF10 (PeproTech),
100 ng/ml Noggin (PeproTech), 500 nM A83-01 (Tocris) and 10 µM Y-27632. The
medium was refreshed every 3–4 days omitting Y-27632. Organoids were routinely
passaged by dissociation with TrypLE (Gibco) for 10 min at 37 °C. The medium
was further supplemented with 50 ng/ml EGF (PeproTech) and, if required, with
50% Wnt3A-conditioned medium49 only after tumor cell enrichment to avoid
overgrowth of normal ductal cells during the initial passages. PDAC organoids
were cultured for 2.2 months on average before bulk RNA-seq (range:
1.0–4.7 months), and 3.6 months on average before scRNA-seq (range:
1.9–5.8 months). The technical replicates p039 and p039b were cultured for
2.8 months and 4.2 months, respectively, before scRNA-seq.

Single-cell dissociation and RNA sequencing. Single-cell sequencing libraries
were prepared according to the 10x Genomics Single Cell 3 v2 Reagent Kit user
guide with small modifications. Organoid cultures were expanded in growth
medium without addition of Wnt3A-conditioned medium (serum-free condition)
for 5 days and dissociated into single cells for 30–60 min using AccuMax (Invi-
trogen) supplemented with 0.3 mg/ml Dnase I. Cell were washed with PBS con-
taining 0.04% BSA, strained through a 20 µm strainer (PluriSelect) and counted.
Single-cell suspensions containing 10,000 cells were loaded following the protocol
of the Chromium Single Cell 3’ Library Kit v2 (10x Genomics) to generate cell and
gel bead emulsions. After droplet generation, samples were transferred onto a pre-
chilled 96-well plate (Eppendorf), heat-sealed, and reverse transcription was per-
formed using a Bio-Rad C1000 Thermal Cycler. After reverse transcription, cDNA
was recovered using Recovery Agent followed by Silane DynaBead clean-up.
Purified cDNA was amplified for 15 cycles and cleaned up using SPRIselect beads
(Beckman). Samples were quantified on an Invitrogen Qubit 4 Fluorometer. cDNA
libraries were prepared according to the Single Cell 3 Reagent Kits v2 guide with
the appropriate choice of PCR cycle number based on the calculated cDNA con-
centration. Final libraries were sequenced in one lane per sample with the Illumina
NextSeq 500 system in high-output mode (paired-end, 75 bp).

scRNA-seq data alignment and quality control. Raw sequencing data were
processed using CellRanger version 2.1.1 (10x Genomics). Transcripts were aligned
with the 10x reference human genome hg19 1.2.0. Quality control and downstream
analysis were performed with Seurat version 3.050. Cells with fewer than 200 genes
or genes represented in fewer than three cells were excluded from the analysis. Cells
with >100.000 reads or >15% mitochondrial reads were excluded. Count data were
log-normalized with a scale factor of 10.000, and the 2000 most variable genes
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identified with the FindVariableFeatures function in Seurat. Normalized data were
scaled using the ScaleData function.

Analysis of individual organoid samples. For the analysis of individual samples,
organoid scRNA-seq data from primary tumors and metastases was processed with
the Seurat package in R, using the FindClusters function with a resolution of 0.5.
To identify differences between patients, expression data from all samples were
combined and clustered using the FindClusters function with a resolution of 0.1,
resulting in one cluster per organoid except for pdac100, for which we manually
combined two resulting clusters. The dimensional reduction was performed using
the uwot package version 0.1.5. Differentially expressed genes for primary PDAC
samples were identified using a Wilcoxon rank-sum test. As p080 and p081 were
derived from the same patient, only the latter was included in this analysis. The top
20 enriched genes per sample that were expressed in at least 25% of cells in this
sample and at most 90% of cells in all others, were analyzed according to their gene
group membership.

Moffitt subtype analysis. To analyze Moffitt subtypes, cells from each patient
were clustered using the FindClusters function in Seurat with a resolution of 0.5.
The average expression of 25 marker genes each for the ‘classical’ and ‘basal-like’
subtype14 was then determined for each cluster. The gene expression heatmap was
generated using the complete clustering of Spearman correlation coefficients.
Subtype scores for basal-like (Sbas) and classical (Scla) marker gene expression for
each individual cell were calculated using the AddModuleScore function in Seurat,
and a combined score (Smoff=max[0, Scla] − max[0, Sbas]) was calculated for
each cell.

Joint analysis of PDAC samples by reciprocal PCA. To analyze cell states across
patients, primary tumor samples were merged by reciprocal PCA. As p080 and
p081 were derived from the same patient, only the latter was included in this
analysis. Cells were clustered in Seurat using the FindClusters function with the
Louvain algorithm with a resolution of 0.7, and dimensional reduction was per-
formed using the umap-learn package version 0.3.1051. Differentially expressed
genes for each cluster were identified using a Wilcoxon rank-sum test. Gene
ontology (GO) term analysis was performed using the MSigDB version 7.152,53

with the top 100 enriched genes per cluster with adjusted p-value < 0.05. One
cluster resulted in only six enriched genes and no enriched GO terms but com-
prised cells with the highest number of RNA counts in the dataset, suggesting a
technical artefact; it was therefore excluded from the analysis. Cell cycle scores were
calculated with the AddModuleScore function in Seurat, using previously published
lists of S phase and G2/M phase marker genes54. We used the STRING database
version 1155 to identify gene interaction networks specifically expressed in clusters,
with the confidence cut-off at 0.75 and k-means clustering with k= 5.

Comparison to primary PDAC scRNA-seq data. To compare scRNA-seq data
from our PDAC organoids with primary PDAC, we downloaded raw data for two
patients (T18 and T20) from a recent publication19. Primary PDAC data was
processed analogously to PDAC organoid data, and dataset integration was per-
formed using reciprocal PCA in Seurat, with primary PDAC as the reference. Cell
type identification was based on established marker genes19.

Inference of a lineage hierarchy. We used the velocyto Python package version
0.17.1634 to estimate RNA velocities by distinguishing unspliced and spliced
mRNAs. Correlations of Smoff with PC1, which resolved cycling from differentiated
cells, were calculated by linear regression using mean values across cells within bins
of equal width in both Smoff and PC1. For visualization, only cells with greater than
median Smoff for Smof > 0 or smaller than median Smoff for Smof < 0 were plotted.
Linear combinations of cell embeddings for the first three principal components,
specifically –PC1+ (PC2+ PC3) and –PC1 – (PC2+ PC3), were chosen to illus-
trate the branching point at which cells either re-enter the cell cycle or differentiate.
Following this two-dimensional projection, a randomly sampled subset of 3,000
cells in clusters Cycling-1, Cycling-5, Noncycling-1, and Noncycling-2 were located
along a bifurcating trajectory by a minimum spanning tree. Expression of genes
varying along the trajectory was visualized using the dynverse package version 0.1.1
in R56. To determine if an equivalent trajectory could be resolved in vivo, two
primary PDAC datasets (T18 and T20) from a recent publication19 were processed
analogously.

Comparison of metastases to the primary tumor. To compare the transcriptome
of PDAC organoids derived from two metastases (p084 and p085) to organoids
derived from the corresponding primary tumor (p083), transcriptomes from these
three samples were merged by reciprocal PCA, and cells were clustered with a
resolution of 0.3. Expression of the top 10 upregulated genes for each cluster was
visualized in a heatmap. Subtype scores were calculated as described above. For
trajectory analysis, integrated gene expression data was projected onto the PCA of
all primary tumor samples, using the first 50 principal components. Cluster
identity of metastases-derived cells was determined according to their similarity to
primary tumor-derived cells, using the TransferData function in Seurat.

RNA fluorescence in situ hybridization. Sections of PDAC organoids or primary
tumor samples were processed for RNA in situ detection using the RNAscope
Multiplex Fluorescent Reagent Kit v2 according to the manufacturer’s instructions
(Advanced Cell Diagnostics). RNA fluorescence in situ hybridization (FISH)
images were acquired on a Leica SP8 confocal laser scanning microscope equipped
with a 40×/1.30 oil objective (Leica HC APO CS2). Images were binarized,
Gaussian filtering followed by watershed segmentation was applied to identify
nuclei, and binarized FISH signal density per nucleus was calculated using ImageJ.

Imaging-based drug screen. The organoid-based drug screen was performed
using the ‘DeathPro’ workflow as previously described39 on a subset of 24 PDAC
organoid lines, including one derived from an unmatched peritoneal metastasis
(p073) and one derived from an unmatched perivascular metastasis (p037). Briefly,
drugs were dissolved in DMSO, water, PBS, or ethanol as required sand stored as
single‐use aliquots at −80 °C. Drug dilution series (1:3) were prepared in PDAC
organoid culture medium containing 1 μg/ml Hoechst (Invitrogen) and 1 μg/ml PI
(Sigma). Organoids were incubated in Matrigel-coated 96‐well Angiogenesis μ‐
Plates (ibidi) with drug‐containing medium for 72 h. Organoid cultures were then
washed twice with PBS and the medium was exchanged for a drug‐free medium.
Cells were imaged 72 h after the start of drug treatment using a Zeiss LSM780
confocal microscope, 10× objective (EC Plan‐Neofluar 10×/0.30 M27), and 405 and
561 nm diode lasers in simultaneous mode. Imaging was performed in an incu-
bation chamber at 37 °C, 5% CO2, and 50–60% humidity using the Visual Basic for
Applications macro ‘AutofocusScreen’57. Binarized images from Hoechst and PI
channels were combined (H+ PI) to calculate total cell area, while PI alone was
used as a proxy for dead cells. Drug response curves to determine the LD50 were
fitted if there was a significant difference between cell death in drug‐treated and
untreated samples (ANOVA with P‐values < 0.0005), and area under curve (AUC)
values were calculated for cell death. Cell growth was estimated by dividing total
cell area (H+ PI) at 72 h by total cell area (H+ PI) at 0 h after drug application,
and the area under curve for proliferation inhibition (AUCpi) was determined. To
correlate drug responses with scRNA-seq results, median cell cycle scores were
calculated for each sample with the AddModuleScore function in Seurat, using
previously published cell cycle genes54.

Comparison of overall survival times. Overall survival (OS) was defined as the
time from surgery to death or last follow-up. OS shorter than 90 days after surgery
was considered peri-operative death and therefore excluded from the survival
analyses. Median survival was estimated using the Kaplan–Meier method, patients
still alive at the last follow-up were censored. Survival curves between groups were
compared by the log-rank test. Analysis and plots were performed using the R
packages survival and survminer.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The single-cell sequencing data generated in this study have been deposited at the

European Genome-Phenome Archive (EGA), which is hosted by the EBI and the CRG,

under accession number EGAS00001004661. Primary PDAC scRNA-seq data was

downloaded from the GSA (accession number CRA001160, samples T18 and T20). Gene

ontology (GO) term analysis was performed using the MSigDB database v7.1 (https://

www.gsea-msigdb.org). Gene interactions networks were identified using the STRING

database v11 (https://string-db.org). Image data is available from the authors upon

request. All other data are available within the Article or Supplementary Information.
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