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While human lifespan has increased dramatically in recent 
years, improvements in healthspan, the period of life in 
which a person is disease-free, have been more modest1. 

Susceptibility to a host of diseases increases with aging, including 
diabetes, stroke2, cancer3 and neurodegenerative diseases4. Aging is 
accompanied by changes in body composition, including decreased 
lean muscle mass, loss of bone density and increased abdominal fat1. 
Concomitant with these changes are alterations in endocrine states, 
such as decreased sex hormone production and reduced growth 
hormone and insulin-like growth factor-I5. Endocrine function and 
homeostatic processes, such as energy homeostasis6 and release of 
sex hormones5, are controlled by neuropeptidergic neurons in the 
hypothalamus.

Nutrient sensing is one of several functions of the hypothala-
mus that implicates this brain region in healthy aging. Specific 
neuronal subtypes in the hypothalamus respond to circulating cues 
to organize the response to dietary changes through regulation 
of energy balance, glucose homeostasis, and growth factor secre-
tion6. Caloric restriction (CR) is one of the most well-established 
behavioral interventions that improves lifespan and healthspan in 
many model organisms7. Genetic models that mimic the effects of 
CR via modulation of energy sensing pathways have revealed the 
mechanistic underpinnings of lifespan extension. For example, in 
Caenorhabditis elegans, the effects of dietary restriction are depen-
dent on the function of neuropeptidergic energy sensing neurons; 
genetic manipulation of energy sensing genes in those neurons is 
sufficient to increase longevity8. Similarly, lifespan extension in 
the fruit fly Drosophila is dependent on specialized neurons called 
median neurosecretory cells9. In rodents, manipulations to the 
hypothalamus can also alter lifespan. Specifically, brain-specific 
overexpression of Sirt1 leads to alterations in the dorsomedial and 
lateral hypothalamus and increases lifespan1. In addition, alteration 

of immune signaling in the mediobasal hypothalamus affects lon-
gevity, with a reduction in immune signaling promoting longevity11.

Sex differences in lifespan have been documented in many 
species, including mice12. In humans, there is a robust difference 
in female and male lifespan across countries, with females living 
an average of 4–10 years longer than males13. Intriguingly, inter-
ventions that extend lifespan in model organisms do so in a sex- 
specific manner. For example, CR is one of the most robustly  
studied interventions and its effects have been observed from yeast 
to non-human primates7. Like many interventions, CR has sex-
specific effects, with restricted females generally living longer than 
males on the same diet14. Similarly, the brain-specific Sirt1 overex-
pression model results in a larger lifespan increase for females when 
compared to males10.

However, the aging female brain remains critically understud-
ied and we know little about how areas involved in healthy aging, 
such as the hypothalamus, change with age in females. Epigenetic 
and transcriptional changes are widespread across tissues during 
aging, including in the brain15,16. Key transcriptional factors such as 
FOXO/DAF-16, NF-kB and MYC function as conserved regulators 
of these networks and have been implicated in aging11,15,17; however, 
despite a great interest in how changes in transcriptional programs 
affect aging, our understanding of how distinct cellular subtypes 
change transcriptionally with age remains limited. Investigation of 
how transcriptional programs change in a cell-type-specific manner 
in the hypothalamus will provide important insight into the aging 
process across tissues. Recent advances in single-cell RNA sequenc-
ing (RNA-seq) have expanded our understanding of the diverse cell 
types that comprise the hypothalamus18–24. This approach allows 
the investigation of previously unappreciated transcriptional and 
functional diversity of this brain region. Here, we use a single-
nuclei RNA-seq (snRNA-seq) approach to identify aging-associated 
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Fig. 1 | Single-nuclei analysis of the hypothalamus. a, Schematic detailing the experimental workflow from dissection through analysis (created with 
BioRender). b, Uniform Manifold Approximation and Projection (UMAP) plot of all 40,064 nuclei used for analysis. Clustering analysis revealed 11 
broad categories of cell type identity. c, UMAP plots of all nuclei labeled for expression of cell type-specific markers. Syt1, neurons; Agt, astrocytes; Plp1, 
oligodendrocytes; C1qa, microglia/macrophages. Color scale indicates level of gene expression. d, Heat map highlighting expression of cell type markers in 
each cluster, a maximum of 500 nuclei per cluster are displayed.
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transcriptional changes across the mouse hypothalamus, thereby 
capturing the diversity of cell types in this brain region.

results
Single-nuclei sequencing of the aging mouse hypothalamus. We 
employed snRNA-seq, which is currently the optimal method for 
single-cell transcriptomic profiling of the diversity of cell types in 
the adult mammalian brain25,26. We isolated nuclei from the hypo-
thalamus of young (3 months) and aged (19–24 months) female 
mice, with four replicate libraries for each age (Fig. 1a). After qual-
ity filtering, we obtained 40,064 high-quality nuclei for analysis: 
16,256 and 23,808 nuclei from young and aged animals, respectively 
(Supplementary Fig. 1a). Cellular composition and data quality 
were similar across replicates (Supplementary Fig. 1b–d).

Clustering analysis with the Louvain algorithm revealed dis-
tinct clusters representing the major cell types of the hypothala-
mus, which we identified based on expression of canonical markers  
(Fig. 1b–d). For each individual cluster, we identified the top ten 
genes that were differentially expressed using the Wilcoxon rank-
sum test (Supplementary Table 1). For example, neurons were 
defined by expression of Syt1, astrocytes defined by Agt and Gja1, 
oligodendrocytes by Olig1 and Plp1 expression and oligodendro-
cyte precursor cells (OPCs) were identified by expression of Pdgfra. 
The microglia and macrophage clusters were defined by expression 
of C1qa and distinguished by higher expression of Tmem119 and 
P2ry12 in the microglia cluster (Fig. 1c). Less abundant cell types 
were also observed, including ependymocytes (ependymal cells; 
Ccdc153), pericytes (Flt1), endothelial cells (Clnd5) and vascular 
and leptomeningeal cells (VLMCs; Slc6a13). We also observed a 
distinct cluster of tanycytes, which are specific to the hypothalamus 
and defined by Rax expression. Nuclei in these broad categories 
expressed additional canonical markers associated with their cell 
type, for example, the astrocyte cluster expressed Gfap, further vali-
dating the identify of each cluster.

Cell type diversity is achieved through expression of transcrip-
tional regulators that orchestrate cell type-specific gene expres-
sion networks. To identify the regulators responsible for distinct 
expression networks across cell types in the hypothalamus, we used 
SCENIC, a regulatory network inference tool27. SCENIC identifies 
regulons, defined as a transcription factor and the genes it regulates 
and scores the activity of the regulons in individual cells. Further, it 
provides a regulon specificity score (RSS), which indicates whether 
a given regulon is specific to an individual cell type or shared 
among clusters. In our analysis, we observed strong shared and 
cell-type-specific signatures for each cluster. For example, the Dbx2 
regulon is strongly enriched in the astrocyte cluster (RSS = 0.348), 
with almost all astrocytes expressing the regulon, whereas the Atf2 
and Creb3l1 regulons are enriched in neurons (Supplementary  
Fig. 2a,b and Supplementary Table 2) (RSS = 0.639 and 0.626, 
respectively). Together, this analysis identifies the distinct gene 
expression signatures in the major cell types in the hypothalamus 
that are orchestrated by specific combinations of transcriptional 
regulators associated with cell type identity.

Gene expression changes in major cell types with age. We next 
investigated the changes in gene expression that occur with age in 
the major cell types of the hypothalamus. As expected, aging was 
not associated with changes in composition of this brain region and 
each major cell type was similarly represented in young and aged 
mice (Supplementary Fig. 1c,d). To gain a global understanding of 
how gene expression is altered with age, we first performed differ-
ential expression analysis on all cells using the model-based analysis 
of single-cell transcriptomics (MAST)28,29, with a random effect for 
sample of origin. Using this approach, we identified 275 and 342 
genes that were upregulated and downregulated with age, respec-
tively (adjusted P value (Padj) < 0.05, fold change (FC) > 0.1) (Fig. 2a  

and Supplementary Table 3). As an initial validation, we cross-
checked our results with publicly available bulk microarray data on 
the aging hypothalmus30. Although these data differ from ours in 
regard to strain and sex, this analysis confirmed several changes in 
our dataset, including downregulation of Gria1, Apoe, Camk2a and 
Atp1b2 (Supplementary Table 3). Moreover, we confirmed a key 
finding from work on male rats showing that oxytocin binding is 
decreased in several brain regions with age, including the hypothal-
amus31. Here, we show a reduction in Oxt expression in aged female 
mice, suggesting a reduction of oxytocin signaling is a feature of 
both male and female aging. Notably, the most upregulated genes in 
the MAST analysis included Xist and Tsix, which both encode long 
non-coding RNAs involved in X chromosome inactivation32,33 and 
are expressed only in females.

Next, we investigated the impact of age on gene expression in 
each major cell type. Neurons, astrocytes, oligodendrocytes and 
microglia showed the greatest numbers of differentially expressed 
genes (DEGs) with age (Fig. 2b and Supplementary Table 4). 
Additionally, we performed coefficient of variation analysis on the 
major cell types and observed a significant difference between ages, 
with nearly all types showing in increase with age (Fig. 2c). This 
finding suggests that variability in gene expression increases with 
age in most cell types, which likely contributes to cellular dysfunc-
tion within the aged hypothalamus.

To validate our findings and determine the extent to which the 
changes we observe are specific to the hypothalamus, we compared 
our dataset to a publicly available snRNA-seq dataset analyzing the 
female mouse hippocampus34. Astrocytes, oligodendrocytes, and 
microglia all showed high agreement between the hypothalamic and 
hippocampal datasets; for example, both datasets show significant 
upregulation of C4b in astrocytes, Apoe and Lyz2 in microglia and 
Cdh8 and Neat1 in oligodendrocytes (Fig. 3a). When we compared 
the relationship in log2(FC) of significant (Padj < 0.05) genes between 
the hypothalamus and hippocampus, a statistically significant posi-
tive correlation emerged for astrocytes (ρ = 0.78, P < 0.001), oligo-
dendrocytes (ρ = 0.61, P < 0.001) and microglia (ρ = 0.85, P < 0.001). 
Of note, in contrast to glia, there was less overlap in DEGs between 
the hypothalamic neurons and hippocampal neurons and there 
was little correlation in gene expression changes between hypo-
thalamic and hippocampal neurons (ρ = −0.07, P < 0.001). While 
some genes, such as Xist, are upregulated with age in both neuronal 
subsets, other genes are either unchanged or regulated in opposite 
directions in the two sets (Fig. 3b). For example, Phactr1 and Meis2 
are among the most significantly downregulated neuronal genes in 
the hypothalamic dataset but are not significantly changed with age 
in the hippocampal dataset (Padj > 0.05). The genes Rsrp1, Gm26917 
and Kcnip4 are upregulated with age in the hypothalamus, but are 
downregulated in the hippocampus with age. Notably, the gene 
Rps29 is upregulated in both datasets, in agreement with previous 
single-cell RNA-seq studies of the aged mouse brain35. Together 
these data suggest that glia share general signatures of aging in dis-
tinct brain regions, whereas region-specific signatures are predomi-
nant in neuronal aging.

To investigate the cellular processes that are altered with age in 
the different cell types in the hypothalamus, we performed Gene Set 
Enrichment Analysis (GSEA) using the hallmark gene set36 (Fig. 2d).  
We observed unique signatures of aging in each cell type, as well as 
some shared hallmarks of aging. For example, neurons and astro-
cytes share an under-enrichment (negative normalized enrichment 
score) for the mTORC1 signaling gene set. Astrocytes were also 
under-enriched in genes related to cholesterol homeostasis, which 
aligns with previous research showing a decrease in expression of 
cholesterol synthesis genes in aged hypothalamic astrocytes37. In 
contrast, neurons displayed alterations in G2M checkpoint genes, 
which is notable in light of evidence linking Alzheimer’s disease 
to aberrant cell cycle entry driven through activation of mTORC1 
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Fig. 2 | the aging hypothalamus harbors cell-type-specific transcriptional changes. a, Volcano plot showing overall differential expression  
of genes between all young and aged nuclei. Significant genes in purple (Padj < 0.05, FC > 0.1). Genes with a P value of zero were given an arbitrarily 
small P value for plotting purposes. MAST analysis with random effect for sample of origin and sequencing depth, with Bonferroni adjustment of 
P values. b, Strip plot showing DEGs in each cell type. Significant genes (Padj < 0.05, FC > 0.1, MAST analysis with random effect for sequencing 
depth and sample of origin) in color, nonsignificant genes are in gray. Top five upregulated and top five downregulated genes per cluster labeled. 
c, Coefficient of variation (c.v.) analysis for each cellular subtype. In almost all subtypes the c.v. is significantly higher in the aged condition (two-
sided Wilcoxon test with Bonferroni correction, ***Padj < 0.001, **Padj = 0.001639, n = 25,135 genes per group). Box indicates range from 25th to 75th 
percentile, with whiskers extending to 1.5 times the interquartile range. Outliers are plotted separately, center indicates median value. d, Heat map 
showing GSEA for hallmark terms. Color indicates normalized enrichment score (NES). Significant gene sets are calculated as Padj < 0.1. ROS, reactive 
oxygen species.
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(ref. 38). Of note, mTORC1 activation in the arcuate nucleus of the 
hypothalamus is reduced in ovariectomized mice39. Thus, mTORC1 
under-enrichment in the aged female hypothalamus represents a 
key a target for further study into the intersection of sex, aging and 
neurodegenerative disease.

Microglia and macrophages function as immune cells in the 
brain and both cell types show cell type-specific gene set enrich-
ments with age (Fig. 2d). Macrophages are enriched in interleukin 
IL-2 STAT5 signaling, IL-6 JAK STAT3 signaling and inflammatory 
response gene sets. Microglia are enriched in genes related to the 
interferon-α response and interferon-γ response and are under-
enriched in the oxidative phosphorylation gene set with age. These 
data suggest distinct changes in different subsets of immune cells in 
the aging hypothalamus.

Glial cells, including microglia, are critical regulators of neuro-
nal function. To understand how the relationships between these 
cells and neurons are changed with age, we utilized the ligand–
receptor repository CellPhoneDB40 to infer cell–cell interactions 
(Supplementary Fig. 3a). Notably, we found that loss of ligand–
receptor interactions involving growth factors was a theme across 
the cell types studied. For example, in the young astrocyte–neuronal 
and tanycyte–neuronal cell pairs, TGFB2_TGFBR3 was enriched. 
Both cell pairs lose this enrichment with age. Similarly, there is a 
loss of enrichment in pathways involving FGF9. Specifically, while 
FGF9-FGFR3 and FGF9-FGFR1 are enriched in young astrocyte–
neuronal and tanycyte–neuronal cell pairs, this enrichment is lost 
with age. The astrocyte–neuronal and oligodendrocyte–neuronal 
pairs also lose enrichment of the FGF9-FGFR2 ligand–receptor 
interaction with age. These factors are involved in diverse pro-
cesses such as repair, learning and memory and neurogenesis41. 
Additionally, the aged astrocyte–neuron cell pair loses SEMA3A_
NRP1 signaling with age, whereas the microglia–neuronal cell pair 
loses both SEMA3A-NRP1 enrichment and SEMA3A-plexinA4 
enrichment. Semaphorin3a is a known player in synaptogenesis42. 
Taken together, the loss of these cell signaling pathways may repre-
sent a mechanism for alternations in synaptogenesis and neuronal 
homeostasis in the aged hypothalamus.

Aged microglia represent a progressive aging trajectory. 
Microglia are macrophage-like cells found throughout the brain 
and are critical for the immune response, including release of cyto-
kines and chemokines, antigen presentation and phagocytosis of 
debris43. Recent studies have revealed gene expression changes and 
microglial activation in the aged brain, which likely contribute to 
neurodegeneration43. Based on our findings that microglial–neu-
ronal interactions involving the Alzheimer’s-associated gene APP, 
as well as MIF were enriched with age (Supplementary Fig. 3a), 
we sought additional strategies to uncover changes in these cells 
over time. Using Monocle3 (ref. 44), we performed pseudotempo-
ral ordering of nuclei from the microglia and macrophage clusters. 
The trajectory accurately captures the transition from young to 
aged nuclei, suggesting a gradual progression toward aging in this 
cell type and a significant increase in the proportion of aged nuclei 

across pseudotime (Fig. 4a,b). To confirm this analysis, we freshly 
isolated CD11b+ hypothalamic microglia from mice at three time 
points (3, 12 and 24 months) and performed qPCR for candidate 
genes discovered in the pseudotime analysis. This experiment reca-
pitulated specific genes trajectories (Supplementary Fig. 4a), vali-
dating this approach.

Since changes in microglia have been implicated in both physi-
ological aging and neurodegeneration, we examined how dis-
ease-associated microglia (DAM) genes change as a function of 
pseudotime. We aggregated the expression of key genes from three 
microglia gene sets identified in the literature45,46, homeostatic 
microglia (homeostatic), TREM2 independent stage 1 DAM (DAM 
1) and TREM2 dependent stage 2 DAM (DAM 2), and plotted the 
aggregated expression as a module score along the pseudotime tra-
jectory. Overall, there was a decrease in the module score for the 
homeostatic module over pseudotime suggesting a loss of mainte-
nance of healthy microglia over time. In contrast, we observed an 
increase in the DAM 1 disease module score near the end of pseu-
dotime (Fig. 4c). The DAM 2 module does not seem to play a role in 
steady-state hypothalamic aging, as the module score remains low 
throughout pseudotime.

To further understand the role of these gene modules in aging 
hypothalamic microglia, we visualized gene expression across pseu-
dotime and through real time (Fig. 4d). While young microglia gen-
erally cluster earlier in pseudotime (pseudotime 0.0 through 1.5), 
aged microglia expressing these genes are distributed throughout 
pseudotime. Thus, hypothalamic microglia from aged animals have 
increased heterogeneity representing a progressive aging trajectory. 
While a subset of aged microglia retaining a youthful gene expres-
sion signature, many aged microglia highly express disease-associ-
ated genes.

To fully capture gene expression changes along the trajectory, 
we performed Moran’s I test on microglia and macrophage genes 
and found 2,112 statistically significant trajectory-dependent genes 
(Supplementary Table 5). To characterize their expression dynam-
ics along pseudotime, we applied RVAgene47, an autoencoder neural 
network framework to reconstruct and smooth the pseudotime-
dependent genes expression. We then visualized the recurrent 
variational autoencoder (RVAE) decoded expression along pseu-
dotime in a heat map and manually grouped the genes into four 
modules according to their pseudotemporal expression patterns 
(Fig. 4e). For example, genes in the module 1 are highly expressed 
in early pseudotime while genes in the module 4 are expressed in 
late pseudotime. To understand the biological processes enriched in 
each module, we performed Gene Ontology (GO) analysis (Fig. 4f). 
Notably, gene modules are transitioning through pseudotime from 
positive regulation of biological processes to immune responses and 
finally to the amyloid-β clearance and viral infection corresponding 
to known phenotypes of normal aging.

Expression of X inactivation genes is altered with age. Our initial 
differential expression analysis revealed the unexpected finding that 
the long non-coding RNA Xist is one of the most highly upregulated 

Fig. 4 | trajectory analysis of aging hypothalamic microglia. a, Monocle3 pseudotemporal ordering of microglia and macrophage clusters (n = 1,121 
nuclei) defining a single trajectory from young to aged nuclei. Nuclei are colored by age (top) and pseudotime (bottom). b, Scatter-plot showing the 
proportion of aged nuclei along the pseudotime timeline in 20 time bins (sized 0.15 per time bin). Pearson correlation of the proportion of aged nuclei 
and pseudotime timeline, R = 0.89 and P = 2.6 × 10−7 (two-sided), 95% CI (in gray) shown. c, Plot showing the module expression score of three microglia 
states (homeostatic, DAM 1 and DAM 2). The darker lines are the local regression result for individual time bins (20 total), with the gray shadow depicting 
the 95% CIs. d, Kinetics plot showing the relative expression of representative genes for microglia states (left). The lines approximate expression along the 
trajectory using polynomial regressions. Violin plots of gene expression and the results of MAST with random effect for sample of origin and sequencing 
depth, with Bonferroni adjustment of P values (***Padj < 0.001, exact Padj values reported in Supplementary Table 4) (right). e, Heat map showing modules 
of trajectory DEGs (t-DEGs) in the microglia cluster (n = 2,112 genes). The expression value is RVAE decoded expression. The genes were grouped into four 
modules after ranking by RVAE decoded expression. Module 1 (645 genes), module 2 (570 genes), module 3 (566 genes) and module 4 (331 genes).  
f, Dot plot showing the top ten GO biological process terms for genes in individual modules.
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genes in the female hypothalamus with age (Fig. 3a). Differential 
expression analysis of each major cell type indicated upregulation 
of Xist with age in astrocytes, macrophages, microglia, neurons, oli-
godendrocytes, as well as tanycytes (Fig. 5a), and we also observed 
upregulation of Xist in the aging hippocampus34 (Fig. 3a,b). Xist is a 
key player in X chromosome inactivation in females and is encoded 
on the X inactivation center (XIC), which harbors additional non-
coding RNA genes involved in the same process32,33,48. Of note, we 
observed age-related upregulation of related RNAs in some cell 
types: Ftx, Jpx, and Tsix (Fig. 5a). We validated the upregulation of 
Xist using RNA extracted from independent tissue samples of dif-
ferent brain regions (hypothalamus, cerebellum, cortex, and olfac-
tory bulb). Notably, although Xist trended up in all brain regions 
we tested, the upregulation only reached significance in the female 
hypothalamus, revealing a feature of female hypothalamic aging 
(Fig. 5b). As expected, we did not detect Xist expression in adult 
male mice and there was no upregulation of this gene with age in 
males (Fig. 5b). We further confirmed this finding using RNAScope 
to detect the Xist transcript in in situ in coronal sections through 
the mouse hypothalamus. The average intensity of Xist expres-
sion in aged female hypothalamus (25 months) was significantly 
higher than in young female hypothalamus (3 months) using this  
method (Fig. 5c).

Although most genes on the inactive X chromosome are not 
expressed in females, a small number of genes are well known to 
‘escape’ inactivation and are expressed from both X chromosomes. 
These X escape genes are species and tissue specific49,50. In the mouse, 
14 genes escape X inactivation in brain tissue49.This list includes 
both Xist and Ftx, which have increased expression with age in our 
dataset. To determine whether increased XIC gene expression with 
age might be affecting escape genes, we interrogated expression 
of genes known to escape X inactivation in mice. We compiled a 
list of genes that are both known to escape X inactivation in any 
tissue context in mice and are expressed in our dataset. We found 
that although changes to XIC genes seems to be uniform across cell 
types in our data, age-related changes to expression of X escape 
genes are cell-type-specific (Fig. 5d). For example, in astrocytes, 
Idh3g is downregulated with age, whereas Firre, Plp1 and Tmsb4x 
are upregulated. In neurons, Gprasp1 and Huwe1 are downregulated 
with age, whereas 5530601H04Rik and Kdm5c are upregulated. Of 
the 39 X escape genes expressed in the dataset, 15 were differen-
tially regulated with age in at least one cell type. These data suggest 
that global changes to X chromosome regulation may be a feature of 
female hypothalamic aging.

Finally, to understand whether the changes in Xist that we 
observed in mouse aging might be related to age-associated pathol-
ogies in humans, we assessed changes in XIST expression between 
control and Alzheimer’s disease human brain samples across two 
brain regions using publicly available snRNA-seq datasets51,52. Using 
MAST with a random effect for sample of origin, we compared XIST 
expression across all cells from females in two independent datasets 
(Fig. 5e). Notably, XIST is upregulated in human entorhinal cortex 
in women with Alzheimer’s disease, which is one of the earliest and 
most affected regions in this disease (log2(FC) = 0.574, Padj < 0.001, 

n = 3,942 nuclei). In contrast, nuclei derived from human prefrontal 
cortex shows no changes in XIST expression between control and 
Alzheimer’s disease samples (Padj > 0.05, n = 26,212 nuclei). Thus, 
changes in XIST expression may be a brain-region-specific feature 
of Alzheimer’s disease in female patients.

Neuronal subtype-specific changes during aging. Hypothalamic 
neurons are highly diverse and function to orchestrate a wide range 
of processes and behaviors necessary for organismal survival53. This 
diversity of function is accomplished by cell-type-specific gene 
expression programs, with each area of the hypothalamus contain-
ing a range of transcriptionally dissimilar neuronal subtypes18–23. 
Indeed, even neurons expressing the same neuropeptide gene may 
comprise functionally distinct subpopulations54. To address this 
complexity, we sub-clustered the neuronal nuclei to identify tran-
scriptionally distinct populations. This analysis revealed 35 tran-
scriptionally distinct clusters (Fig. 6a) and broadly separated the 
nuclei into inhibitory (Gad1 expressing GABAergic) or excitatory 
(Slc17a6/vGLUT2 expressing glutamatergic) identities (Fig. 6b). 
The 35 clusters represent both known and undefined neuronal sub-
types (Supplementary Table 6 shows markers of cluster identity). To 
discern the relationship between the clusters, we organized them 
according to transcriptional similarity using a cluster tree analysis 
(Fig. 6c; left). Neurons with similar functions clustered closely to 
one another. For example, some AgRP/NPY neurons and POMC 
neurons may arise from common progenitors6 and the Sst/Npy 
(29, expressing Agrp) and Pomc/Tac2 (31) clusters are near to one 
another on the cluster tree.

We next investigated expression of specific neuropeptide genes 
across the clusters to functionally define the distinct neuronal sub-
populations (Fig. 6c; right). These clusters generally correspond 
to known cell types expressing one or two hallmark neuropep-
tides. We were able to identify neuronal clusters expressing genes 
encoding neuropeptides controlling processes that are altered with 
age (Supplementary Table 7). For example, we observed notable 
changes in clusters associated with feeding and energy homeosta-
sis55, including those expressing the peptides agouti-related pep-
tide (Agrp), cocaine and amphetamine related transcript (Cartpt), 
cholecystokinin (Cck), neuropeptide Y (Npy), proopiomelanocor-
tin (Pomc), galanin (Gal) and hypocretin/orexin (Hcrt). Based on 
neuropeptide gene expression, these clusters most likely represent 
known neuronal populations with defined functions. For example, 
cluster Sst/Npy (29) most likely consists of AgRP/NPY neurons 
from the arcuate nucleus of the hypothalamus.

To further confirm neuronal subtype identity, we compared our 
dataset with publicly available spatial transcriptomic data from 
Cell2Location56. While messenger RNA signatures from broad 
cluster categories such as astrocytes (Supplementary Fig. 5) do not 
show restriction to one or more hypothalamic subnuclei, the mRNA 
signatures of specific neuronal subclusters are localized in discrete 
locations. (Fig. 6d and Supplementary Fig. 4a,b). For example, the 
Pomc/Tac2 (31) cluster localizes to the most ventral portion of the 
coronal section (Fig. 6d). Notably, two clusters expressing Cartpt 
(15. Cartpt/Pmch and 26. Cartpt/Ebf1) show little spatial overlap 

Fig. 5 | Alterations to X chromosome inactivation center are a feature of the aged female hypothalamus. a, Expression of genes involved in X 
chromosome inactivation by age and cell type. Differential expression between young and aged samples was calculated using MAST with random 
effect for sample of origin and sequencing depth, with Bonferroni adjustment of P values (***Padj < 0.001, exact P values are reported in Supplementary 
Table 4). b, RT–qPCR of Xist expression in specific brain regions. Xist expression is significantly higher in the hypothalamus (n = 3 animals per age group, 
**P = 0.008, two-sided unpaired Student’s t-test with Bonferroni–Dunn correction, bars indicate mean ± s.e.m.). c, Representative images from RNAScope 
for Xist transcript in young and aged female hypothalamus (left). Quantification of signal intensity (n = 3 animals per group, *P = 0.0473, two-sided 
unpaired Student’s t-test, bars indicate mean ± s.e.m.) (right). d, Expression of genes known to escape X chromosome inactivation by age and cell type. 
Differential expression between young and aged samples was calculated using MAST with random effect for sample of origin and sequencing depth, 
with Bonferroni adjustment of P values (*Padj = .043, ***Padj < 0.001, exact Padj values are reported in Supplementary Table 4). e, XIST expression in human 
entorhinal cortex (left) and prefrontal cortex (right). (***Padj < 0.001, MAST with random effect for sample of origin and Bonferroni adjustment of P values).
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despite their shared neuropeptide profile, highlighting the strength 
of this method to define cell types both spatially and transcription-
ally. Thus, this spatial analysis further validates the identity and 
function of the identified neuronal subclusters.

We next performed differential expression on clusters in which 
there were at least 20 nuclei per condition (Fig. 7a and Supplementary 
Table 8). For each cluster, we also performed GSEA using the KEGG 
gene set. Most clusters tested exhibited transcriptional changes with 
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age, although the number of DEGs varied by subtype. We observed 
that clusters expressing peptides involved in feeding and energy 
homeostasis were particularly altered with age in this analysis (such 
as 15. Cartpt/Pmch, 34 DEGs; 29. Sst/Npy, 65 DEGs; and 31. Pomc/
Tac2, 42 DEGs). Among the many transcriptional changes found 
in the Pomc/Tac2 cluster (31) there was an intriguing downregu-
lation of Pcsk1n. Pcsk1n encodes proprotein convertase subtilisin/
kexin type 1 inhibitor, also called proSAAS, a propeptide that inhib-
its processing of other neuropeptides such as POMC57. This gene 
was also downregulated in a cluster of neurons expressing Cartpt 
(Cartpt/Ebf1 (26)). Notably, in a different Cartpt-expressing cluster 
(Cartpt/Pmch (15)), the gene is upregulated with age, suggesting 
that changes to neuropeptide processing pathways with age are cell-
type specific.

Changes to expression of neuropeptide genes was also evident, 
with upregulation of Agrp in cluster Sst/Npy (29), upregulation 
of Cartpt in Cartpt/Ebf1 (26) and downregulation of Cck in two 
Cck+ subclusters (Synpr/Tafa1 (23) and Rnf220/Ntng1 (2)). Thus, 
our dataset links neuron-specific gene expression changes in the 
hypothalamus with key features of organismal aging, such as weight 
and metabolic changes.

On the basis of expression of specific peptide genes (Adcyap1, 
Cartpt and Cck) and other established marker genes (Foxb1 and 
Cpne9)21, we identified three clusters representing the medial mam-
millary nucleus of the hypothalamus: Rgs6/B230323A14Rik (3), 
Dgkb/B230323A14Rik (4) and Slc1a3/Apoe (5). This region is nota-
ble because unlike most areas of the hypothalamus, it is involved 
in memory via connections with the hippocampus58. While cluster 
Slc1a3/Apoe (5) had too few cells to meet our criteria for perform-
ing differential expression, both cluster Rgs6/B230323A14Rik (3) 
and Dgkb/B230323A14Rik (4) were significantly altered with age 
(Fig. 7a). GSEA using the KEGG gene set revealed enrichment for 
genes related to Alzheimer’s disease, cardiac muscle contraction, 
Huntington’s disease, oxidative phosphorylation, Parkinson’s dis-
ease and the ribosome. There was an additional de-enrichment in 
genes related to glycosylphosphatidylinositol (GPI)-anchor biosyn-
thesis and glyoxylate and dicarboxylate metabolism (Fig. 7b). The 
identification of changes in this brain region is significant, as they 
may contribute to cognitive impairments with age.

Through GSEA, a shared aging signature emerged among many 
hypothalamic neuronal subtypes. This included enrichment in 
pathways related to Alzheimer’s disease (14 clusters), Huntington’s 
disease (11 clusters), oxidative phosphorylation (19 clusters), 
Parkinson’s disease (17 clusters) and the ribosome (21 clusters) (Fig. 
7b). A notable exception to this signature is the cluster most likely 
representing corticotropin-releasing hormone (CRH) neurons of 
the paraventricular nucleus of the hypothalamus (Crh/Gpc5 (27)). 
CRH neurons are an integral component of the hypothalamic–pitu-
itary–adrenal axis in the stress response59. Decreased CRH has been 
studied for several decades as a potential hallmark of Alzheimer’s 
disease60 and CRH itself has been shown to be neuroprotective 
against Aβ toxicity61. In cluster Crh/Gpc5 (27) of our dataset, gene 
sets related to Alzheimer’s disease, Huntington’s disease, oxidative 
phosphorylation, Parkinson’s disease, protein export and the ribo-
some were all strongly under-enriched (Fig. 7b), suggesting that 
this neuronal subtype has a distinct disease-associated expression 
signature compared to other neurons. Together, these data highlight 
the hypothalamic transcriptional changes unique to individual neu-
ronal subtypes or common across neurons, which may contribute to 
age-related neurodegenerative disease.

Finally, we sought to understand the role of Xist in defining the 
aged neuronal state. To do so, we tested whether expression of X 
chromosome genes was sufficient to predict neuronal age in our 
dataset (Fig. 8a). We trained eight different supervised machine-
learning models to classify neurons as either young or aged. Based 
on the accuracy score (Fig. 8b), the XGBoost classifier (Xgbc62) 

outperformed others with 77.8 ± 0.6224% accuracy. We then fine-
tuned the model to optimize hyperparameters and retrained it on 
new data splits across 50 random states to measure the uncertainties 
due to splitting and the non-deterministic model. The confusion 
matrix (Fig. 8c) and the area under the receiver operating character-
istic (ROC) curve (AUC) (Fig. 8d) confirmed model performance. 
Notably, when we randomly shuffled the feature ‘Xist expression’, 
the model performance dropped dramatically down to the near-
baseline level (Fig. 8e). We then applied Shapley additive explana-
tions (SHAP)63 to further interpret the predictions and rank the 
features by importance. Consistent with our findings, Xist was the 
most important feature in the prediction, followed by the sum of all 
genes detected in the dataset (Fig. 8f). Local feature importance of 
two randomly selected individual neurons (young and aged) also 
showed that Xist had the most significant impact on driving the 
model prediction (Fig. 8g). These data suggest that Xist upregula-
tion is a key feature of hypothalamic neuronal aging and may pre-
dict female neuronal aging in the hypothalamus.

While comparing our dataset to hippocampal data, we noted 
that Xist is highly upregulated with age in both brain regions. To 
understand the role of Xist and the X chromosome in aging across 
brain regions, we tested whether X chromosome genes were suffi-
cient to predict cellular age in the hippocampus. We reran the Xbgc 
model using snRNA-seq data from female mouse hippocampal 
neurons (Fig. 3a and Supplementary Fig. 6). Although overall gene 
expression changes with age in the hypothalamus and hippocam-
pus do not correlate (Fig. 2a), X chromosome gene expression is 
still sufficient to predict cellular age with 82.5 ± 0.7080% accuracy 
in hippocampal neurons. Interestingly, Xist was the second most 
important predictor of age, based on permutation importance and 
SHAP (Supplementary Fig. 6c,d), confirming Xist upregulation as a 
shared feature of neuronal aging across two brain regions.

Discussion
In this work, we used snRNA-seq to identify the age-associated 
transcriptional changes in the mouse hypothalamus. This brain 
region is critical for the regulation of physiological homeostasis, 
including sleep, circadian rhythms, feeding, and metabolism. These 
functions are well known to be disrupted during aging and our 
findings implicate widespread transcriptional changes concomitant 
with physiological changes.

Our approach successfully captured the major cell types in the 
brain, as well as hypothalamus-specific cell types such as tanycytes. 
We found that cellular subtypes in this region acquire distinct aging 
signatures and discovered that increased transcriptional heteroge-
neity is a common feature across all cell types with age. Consistent 
with our findings, age-related transcriptional alterations have been 
observed in aging human brains and increased transcriptional noise 
is thought to be a hallmark of aging. Our finding that different 
neuronal subtypes have distinct aging signatures is consistent with 
recent reports identifying differential susceptibility to neurodegen-
eration64. Identification of the transcriptional signatures involved 
may pave the way for therapeutics targeted at subpopulations most 
susceptible to dysregulation with age.

We observed notable changes in the microglial population with 
age. Microglia are resident immune cells in the brain and previous 
research has shown that microglia-mediated inflammation in the 
hypothalamus can affect lifespan11. By utilizing trajectory infer-
ence analysis, we uncovered that while some aging microglia retain 
features of young cells, the population shows a progression toward 
an aged phenotype based on distinct gene expression modules. 
Notably, DAM genes such as Apoe change throughout both age and 
pseudotime.

Sex differences in aging have been observed across taxa, 
including in mice12,13. In mammals, females generally live lon-
ger than males12 and many aging interventions, such as CR, are 

NAturE AgiNg | VOL 2 | JULY 2022 | 662–678 | www.nature.com/nataging674

http://www.nature.com/nataging


ResouRceNATuRe AgiNg

more effective in females13,14. In addition, the sexually dimorphic 
response to aging interventions seems to be a conserved phenom-
enon, with female Drosophila responding more strongly to dietary 
restriction paradigms than males65 and hermaphroditic C. elegans 
responding more strongly to dietary restriction than males66. 
In mice, males and females differ in regard to sex chromosome 
content (males are XY and females are XX) and the presence of 
gonadal hormones such as higher androgens in males and estro-
gens in females. Of note, X chromosome content has been linked 
to longevity and the presence of two X chromosomes contributes 
to increased longevity regardless of hormonal status67. This study 
from the Dubal laboratory was performed using the four core 
genomes mouse line, in which the Sry gene (which induces testes 
development) exists on an autosome rather than the Y chromo-
some, allowing for chromosomal sex to be disambiguated from 
gonadal sex/hormone status. In our study, we uncover a poten-
tial mechanism by which the X chromosome affects aging. We 
observed widespread upregulation of Xist in aged female animals, 
as well as upregulation of other XIC genes, including Tsix, Jpx, and 
Ftx. Notably, this increased expression was highly prominent in 
neurons, although upregulation of Xist was observed in oligoden-
drocytes, astrocytes, and tanycytes as well. In a machine-learning 
algorithm, Xist expression was the most important variable in a 
model to classify whether a hypothalamic neuron was young or 
aged. Together, our findings reveal an unexplored feature of aging 
in the female brain.

Future work will be required to address the limitations of this 
study. We analyzed only female mice and an additional compari-
son between male and female mice will be needed to fully elu-
cidate sex-specific mechanisms of aging in the hypothalamus. 
Further, only two time points were investigated using snRNA-
seq. Additional time points throughout the lifespan will be useful 
in understanding when and how age-related hypothalamic tran-
scriptional changes occur. A main strength of this study was the 
use of single nuclei rather than cells to analyze a larger population 
of neurons that may not have otherwise survive dissociation and 
processing. Despite the large number of neuronal nuclei we cap-
tured, some populations of interest, such as kisspeptin-expressing 
neurons, were not highly represented in the sample populations. 
Due to the diversity of neuronal subtypes in the hypothalamus, 
future sequencing of larger amounts or specific populations of 
nuclei is needed to adequately isolate and analyze rare popula-
tions of interest.

In summary, our study reveals the major transcriptional fea-
tures of hypothalamic aging. We observed transcriptional variation 
across cell types, cell-type specific aging signatures and features of 
aging in females. Understanding how individual populations of cells 
in this region contribute to overall loss of homeostasis with age will 
be vital to identifying treatments for aging and age-related disease.

Methods
Animals. Single-nuclei isolation. Young (3 month) and aged (19–24 month) C57/
Bl6 female mice were obtained from the National Institute on Aging. Mice were 
housed and used according to protocols approved by Brown University IACUC and 
in accordance with institutional and national guidelines. Animals were housed at 
70 ± 2 °F with humidity from 50–70%. Animals were fed ad libitum LabDiet 5010 
chow and water. The light cycle was 12 h on/12 h off; lights were on between 07:00 
and 19:00.

Animals were exposed to male bedding 3 d before being euthanization to 
synchronize the estrous cycle. Animals were sacrificed at Zeitgeber time ZT2–ZT3.

Statistics and reproducibility. No statistical methods were used to predetermine 
sample sizes but our sample sizes are similar to those reported in previous 
publications using single-cell RNA-seq on brain tissue25,36. No animals were 
excluded from the study. Individual nuclei were excluded from analysis based 
on quality control metrics (feature count and mitochondrial read count). Data 
collection and analysis were not performed blind to the conditions of the 
experiments, except in the case of the RNAScope image analysis, in which the 
experiment was performed and analyzed randomized and blinded.

snRNA-seq. To reduce noise stemming from differences in estrous state, two 
whole hypothalamuses were pooled into each biological replicate, for a total of two 
replicates for the young and aged conditions. Nuclei extraction was performing 
using the Nuclei PURE Prep kit (Millipore Sigma) according to the manufacturer’s 
instructions with the modifications that for each sample, two hypothalamuses were 
dissected out of the animals and rinsed in cold PBS. Tissue was transferred using 
a transfer pipette into a refrigerated Dounce homogenizer with 5 ml lysis solution 
following kit instructions. Tissue was homogenized with the Dounce B and the 
lysate was transferred into a 15-ml Falcon tube through a 40-μm filter. The sucrose 
purification step was performed with the modifications that half the volume of all 
reagents was used to account for the small tissue sample sizes, an SW34 rotor was 
used and samples were spun for 45 min at 30,000g (13,000 r.p.m.) at 4 °C. Nuclei 
were counted using a hemocytometer and 5,000 cells per sample were loaded 
onto the Chromium Single Cell 3′ Chip (10X Genomics) and processed with the 
Chromium Controller (10X Genomics). Samples Young_1, Young_2, Aged_1 
and Aged_2 were prepared using the Chromium Single Cell 3′ Library and Gel 
Bead kit v2 according to manufacturer’s instructions. Samples were sequenced at 
GENEWIZ on an Illumina HiSeq, with a target of 50,000 reads per sample. The 
Aged_1 and Young_2 samples underwent an additional round of sequencing to 
obtain sufficient read depth. Samples Young_3, Young_4, Aged_3 and Aged_4 
were prepared with the Next GEM Single Cell 3ʹ Reagent kit (10X Genomics) and 
sequenced at GENEWIZ on an Illumina NovaSeq.

Quality control, data processing and analysis. We performed sequence alignment 
to the mm10 genome (2020) using the CellRanger (CellRanger/6.0.0) software 
from 10X Genomics with the –include introns flag. The resulting feature–barcode 
matrices were read into R v.4.1.0, excluding any nuclei expressing fewer than 200 
genes and any gene expressed in fewer than three nuclei.

Filtering and visualization were performed using Seurat (v.4.0.3)68. For samples 
sequenced on an Illumina HiSeq, nuclei with fewer than 200 or more than 3,000 
features were filtered out. For samples sequenced on the NovaSeq, nuclei with 
fewer than 200 or more than 7,500 features were filtered out. Similarly, nuclei 
with greater than 10% mitochondrial mapping were removed, resulting in 23,808 
nuclei in the aged condition and 16,256 nuclei in the young condition. Integration 
of the datasets was performed using the IntegrateData function on 5,000 variable 
features. The number of nuclei, unique molecular identifiers and unique genes per 
sample are reported in Supplementary Fig. 1. To assign identities to clusters, the 
FindAllMarkers() command with default parameters was used. This finds the top 
genes that define a cluster identity. We named each cluster using the top two genes 
to come out of the FindAllMarkers() analysis.

Differential expression was performed using MAST (v.1.18.0)28,29, with 
random effect for sequencing depth and sample of origin69. Genes were considered 
significant if the adjusted P value was <0.05 and the log2(FC) was >0.1 or <−0.1. 
For re-analysis of publicly available data, raw cell/count matrices were downloaded 
and data were reprocessed according to the above-mentioned workflow. MAST was 
performed with random effect for sample of origin.

Gene set enrichment analysis. GSEA was performed using the fgsea package 
(v.1.18.0)36 using the hallmark gene set list and KEGG gene set list from MSigDB 
(v.7.2.)69. For each cluster, genes were ranked by log2(FC) after MAST analysis 
and the analysis was performed using the fgseaMultilevel command with default 
settings and seed set at 1,000. Gene sets were considered to be enriched if the 
adjusted P value was <0.1. Conversions between mouse and human annotation 
was performed using biomaRt (v.2.48.2).

Trajectory inference and analysis using Monocle3. To infer the aging process 
for the microglia/macrophage clusters (n = 1,121 nuclei) generated in Seurat, we 
applied Monocle3 (refs. 44,70). Monocle3 uses dimensionality reduction to place 
single cells in a two-dimensional space, removes batch effects by mutual nearest 
neighbor alignment and connects single cells to construct a trajectory in a semi-
supervised way. For the microglia/macrophage cluster, we use the integrated Seurat 
object with no further batch correction or dimensionality reduction in Monocle3. 
We subsetted the microglia and macrophage cluster and programmatically 
specified the root of the trajectory by selecting the node most enriched for young 
cells. The trajectory and its direction calculated by Monocle3 are in agreement with 
the distribution of young and aged cells. Spatial differential expression analysis 
along the trajectory was performed with Moran’s I test in Monocle3 and selected 
genes with q < 0.05 as trajectory-dependent genes (2,112 genes). The set of genes 
were grouped into four modules according to its RVAE decoded expression49 along 
the trajectory.

Functional enrichment analysis. EnrichR71 v.3.0 was applied to perform the 
functional enrichment analysis of 2,112 genes in individual modules, resulting in 
lists (‘4_modules_q_moranI’) of statistically significant enriched terms (Padj < 0.05 
with Benjamini–Hochberg correction) for individual modules. We checked the 
gene set databases GO_Biological_Process_2018, GO_Cellular_Component_2018 
and GO_Molecular_Function_2018. We kept GO terms with P < 0.05 and 
visualized the ten most significant terms for each module and visualized in the dot 
plot. The Python package RVAgene (v.1.0, in Python v.3.9.6 with PyTorch v.1.9.0) 
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RVAE implementation was used to decode the t-DEGs (n = 2,112) along the 
pseudotime trajectory. Expression was averaged in individual time bins and then 
rescaled to the value in [−1,1] and input to RVAgene. For the neural network, the 
parameters used were symmetrical architecture with two hidden layers (48 nodes 
per layer) and two latent variable dimensions. The output reconstructed trajectory 
for the t-DEGs was used to plot the heat map.

Single-cell regulatory network inference and clustering (SCENIC). RNA counts 
from samples Young_3, Young_4, Aged_3 and Aged_4 were exported into a loom 
file using SCopeLoomR_0.11.0. The standard pySCENIC (v.0.11.0) workflow 
was run using Brown University’s cloud computing resource. The workflow 
was completed 50 times and the resulting loom files were loaded back into R. 
Only regulons and genes within the regulons appearing 10 of 50 times or more 
were retained for further analysis. AUCell analysis was performed in R using 
SCENIC_1.2.4 and AUCell_1.14.0. Using the previously defined regulons, AUCell 
analysis was performed on all cells from the dataset following the default pipeline. 
For binarization of regulons, default thresholds were used. Regulon specificity 
scores were generated using the calcRSS() command.

CellPhoneDB. RNA counts for young and aged datasets were analyzed separately 
to allow for comparison. Conversions between mouse and human annotation was 
performed using biomaRt (v.2.48.2). CellPhoneDB (v.2.1.7) was run in a conda 
environment (anaconda/2020.02) using the statistical_analysis method with 1,000 
iterations and a 0.1 threshold. For visualization in R, only ligand–receptor pairs in 
which direction could be inferred were retained for analysis.

Microglia isolation and RT–qPCR analysis. Young (2–3 months), middle aged 
(8–13 months) and aged (20–24 months) C57/BL6 wild-type and POMC-EGFP 
reporter mice (Jax Stock no. 009593) were housed and used according to protocols 
approved by Brown University and in accordance with institutional and national 
guidelines. Animals were sacrificed at ZT4. For each biological replicate, four 
animals were pooled, with genotypes and estrous state balanced across conditions. 
Tissue was dissociated with the Adult Brain Dissociation kit (Miltenyi Biotec, 
130-107-677) according to manufacturer’s instructions. Dissociated tissue was 
incubated with CD11b MicroBeads (Miltenyi Biotec, 130-049-601) for 15 min 
at 4 °C. Labeled cells were isolated using Miltenyi Biotec MS columns (130-042-
201) on the OctoMACS Separator. RNA was purified using the RNeasy micro kit 
(74004) and complementary DNA was generated with the High-Capacity Reverse 
Transcription kit (Applied Biosystems, 4374966). A negative control (−RT) for 
each sample was also generated by excluding the Multiscribe Reverse Transcriptase 
component of the reaction.

Cell2location. Cell2location is a Bayesian model that uses snRNA-seq cell-type 
signatures to infer cell types in Visium spatial transcriptomics by decomposing 
mRNA counts in each Visium voxel into cell types. We performed the three main 
steps in the cell2location workflow: estimate reference expression signatures of 
cell types using our dataset, map the learned cell type signatures onto the slides 
and perform downstream analysis. The code, model parameters and training 
evaluations can be found in the jupyter notebooks in our GitHub repository. In 
brief, we used the default parameters to train the cell2location model.

Neuronal age prediction using machine learning. Neuronal nuclei (25,002) 
were selected for young or aged classification. All genes were annotated with 
their chromosomal location. For each neuron, one categorical feature (neuronal 
subtype) and 281 numerical features were used for machine learning: 278 X 
chromosome genes (mean expression >0.1 read per cell and detected in >3,000 
nuclei), aggregated X chromosome gene expression ‘x_sum’, aggregated all 
gene expression ‘sum’ and their ratio ‘x_prop’. The pipeline and functions were 
implemented in Scikit-learn72. For data splitting, 20% of nuclei were first split 
into the testing set and the remaining 80% were further split into training and 
validation sets using fivefold cross-validation, resulting in train-validation-testing 
of 64 − 16 − 20. For preprocessing, OneHotEncoder was applied for the categorical 
feature and StandardScaler was applied for the numerical features.

Eight machine-learning models were tested over ten different random 
states. The best hyperparameters were selected using GridSearchCV and the 
model performance was evaluated using accuracy score of the test sets. XGBoost 
classifier62 was selected, fine-tuned (max_depth of 5 with early stop) and then 
retrained on new splits across 50 different random states. The baseline accuracy 
was 0.596 ± 0.00765 and the model accuracy was 0.778 ± 0.006224. Model 
interpretation was performed using permutation feature importance and SHAP63.

For the hippocampus dataset, neuronal nuclei (11,204) were selected. For 
each neuron, 253 X chromosome genes (mean expression >0.1 read per cell and 
detected in >1,000 nuclei), aggregated X chromosome gene expression ‘x_sum’, 
aggregated all gene expression ‘sum’ and their ratio ‘x_prop’ were used as features 
for model training. The rest of the processes were the same as above except that the 
max_depth of 4 for the final 50 different random states. The baseline accuracy was: 
0.594 ± 0.009167 and the model accuracy was: 0.825 ± 0.007080.

Whole-brain RNA isolation, cDNA generation and qRT–PCR. Hypothalamus, 
olfactory bulb, cerebellum and cortex were dissected in cold PBS from the brains 

of 3-month-old and 24-month-old C57BL/6 mice (n = 6; 3 male and 3 female for 
each age) and snap-frozen in liquid nitrogen. RNA was purified using the QIAGEN 
RNeasy Lipid Tissue Mini kit (QIAGEN, 74804). cDNA was generated using 500 ng 
of RNA and the High-Capacity Reverse Transcription kit (Applied Biosystems, 
4374966). A negative control (−RT) for each sample was also generated by 
excluding the Multiscribe Reverse Transcriptase component of the reaction. qPCR 
reactions were completed using the PowerUp SYBR Green Master Mix (Invitrogen, 
A25918). Stock primers were diluted to 10 mM in sterile water and cDNA was 
diluted 1:5 in sterile water (whole brain) or 1:3 in sterile water (microglia). 
Expression levels of the genes of interest (see table below) were quantified using a 
ViiA 7 Real Time PCR System with QuantStudio software. For whole brain, Actin 
was used as a housekeeping gene. For microglia, Itgam (CD11b) was used. Each 
sample, water control and −RT control sample was run in triplicate for each primer 
set. CT values were normalized to the housekeeping gene and ΔCT values were 
plotted as 2−ΔCT. Technical replicates were averaged per biological replicate.

gene F sequence r sequence

Actin TGTTACCAACTGGGACGACA CTCTCAGCTGTGGTGGTGAA
Apoe GATCAGCTCGAGTGGCAAA CTCTGCAGCTCTTCCTGGAC
Arhgap15 AAAGCCAAAATTGCAGATGG GAGCTTGCTGCTTGGAGTCT
Cst3 CTGACTGTCCTTTCCATGACC TGCAGCTGAATTTTGTCAGG
Cx3cr1 AAGCTCACGACTGCCTTCTT CCGGTTGTTCATGGAGTTGG
Itgam 
(CD11b)

CTTCTGGTCACAGCCCTAGC TGGACCACACTCTGTCCAAA

Lyz2 ACTGCTCAGGCCAAGGTCTA TGCTCTCGTGCTGAGCTAAA

Xist GGTTCTCTCTCCAGAAGC 
TAGGAAG

TGGTAGATGGCATTGTG 
TATTATATGG

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Fastq files for raw snRNA-seq and Seurat objects were deposited at the Gene 
Expression Omnibus under accession code GSE188646. Publicly available datasets 
are available for hippocampal single-nuclei data, GSE161340; human entorhinal 
cortex data, GSE138852 (samples AD3-AD4 and Ct1-Ct2); human prefrontal 
cortex data, GSE174367 (samples 17, 19, 37, 43, 45, 50, 66 and 90); and Spatial data, 
ArrayExpress E-MTAB-11114.

Code availability
All code is available at https://github.com/Webb-Laboratory/
Hajdarovic_And_Yu_et_al_2022.
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