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Single-cell analysis of the aging female mouse
hypothalamus
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Alterations in metabolism, sleep patterns, body composition and hormone status are all key features of aging. While the hypo-
thalamus is a well-conserved brain region that controls these homeostatic and survival-related behaviors, little is known about
the intrinsic features of hypothalamic aging. Here, we perform single-nuclei RNA sequencing of 40,064 hypothalamic nuclei
from young and aged female mice. We identify cell type-specific signatures of aging in neuronal subtypes as well as astrocytes
and microglia. We uncover changes in cell types critical for metabolic regulation and body composition and in an area of the
hypothalamus linked to cognition. Our analysis also reveals an unexpected female-specific feature of hypothalamic aging: the
master regulator of X inactivation, Xist, is elevated with age, particularly in hypothalamic neurons. Moreover, using machine
learning, we show that levels of X chromosome genes and Xist itself, can accurately predict cellular age. This study identi-
fies critical cell-specific changes of the aging hypothalamus in mammals and uncovers a potential marker of neuronal aging in

females.

hile human lifespan has increased dramatically in recent

years, improvements in healthspan, the period of life in

which a person is disease-free, have been more modest'.
Susceptibility to a host of diseases increases with aging, including
diabetes, stroke’, cancer’ and neurodegenerative diseases’. Aging is
accompanied by changes in body composition, including decreased
lean muscle mass, loss of bone density and increased abdominal fat'.
Concomitant with these changes are alterations in endocrine states,
such as decreased sex hormone production and reduced growth
hormone and insulin-like growth factor-I°. Endocrine function and
homeostatic processes, such as energy homeostasis® and release of
sex hormones’, are controlled by neuropeptidergic neurons in the
hypothalamus.

Nutrient sensing is one of several functions of the hypothala-
mus that implicates this brain region in healthy aging. Specific
neuronal subtypes in the hypothalamus respond to circulating cues
to organize the response to dietary changes through regulation
of energy balance, glucose homeostasis, and growth factor secre-
tion®. Caloric restriction (CR) is one of the most well-established
behavioral interventions that improves lifespan and healthspan in
many model organisms’. Genetic models that mimic the effects of
CR via modulation of energy sensing pathways have revealed the
mechanistic underpinnings of lifespan extension. For example, in
Caenorhabditis elegans, the effects of dietary restriction are depen-
dent on the function of neuropeptidergic energy sensing neurons;
genetic manipulation of energy sensing genes in those neurons is
sufficient to increase longevity®. Similarly, lifespan extension in
the fruit fly Drosophila is dependent on specialized neurons called
median neurosecretory cells’. In rodents, manipulations to the
hypothalamus can also alter lifespan. Specifically, brain-specific
overexpression of Sirt] leads to alterations in the dorsomedial and
lateral hypothalamus and increases lifespan’. In addition, alteration

of immune signaling in the mediobasal hypothalamus affects lon-
gevity, with a reduction in immune signaling promoting longevity''.

Sex differences in lifespan have been documented in many
species, including mice'. In humans, there is a robust difference
in female and male lifespan across countries, with females living
an average of 4-10 years longer than males”. Intriguingly, inter-
ventions that extend lifespan in model organisms do so in a sex-
specific manner. For example, CR is one of the most robustly
studied interventions and its effects have been observed from yeast
to non-human primates’. Like many interventions, CR has sex-
specific effects, with restricted females generally living longer than
males on the same diet'. Similarly, the brain-specific Sirtl overex-
pression model results in a larger lifespan increase for females when
compared to males'’.

However, the aging female brain remains critically understud-
ied and we know little about how areas involved in healthy aging,
such as the hypothalamus, change with age in females. Epigenetic
and transcriptional changes are widespread across tissues during
aging, including in the brain'>'°. Key transcriptional factors such as
FOXO/DAF-16, NF-kB and MYC function as conserved regulators
of these networks and have been implicated in aging'"'>'"; however,
despite a great interest in how changes in transcriptional programs
affect aging, our understanding of how distinct cellular subtypes
change transcriptionally with age remains limited. Investigation of
how transcriptional programs change in a cell-type-specific manner
in the hypothalamus will provide important insight into the aging
process across tissues. Recent advances in single-cell RNA sequenc-
ing (RNA-seq) have expanded our understanding of the diverse cell
types that comprise the hypothalamus'®*". This approach allows
the investigation of previously unappreciated transcriptional and
functional diversity of this brain region. Here, we use a single-
nuclei RNA-seq (snRNA-seq) approach to identify aging-associated
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Pipeline for snRNA-seq of the aging mouse hypothalamus
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Fig. 1| Single-nuclei analysis of the hypothalamus. a, Schematic detailing the experimental workflow from dissection through analysis (created with
BioRender). b, Uniform Manifold Approximation and Projection (UMAP) plot of all 40,064 nuclei used for analysis. Clustering analysis revealed 11

broad categories of cell type identity. ¢, UMAP plots of all nuclei labeled for expression of cell type-specific markers. Sytl, neurons; Agt, astrocytes; Plp],
oligodendrocytes; Clga, microglia/macrophages. Color scale indicates level of gene expression. d, Heat map highlighting expression of cell type markers in

each cluster, a maximum of 500 nuclei per cluster are displayed.
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transcriptional changes across the mouse hypothalamus, thereby
capturing the diversity of cell types in this brain region.

Results

Single-nuclei sequencing of the aging mouse hypothalamus. We
employed snRNA-seq, which is currently the optimal method for
single-cell transcriptomic profiling of the diversity of cell types in
the adult mammalian brain**°. We isolated nuclei from the hypo-
thalamus of young (3 months) and aged (19-24 months) female
mice, with four replicate libraries for each age (Fig. 1a). After qual-
ity filtering, we obtained 40,064 high-quality nuclei for analysis:
16,256 and 23,808 nuclei from young and aged animals, respectively
(Supplementary Fig. 1a). Cellular composition and data quality
were similar across replicates (Supplementary Fig. 1b-d).

Clustering analysis with the Louvain algorithm revealed dis-
tinct clusters representing the major cell types of the hypothala-
mus, which we identified based on expression of canonical markers
(Fig. 1b-d). For each individual cluster, we identified the top ten
genes that were differentially expressed using the Wilcoxon rank-
sum test (Supplementary Table 1). For example, neurons were
defined by expression of Sytl, astrocytes defined by Agt and Gjal,
oligodendrocytes by Oligl and Plpl expression and oligodendro-
cyte precursor cells (OPCs) were identified by expression of Pdgfra.
The microglia and macrophage clusters were defined by expression
of Clga and distinguished by higher expression of TmemI19 and
P2ry12 in the microglia cluster (Fig. 1c). Less abundant cell types
were also observed, including ependymocytes (ependymal cells;
Ccdc153), pericytes (FitI), endothelial cells (Clnd5) and vascular
and leptomeningeal cells (VLMCs; Slc6al3). We also observed a
distinct cluster of tanycytes, which are specific to the hypothalamus
and defined by Rax expression. Nuclei in these broad categories
expressed additional canonical markers associated with their cell
type, for example, the astrocyte cluster expressed Gfap, further vali-
dating the identify of each cluster.

Cell type diversity is achieved through expression of transcrip-
tional regulators that orchestrate cell type-specific gene expres-
sion networks. To identify the regulators responsible for distinct
expression networks across cell types in the hypothalamus, we used
SCENIC, a regulatory network inference tool”’. SCENIC identifies
regulons, defined as a transcription factor and the genes it regulates
and scores the activity of the regulons in individual cells. Further, it
provides a regulon specificity score (RSS), which indicates whether
a given regulon is specific to an individual cell type or shared
among clusters. In our analysis, we observed strong shared and
cell-type-specific signatures for each cluster. For example, the Dbx2
regulon is strongly enriched in the astrocyte cluster (RSS=0.348),
with almost all astrocytes expressing the regulon, whereas the Atf2
and Creb3ll regulons are enriched in neurons (Supplementary
Fig. 2a,b and Supplementary Table 2) (RSS=0.639 and 0.626,
respectively). Together, this analysis identifies the distinct gene
expression signatures in the major cell types in the hypothalamus
that are orchestrated by specific combinations of transcriptional
regulators associated with cell type identity.

Gene expression changes in major cell types with age. We next
investigated the changes in gene expression that occur with age in
the major cell types of the hypothalamus. As expected, aging was
not associated with changes in composition of this brain region and
each major cell type was similarly represented in young and aged
mice (Supplementary Fig. 1c,d). To gain a global understanding of
how gene expression is altered with age, we first performed differ-
ential expression analysis on all cells using the model-based analysis
of single-cell transcriptomics (MAST)**, with a random effect for
sample of origin. Using this approach, we identified 275 and 342
genes that were upregulated and downregulated with age, respec-
tively (adjusted P value (P,4) <0.05, fold change (FC) > 0.1) (Fig. 2a

664

and Supplementary Table 3). As an initial validation, we cross-
checked our results with publicly available bulk microarray data on
the aging hypothalmus®. Although these data differ from ours in
regard to strain and sex, this analysis confirmed several changes in
our dataset, including downregulation of Grial, Apoe, Camk2a and
Atp1b2 (Supplementary Table 3). Moreover, we confirmed a key
finding from work on male rats showing that oxytocin binding is
decreased in several brain regions with age, including the hypothal-
amus®'. Here, we show a reduction in Oxt expression in aged female
mice, suggesting a reduction of oxytocin signaling is a feature of
both male and female aging. Notably, the most upregulated genes in
the MAST analysis included Xist and Tsix, which both encode long
non-coding RNAs involved in X chromosome inactivation®>** and
are expressed only in females.

Next, we investigated the impact of age on gene expression in
each major cell type. Neurons, astrocytes, oligodendrocytes and
microglia showed the greatest numbers of differentially expressed
genes (DEGs) with age (Fig. 2b and Supplementary Table 4).
Additionally, we performed coefficient of variation analysis on the
major cell types and observed a significant difference between ages,
with nearly all types showing in increase with age (Fig. 2c). This
finding suggests that variability in gene expression increases with
age in most cell types, which likely contributes to cellular dysfunc-
tion within the aged hypothalamus.

To validate our findings and determine the extent to which the
changes we observe are specific to the hypothalamus, we compared
our dataset to a publicly available snRNA-seq dataset analyzing the
female mouse hippocampus™. Astrocytes, oligodendrocytes, and
microglia all showed high agreement between the hypothalamic and
hippocampal datasets; for example, both datasets show significant
upregulation of C4b in astrocytes, Apoe and Lyz2 in microglia and
Cdh8 and Neat1 in oligodendrocytes (Fig. 3a). When we compared
the relationship in log,(FC) of significant (P, < 0.05) genes between
the hypothalamus and hippocampus, a statistically significant posi-
tive correlation emerged for astrocytes (p=0.78, P<0.001), oligo-
dendrocytes (p=0.61, P<0.001) and microglia (p =0.85, P<0.001).
Of note, in contrast to glia, there was less overlap in DEGs between
the hypothalamic neurons and hippocampal neurons and there
was little correlation in gene expression changes between hypo-
thalamic and hippocampal neurons (p=-0.07, P<0.001). While
some genes, such as Xist, are upregulated with age in both neuronal
subsets, other genes are either unchanged or regulated in opposite
directions in the two sets (Fig. 3b). For example, Phactr]l and Meis2
are among the most significantly downregulated neuronal genes in
the hypothalamic dataset but are not significantly changed with age
in the hippocampal dataset (P,4;> 0.05). The genes Rsrpl, Gm26917
and Kcnip4 are upregulated with age in the hypothalamus, but are
downregulated in the hippocampus with age. Notably, the gene
Rps29 is upregulated in both datasets, in agreement with previous
single-cell RNA-seq studies of the aged mouse brain®. Together
these data suggest that glia share general signatures of aging in dis-
tinct brain regions, whereas region-specific signatures are predomi-
nant in neuronal aging.

To investigate the cellular processes that are altered with age in
the different cell types in the hypothalamus, we performed Gene Set
Enrichment Analysis (GSEA) using the hallmark gene set* (Fig. 2d).
We observed unique signatures of aging in each cell type, as well as
some shared hallmarks of aging. For example, neurons and astro-
cytes share an under-enrichment (negative normalized enrichment
score) for the mTORCI signaling gene set. Astrocytes were also
under-enriched in genes related to cholesterol homeostasis, which
aligns with previous research showing a decrease in expression of
cholesterol synthesis genes in aged hypothalamic astrocytes”. In
contrast, neurons displayed alterations in G,M checkpoint genes,
which is notable in light of evidence linking Alzheimer’s disease
to aberrant cell cycle entry driven through activation of mMTORCI1
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Fig. 2 | The aging hypothalamus harbors cell-type-specific transcriptional changes. a, Volcano plot showing overall differential expression

of genes between all young and aged nuclei. Significant genes in purple (P,; < 0.05, FC> 0.1). Genes with a P value of zero were given an arbitrarily
small P value for plotting purposes. MAST analysis with random effect for sample of origin and sequencing depth, with Bonferroni adjustment of

P values. b, Strip plot showing DEGs in each cell type. Significant genes (P,;;<0.05, FC> 0.1, MAST analysis with random effect for sequencing
depth and sample of origin) in color, nonsignificant genes are in gray. Top five upregulated and top five downregulated genes per cluster labeled.

¢, Coefficient of variation (c.v.) analysis for each cellular subtype. In almost all subtypes the c.v. is significantly higher in the aged condition (two-
sided Wilcoxon test with Bonferroni correction, ***P,; < 0.001, **P,;; = 0.001639, n= 25,135 genes per group). Box indicates range from 25th to 75th
percentile, with whiskers extending to 1.5 times the interquartile range. Outliers are plotted separately, center indicates median value. d, Heat map
showing GSEA for hallmark terms. Color indicates normalized enrichment score (NES). Significant gene sets are calculated as P,; < 0.1. ROS, reactive

oxygen species.
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Fig. 3 | Shared and region-specific aging signatures between hypothalamus and hippocampus. a, Two-sided Spearman’s rank correlation of log,(FC)

in significant (P,; <0.05, MAST analysis with random effect for sample of origin and sequencing depth, with Bonferroni adjustment of P values) genes
shared between the hypothalamus and hippocampus. Correlation of expression change in neurons is not correlated (p =-0.069, P < 0.001), whereas
gene expression changes in other cell types are strongly positively correlated: astrocytes (p=0.78, P<0.001), oligodendrocytes (p=0.61, P<0.001)
and microglia (p=0.85, P<0.001). b, Scatter-plot of genes significant in at least one dataset (P,; < 0.05, log,(FC) > 0.1). Color indicates whether a gene
is significant in both datasets (purple), hypothalamus only (blue) or hippocampus only (red). Shading indicates genes that are changing in the same
direction for both datasets.
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(ref. **). Of note, mMTORCI1 activation in the arcuate nucleus of the
hypothalamus is reduced in ovariectomized mice*. Thus, mMTORCI1
under-enrichment in the aged female hypothalamus represents a
key a target for further study into the intersection of sex, aging and
neurodegenerative disease.

Microglia and macrophages function as immune cells in the
brain and both cell types show cell type-specific gene set enrich-
ments with age (Fig. 2d). Macrophages are enriched in interleukin
IL-2 STATS signaling, IL-6 JAK STAT3 signaling and inflammatory
response gene sets. Microglia are enriched in genes related to the
interferon-a response and interferon-y response and are under-
enriched in the oxidative phosphorylation gene set with age. These
data suggest distinct changes in different subsets of immune cells in
the aging hypothalamus.

Glial cells, including microglia, are critical regulators of neuro-
nal function. To understand how the relationships between these
cells and neurons are changed with age, we utilized the ligand-
receptor repository CellPhoneDB* to infer cell-cell interactions
(Supplementary Fig. 3a). Notably, we found that loss of ligand-
receptor interactions involving growth factors was a theme across
the cell types studied. For example, in the young astrocyte-neuronal
and tanycyte-neuronal cell pairs, TGFB2_TGFBR3 was enriched.
Both cell pairs lose this enrichment with age. Similarly, there is a
loss of enrichment in pathways involving FGF9. Specifically, while
FGF9-FGFR3 and FGF9-FGFRI are enriched in young astrocyte-
neuronal and tanycyte-neuronal cell pairs, this enrichment is lost
with age. The astrocyte-neuronal and oligodendrocyte-neuronal
pairs also lose enrichment of the FGF9-FGFR2 ligand-receptor
interaction with age. These factors are involved in diverse pro-
cesses such as repair, learning and memory and neurogenesis*.
Additionally, the aged astrocyte-neuron cell pair loses SEMA3A_
NRP1 signaling with age, whereas the microglia—neuronal cell pair
loses both SEMA3A-NRP1 enrichment and SEMA3A-plexinA4
enrichment. Semaphorin3a is a known player in synaptogenesis*.
Taken together, the loss of these cell signaling pathways may repre-
sent a mechanism for alternations in synaptogenesis and neuronal
homeostasis in the aged hypothalamus.

Aged microglia represent a progressive aging trajectory.
Microglia are macrophage-like cells found throughout the brain
and are critical for the immune response, including release of cyto-
kines and chemokines, antigen presentation and phagocytosis of
debris”. Recent studies have revealed gene expression changes and
microglial activation in the aged brain, which likely contribute to
neurodegeneration®. Based on our findings that microglial-neu-
ronal interactions involving the Alzheimer’s-associated gene APP,
as well as MIF were enriched with age (Supplementary Fig. 3a),
we sought additional strategies to uncover changes in these cells
over time. Using Monocle3 (ref. **), we performed pseudotempo-
ral ordering of nuclei from the microglia and macrophage clusters.
The trajectory accurately captures the transition from young to
aged nuclei, suggesting a gradual progression toward aging in this
cell type and a significant increase in the proportion of aged nuclei

RESOURCE

across pseudotime (Fig. 4a,b). To confirm this analysis, we freshly
isolated CD11b* hypothalamic microglia from mice at three time
points (3, 12 and 24 months) and performed qPCR for candidate
genes discovered in the pseudotime analysis. This experiment reca-
pitulated specific genes trajectories (Supplementary Fig. 4a), vali-
dating this approach.

Since changes in microglia have been implicated in both physi-
ological aging and neurodegeneration, we examined how dis-
ease-associated microglia (DAM) genes change as a function of
pseudotime. We aggregated the expression of key genes from three
microglia gene sets identified in the literature’*, homeostatic
microglia (homeostatic), TREM2 independent stage 1 DAM (DAM
1) and TREM2 dependent stage 2 DAM (DAM 2), and plotted the
aggregated expression as a module score along the pseudotime tra-
jectory. Overall, there was a decrease in the module score for the
homeostatic module over pseudotime suggesting a loss of mainte-
nance of healthy microglia over time. In contrast, we observed an
increase in the DAM 1 disease module score near the end of pseu-
dotime (Fig. 4c). The DAM 2 module does not seem to play a role in
steady-state hypothalamic aging, as the module score remains low
throughout pseudotime.

To further understand the role of these gene modules in aging
hypothalamic microglia, we visualized gene expression across pseu-
dotime and through real time (Fig. 4d). While young microglia gen-
erally cluster earlier in pseudotime (pseudotime 0.0 through 1.5),
aged microglia expressing these genes are distributed throughout
pseudotime. Thus, hypothalamic microglia from aged animals have
increased heterogeneity representing a progressive aging trajectory.
While a subset of aged microglia retaining a youthful gene expres-
sion signature, many aged microglia highly express disease-associ-
ated genes.

To fully capture gene expression changes along the trajectory,
we performed Moran’s [ test on microglia and macrophage genes
and found 2,112 statistically significant trajectory-dependent genes
(Supplementary Table 5). To characterize their expression dynam-
ics along pseudotime, we applied RVAgene", an autoencoder neural
network framework to reconstruct and smooth the pseudotime-
dependent genes expression. We then visualized the recurrent
variational autoencoder (RVAE) decoded expression along pseu-
dotime in a heat map and manually grouped the genes into four
modules according to their pseudotemporal expression patterns
(Fig. 4e). For example, genes in the module 1 are highly expressed
in early pseudotime while genes in the module 4 are expressed in
late pseudotime. To understand the biological processes enriched in
each module, we performed Gene Ontology (GO) analysis (Fig. 4f).
Notably, gene modules are transitioning through pseudotime from
positive regulation of biological processes to immune responses and
finally to the amyloid-p clearance and viral infection corresponding
to known phenotypes of normal aging.

Expression of X inactivation genes is altered with age. Our initial
differential expression analysis revealed the unexpected finding that
the long non-coding RNA Xist is one of the most highly upregulated

>
>

Fig. 4 | Trajectory analysis of aging hypothalamic microglia. a, Monocle3 pseudotemporal ordering of microglia and macrophage clusters (n=1,121
nuclei) defining a single trajectory from young to aged nuclei. Nuclei are colored by age (top) and pseudotime (bottom). b, Scatter-plot showing the
proportion of aged nuclei along the pseudotime timeline in 20 time bins (sized 0.15 per time bin). Pearson correlation of the proportion of aged nuclei

and pseudotime timeline, R=0.89 and P=2.6 x 1077 (two-sided), 95% CI (in gray) shown. ¢, Plot showing the module expression score of three microglia
states (homeostatic, DAM 1and DAM 2). The darker lines are the local regression result for individual time bins (20 total), with the gray shadow depicting
the 95% Cls. d, Kinetics plot showing the relative expression of representative genes for microglia states (left). The lines approximate expression along the
trajectory using polynomial regressions. Violin plots of gene expression and the results of MAST with random effect for sample of origin and sequencing
depth, with Bonferroni adjustment of P values (***P,; < 0.001, exact P, values reported in Supplementary Table 4) (right). e, Heat map showing modules
of trajectory DEGs (t-DEGs) in the microglia cluster (n=2,112 genes). The expression value is RVAE decoded expression. The genes were grouped into four
modules after ranking by RVAE decoded expression. Module 1 (645 genes), module 2 (570 genes), module 3 (566 genes) and module 4 (331 genes).

f, Dot plot showing the top ten GO biological process terms for genes in individual modules.
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genes in the female hypothalamus with age (Fig. 3a). Differential
expression analysis of each major cell type indicated upregulation
of Xist with age in astrocytes, macrophages, microglia, neurons, oli-
godendrocytes, as well as tanycytes (Fig. 5a), and we also observed
upregulation of Xist in the aging hippocampus™ (Fig. 3a,b). Xist is a
key player in X chromosome inactivation in females and is encoded
on the X inactivation center (XIC), which harbors additional non-
coding RNA genes involved in the same process’™***. Of note, we
observed age-related upregulation of related RNAs in some cell
types: Ftx, Jpx, and Tsix (Fig. 5a). We validated the upregulation of
Xist using RNA extracted from independent tissue samples of dif-
ferent brain regions (hypothalamus, cerebellum, cortex, and olfac-
tory bulb). Notably, although Xist trended up in all brain regions
we tested, the upregulation only reached significance in the female
hypothalamus, revealing a feature of female hypothalamic aging
(Fig. 5b). As expected, we did not detect Xist expression in adult
male mice and there was no upregulation of this gene with age in
males (Fig. 5b). We further confirmed this finding using RNAScope
to detect the Xist transcript in in situ in coronal sections through
the mouse hypothalamus. The average intensity of Xist expres-
sion in aged female hypothalamus (25 months) was significantly
higher than in young female hypothalamus (3 months) using this
method (Fig. 5¢).

Although most genes on the inactive X chromosome are not
expressed in females, a small number of genes are well known to
‘escape’ inactivation and are expressed from both X chromosomes.
These X escape genes are species and tissue specific’**". In the mouse,
14 genes escape X inactivation in brain tissue*.This list includes
both Xist and Ftx, which have increased expression with age in our
dataset. To determine whether increased XIC gene expression with
age might be affecting escape genes, we interrogated expression
of genes known to escape X inactivation in mice. We compiled a
list of genes that are both known to escape X inactivation in any
tissue context in mice and are expressed in our dataset. We found
that although changes to XIC genes seems to be uniform across cell
types in our data, age-related changes to expression of X escape
genes are cell-type-specific (Fig. 5d). For example, in astrocytes,
Idh3g is downregulated with age, whereas Firre, Plp]l and Tmsb4x
are upregulated. In neurons, Gpraspl and Huwel are downregulated
with age, whereas 5530601 H04Rik and Kdmb5c are upregulated. Of
the 39 X escape genes expressed in the dataset, 15 were differen-
tially regulated with age in at least one cell type. These data suggest
that global changes to X chromosome regulation may be a feature of
female hypothalamic aging.

Finally, to understand whether the changes in Xist that we
observed in mouse aging might be related to age-associated pathol-
ogies in humans, we assessed changes in XIST expression between
control and Alzheimer’s disease human brain samples across two
brain regions using publicly available snRNA-seq datasets®"*. Using
MAST with a random effect for sample of origin, we compared XIST
expression across all cells from females in two independent datasets
(Fig. 5¢). Notably, XIST is upregulated in human entorhinal cortex
in women with Alzheimer’s disease, which is one of the earliest and
most affected regions in this disease (log,(FC)=0.574, P,;;<0.001,

RESOURCE

n=3,942 nuclei). In contrast, nuclei derived from human prefrontal
cortex shows no changes in XIST expression between control and
Alzheimer’s disease samples (P,4>0.05, n=26,212 nuclei). Thus,
changes in XIST expression may be a brain-region-specific feature
of Alzheimer’s disease in female patients.

Neuronal subtype-specific changes during aging. Hypothalamic
neurons are highly diverse and function to orchestrate a wide range
of processes and behaviors necessary for organismal survival™. This
diversity of function is accomplished by cell-type-specific gene
expression programs, with each area of the hypothalamus contain-
ing a range of transcriptionally dissimilar neuronal subtypes'®-*.
Indeed, even neurons expressing the same neuropeptide gene may
comprise functionally distinct subpopulations™. To address this
complexity, we sub-clustered the neuronal nuclei to identify tran-
scriptionally distinct populations. This analysis revealed 35 tran-
scriptionally distinct clusters (Fig. 6a) and broadly separated the
nuclei into inhibitory (Gadl expressing GABAergic) or excitatory
(Slc17a6/vGLUT2 expressing glutamatergic) identities (Fig. 6b).
The 35 clusters represent both known and undefined neuronal sub-
types (Supplementary Table 6 shows markers of cluster identity). To
discern the relationship between the clusters, we organized them
according to transcriptional similarity using a cluster tree analysis
(Fig. 6¢; left). Neurons with similar functions clustered closely to
one another. For example, some AgRP/NPY neurons and POMC
neurons may arise from common progenitors® and the Sst/Npy
(29, expressing Agrp) and Pomc/Tac2 (31) clusters are near to one
another on the cluster tree.

We next investigated expression of specific neuropeptide genes
across the clusters to functionally define the distinct neuronal sub-
populations (Fig. 6¢; right). These clusters generally correspond
to known cell types expressing one or two hallmark neuropep-
tides. We were able to identify neuronal clusters expressing genes
encoding neuropeptides controlling processes that are altered with
age (Supplementary Table 7). For example, we observed notable
changes in clusters associated with feeding and energy homeosta-
sis”, including those expressing the peptides agouti-related pep-
tide (Agrp), cocaine and amphetamine related transcript (Cartpt),
cholecystokinin (Cck), neuropeptide Y (Npy), proopiomelanocor-
tin (Pomc), galanin (Gal) and hypocretin/orexin (Hcrt). Based on
neuropeptide gene expression, these clusters most likely represent
known neuronal populations with defined functions. For example,
cluster Sst/Npy (29) most likely consists of AgRP/NPY neurons
from the arcuate nucleus of the hypothalamus.

To further confirm neuronal subtype identity, we compared our
dataset with publicly available spatial transcriptomic data from
Cell2Location®*. While messenger RNA signatures from broad
cluster categories such as astrocytes (Supplementary Fig. 5) do not
show restriction to one or more hypothalamic subnuclei, the mRNA
signatures of specific neuronal subclusters are localized in discrete
locations. (Fig. 6d and Supplementary Fig. 4a,b). For example, the
Pomc/Tac2 (31) cluster localizes to the most ventral portion of the
coronal section (Fig. 6d). Notably, two clusters expressing Cartpt
(15. Cartpt/Pmch and 26. Cartpt/Ebfl) show little spatial overlap

>
>

Fig. 5 | Alterations to X chromosome inactivation center are a feature of the aged female hypothalamus. a, Expression of genes involved in X
chromosome inactivation by age and cell type. Differential expression between young and aged samples was calculated using MAST with random

effect for sample of origin and sequencing depth, with Bonferroni adjustment of P values (***P,;; < 0.001, exact P values are reported in Supplementary
Table 4). b, RT-gqPCR of Xist expression in specific brain regions. Xist expression is significantly higher in the hypothalamus (n =3 animals per age group,
**P=0.008, two-sided unpaired Student's t-test with Bonferroni-Dunn correction, bars indicate mean +s.e.m.). ¢, Representative images from RNAScope
for Xist transcript in young and aged female hypothalamus (left). Quantification of signal intensity (n=3 animals per group, *P=0.0473, two-sided
unpaired Student's t-test, bars indicate mean +s.e.m.) (right). d, Expression of genes known to escape X chromosome inactivation by age and cell type.
Differential expression between young and aged samples was calculated using MAST with random effect for sample of origin and sequencing depth,

with Bonferroni adjustment of P values (*P,;=.043, ***P,; < 0.001, exact P, values are reported in Supplementary Table 4). e, XIST expression in human
entorhinal cortex (left) and prefrontal cortex (right). (***P,;<0.001, MAST with random effect for sample of origin and Bonferroni adjustment of P values).
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Fig. 6 | Identification of transcriptionally distinct neuronal subtypes. a, UMAP of all neuronal nuclei. Distinct clusters are identified by color, with
identities listed in €. b, UMAPs highlighting GABAergic (Gad1) and glutamatergic (Slc77a6) nuclei neuronal clusters. Color scale indicates expression

level. ¢, Neuronal clusters are labeled according to the top two marker genes and ordered based on overall transcriptional similarity (left). Expression of
neuropeptide genes in each cluster (right). Dot size indicates percent of nuclei expressing the gene and color indicates intensity of expression. d, Estimated
spatial locations of neuronal subclusters.
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Fig. 8 | Xist expression predicts neuronal age in the mouse hypothalamus. a, Schematic of the machine-learning approach. b, Violin plots showing model
test set performance. Model accuracy across ten repeats with different random states is shown, with Xgbc outperforming the other models. Xgbc was
then retrained on new data splits across 50 repeats with different random states. Whisker box plots (inset) show median, lower and upper quartiles and
whiskers extending to 1.5 times the interquartile range. Data are presented as mean =+ s.d. ¢,d, Confusion matrix and ROC curve depicting Xgbc model
accuracy across 50 and 10 random states, respectively. e, Top ten most important features of the Xgbc model. Permutation was repeated ten times.
Whisker box plots show median, lower and upper quartiles and whiskers extending to 1.5 times the interquartile range. Data are presented as mean
values + s.d. Note the strong influence of Xist on model accuracy score. f, SHAP summary plot showing feature importance for the top ten features that
predict cellular age in the model. g, SHAP force plot showing the most impactful features on the model prediction for example observations in young and

aged neurons.

despite their shared neuropeptide profile, highlighting the strength
of this method to define cell types both spatially and transcription-
ally. Thus, this spatial analysis further validates the identity and
function of the identified neuronal subclusters.
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We next performed differential expression on clusters in which
there were atleast 20 nuclei per condition (Fig. 7a and Supplementary
Table 8). For each cluster, we also performed GSEA using the KEGG
gene set. Most clusters tested exhibited transcriptional changes with
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age, although the number of DEGs varied by subtype. We observed
that clusters expressing peptides involved in feeding and energy
homeostasis were particularly altered with age in this analysis (such
as 15. Cartpt/Pmch, 34 DEGs; 29. Sst/Npy, 65 DEGs; and 31. Pomc/
Tac2, 42 DEGs). Among the many transcriptional changes found
in the Pomc/Tac2 cluster (31) there was an intriguing downregu-
lation of PcskIn. Pcskln encodes proprotein convertase subtilisin/
kexin type 1 inhibitor, also called proSAAS, a propeptide that inhib-
its processing of other neuropeptides such as POMC®. This gene
was also downregulated in a cluster of neurons expressing Cartpt
(Cartpt/Ebfl (26)). Notably, in a different Cartpt-expressing cluster
(Cartpt/Pmch (15)), the gene is upregulated with age, suggesting
that changes to neuropeptide processing pathways with age are cell-
type specific.

Changes to expression of neuropeptide genes was also evident,
with upregulation of Agrp in cluster Sst/Npy (29), upregulation
of Cartpt in Cartpt/Ebfl (26) and downregulation of Cck in two
Cck* subclusters (Synpr/Tafal (23) and Rnf220/Ntngl (2)). Thus,
our dataset links neuron-specific gene expression changes in the
hypothalamus with key features of organismal aging, such as weight
and metabolic changes.

On the basis of expression of specific peptide genes (Adcyapl,
Cartpt and Cck) and other established marker genes (Foxbl and
Cpne9)”', we identified three clusters representing the medial mam-
millary nucleus of the hypothalamus: Rgs6/B230323A14Rik (3),
Dgkb/B230323A14Rik (4) and Slc1a3/Apoe (5). This region is nota-
ble because unlike most areas of the hypothalamus, it is involved
in memory via connections with the hippocampus®. While cluster
Slcla3/Apoe (5) had too few cells to meet our criteria for perform-
ing differential expression, both cluster Rgs6/B230323A14Rik (3)
and Dgkb/B230323A14Rik (4) were significantly altered with age
(Fig. 7a). GSEA using the KEGG gene set revealed enrichment for
genes related to Alzheimer’s disease, cardiac muscle contraction,
Huntington’s disease, oxidative phosphorylation, Parkinsons dis-
ease and the ribosome. There was an additional de-enrichment in
genes related to glycosylphosphatidylinositol (GPI)-anchor biosyn-
thesis and glyoxylate and dicarboxylate metabolism (Fig. 7b). The
identification of changes in this brain region is significant, as they
may contribute to cognitive impairments with age.

Through GSEA, a shared aging signature emerged among many
hypothalamic neuronal subtypes. This included enrichment in
pathways related to Alzheimer’s disease (14 clusters), Huntington’s
disease (11 clusters), oxidative phosphorylation (19 clusters),
Parkinson’s disease (17 clusters) and the ribosome (21 clusters) (Fig.
7b). A notable exception to this signature is the cluster most likely
representing corticotropin-releasing hormone (CRH) neurons of
the paraventricular nucleus of the hypothalamus (Crh/Gpc5 (27)).
CRH neurons are an integral component of the hypothalamic—pitu-
itary-adrenal axis in the stress response”. Decreased CRH has been
studied for several decades as a potential hallmark of Alzheimer’s
disease® and CRH itself has been shown to be neuroprotective
against A toxicity®'. In cluster Crh/Gpc5 (27) of our dataset, gene
sets related to Alzheimer’s disease, Huntington’s disease, oxidative
phosphorylation, Parkinson’s disease, protein export and the ribo-
some were all strongly under-enriched (Fig. 7b), suggesting that
this neuronal subtype has a distinct disease-associated expression
signature compared to other neurons. Together, these data highlight
the hypothalamic transcriptional changes unique to individual neu-
ronal subtypes or common across neurons, which may contribute to
age-related neurodegenerative disease.

Finally, we sought to understand the role of Xist in defining the
aged neuronal state. To do so, we tested whether expression of X
chromosome genes was sufficient to predict neuronal age in our
dataset (Fig. 8a). We trained eight different supervised machine-
learning models to classify neurons as either young or aged. Based
on the accuracy score (Fig. 8b), the XGBoost classifier (Xgbc®)
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outperformed others with 77.8 +0.6224% accuracy. We then fine-
tuned the model to optimize hyperparameters and retrained it on
new data splits across 50 random states to measure the uncertainties
due to splitting and the non-deterministic model. The confusion
matrix (Fig. 8c) and the area under the receiver operating character-
istic (ROC) curve (AUC) (Fig. 8d) confirmed model performance.
Notably, when we randomly shuffled the feature Xist expression,
the model performance dropped dramatically down to the near-
baseline level (Fig. 8¢). We then applied Shapley additive explana-
tions (SHAP)® to further interpret the predictions and rank the
features by importance. Consistent with our findings, Xist was the
most important feature in the prediction, followed by the sum of all
genes detected in the dataset (Fig. 8f). Local feature importance of
two randomly selected individual neurons (young and aged) also
showed that Xist had the most significant impact on driving the
model prediction (Fig. 8g). These data suggest that Xist upregula-
tion is a key feature of hypothalamic neuronal aging and may pre-
dict female neuronal aging in the hypothalamus.

While comparing our dataset to hippocampal data, we noted
that Xist is highly upregulated with age in both brain regions. To
understand the role of Xist and the X chromosome in aging across
brain regions, we tested whether X chromosome genes were suffi-
cient to predict cellular age in the hippocampus. We reran the Xbgc
model using snRNA-seq data from female mouse hippocampal
neurons (Fig. 3a and Supplementary Fig. 6). Although overall gene
expression changes with age in the hypothalamus and hippocam-
pus do not correlate (Fig. 2a), X chromosome gene expression is
still sufficient to predict cellular age with 82.5+0.7080% accuracy
in hippocampal neurons. Interestingly, Xist was the second most
important predictor of age, based on permutation importance and
SHAP (Supplementary Fig. 6¢,d), confirming Xist upregulation as a
shared feature of neuronal aging across two brain regions.

Discussion

In this work, we used snRNA-seq to identify the age-associated
transcriptional changes in the mouse hypothalamus. This brain
region is critical for the regulation of physiological homeostasis,
including sleep, circadian rhythms, feeding, and metabolism. These
functions are well known to be disrupted during aging and our
findings implicate widespread transcriptional changes concomitant
with physiological changes.

Our approach successfully captured the major cell types in the
brain, as well as hypothalamus-specific cell types such as tanycytes.
We found that cellular subtypes in this region acquire distinct aging
signatures and discovered that increased transcriptional heteroge-
neity is a common feature across all cell types with age. Consistent
with our findings, age-related transcriptional alterations have been
observed in aging human brains and increased transcriptional noise
is thought to be a hallmark of aging. Our finding that different
neuronal subtypes have distinct aging signatures is consistent with
recent reports identifying differential susceptibility to neurodegen-
eration®. Identification of the transcriptional signatures involved
may pave the way for therapeutics targeted at subpopulations most
susceptible to dysregulation with age.

We observed notable changes in the microglial population with
age. Microglia are resident immune cells in the brain and previous
research has shown that microglia-mediated inflammation in the
hypothalamus can affect lifespan''. By utilizing trajectory infer-
ence analysis, we uncovered that while some aging microglia retain
features of young cells, the population shows a progression toward
an aged phenotype based on distinct gene expression modules.
Notably, DAM genes such as Apoe change throughout both age and
pseudotime.

Sex differences in aging have been observed across taxa,
including in mice'*”. In mammals, females generally live lon-
ger than males'? and many aging interventions, such as CR, are
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more effective in females'*'*. In addition, the sexually dimorphic
response to aging interventions seems to be a conserved phenom-
enon, with female Drosophila responding more strongly to dietary
restriction paradigms than males® and hermaphroditic C. elegans
responding more strongly to dietary restriction than males®.
In mice, males and females differ in regard to sex chromosome
content (males are XY and females are XX) and the presence of
gonadal hormones such as higher androgens in males and estro-
gens in females. Of note, X chromosome content has been linked
to longevity and the presence of two X chromosomes contributes
to increased longevity regardless of hormonal status®’. This study
from the Dubal laboratory was performed using the four core
genomes mouse line, in which the Sry gene (which induces testes
development) exists on an autosome rather than the Y chromo-
some, allowing for chromosomal sex to be disambiguated from
gonadal sex/hormone status. In our study, we uncover a poten-
tial mechanism by which the X chromosome affects aging. We
observed widespread upregulation of Xist in aged female animals,
as well as upregulation of other XIC genes, including Tsix, Jpx, and
Ftx. Notably, this increased expression was highly prominent in
neurons, although upregulation of Xist was observed in oligoden-
drocytes, astrocytes, and tanycytes as well. In a machine-learning
algorithm, Xist expression was the most important variable in a
model to classify whether a hypothalamic neuron was young or
aged. Together, our findings reveal an unexplored feature of aging
in the female brain.

Future work will be required to address the limitations of this
study. We analyzed only female mice and an additional compari-
son between male and female mice will be needed to fully elu-
cidate sex-specific mechanisms of aging in the hypothalamus.
Further, only two time points were investigated using snRNA-
seq. Additional time points throughout the lifespan will be useful
in understanding when and how age-related hypothalamic tran-
scriptional changes occur. A main strength of this study was the
use of single nuclei rather than cells to analyze a larger population
of neurons that may not have otherwise survive dissociation and
processing. Despite the large number of neuronal nuclei we cap-
tured, some populations of interest, such as kisspeptin-expressing
neurons, were not highly represented in the sample populations.
Due to the diversity of neuronal subtypes in the hypothalamus,
future sequencing of larger amounts or specific populations of
nuclei is needed to adequately isolate and analyze rare popula-
tions of interest.

In summary, our study reveals the major transcriptional fea-
tures of hypothalamic aging. We observed transcriptional variation
across cell types, cell-type specific aging signatures and features of
aging in females. Understanding how individual populations of cells
in this region contribute to overall loss of homeostasis with age will
be vital to identifying treatments for aging and age-related disease.

Methods
Animals. Single-nuclei isolation. Young (3 month) and aged (19-24 month) C57/
Bl6 female mice were obtained from the National Institute on Aging. Mice were
housed and used according to protocols approved by Brown University IACUC and
in accordance with institutional and national guidelines. Animals were housed at
70 + 2 °F with humidity from 50-70%. Animals were fed ad libitum LabDiet 5010
chow and water. The light cycle was 12h on/12h off; lights were on between 07:00
and 19:00.

Animals were exposed to male bedding 3 d before being euthanization to
synchronize the estrous cycle. Animals were sacrificed at Zeitgeber time ZT2-ZT3.

Statistics and reproducibility. No statistical methods were used to predetermine
sample sizes but our sample sizes are similar to those reported in previous
publications using single-cell RNA-seq on brain tissue**. No animals were
excluded from the study. Individual nuclei were excluded from analysis based
on quality control metrics (feature count and mitochondrial read count). Data
collection and analysis were not performed blind to the conditions of the
experiments, except in the case of the RNAScope image analysis, in which the
experiment was performed and analyzed randomized and blinded.
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snRNA-seq. To reduce noise stemming from differences in estrous state, two
whole hypothalamuses were pooled into each biological replicate, for a total of two
replicates for the young and aged conditions. Nuclei extraction was performing
using the Nuclei PURE Prep kit (Millipore Sigma) according to the manufacturer’s
instructions with the modifications that for each sample, two hypothalamuses were
dissected out of the animals and rinsed in cold PBS. Tissue was transferred using
a transfer pipette into a refrigerated Dounce homogenizer with 5ml lysis solution
following kit instructions. Tissue was homogenized with the Dounce B and the
lysate was transferred into a 15-ml Falcon tube through a 40-pm filter. The sucrose
purification step was performed with the modifications that half the volume of all
reagents was used to account for the small tissue sample sizes, an SW34 rotor was
used and samples were spun for 45 min at 30,000g (13,000 r.p.m.) at 4°C. Nuclei
were counted using a hemocytometer and 5,000 cells per sample were loaded

onto the Chromium Single Cell 3’ Chip (10X Genomics) and processed with the
Chromium Controller (10X Genomics). Samples Young_1, Young_2, Aged_1

and Aged_2 were prepared using the Chromium Single Cell 3’ Library and Gel
Bead kit v2 according to manufacturer’s instructions. Samples were sequenced at
GENEWIZ on an Illumina HiSeq, with a target of 50,000 reads per sample. The
Aged_1 and Young_2 samples underwent an additional round of sequencing to
obtain sufficient read depth. Samples Young_3, Young_4, Aged_3 and Aged_4
were prepared with the Next GEM Single Cell 3" Reagent kit (10X Genomics) and
sequenced at GENEWIZ on an Illumina NovaSeq.

Quality control, data processing and analysis. We performed sequence alignment
to the mm10 genome (2020) using the CellRanger (CellRanger/6.0.0) software
from 10X Genomics with the -include introns flag. The resulting feature-barcode
matrices were read into R v.4.1.0, excluding any nuclei expressing fewer than 200
genes and any gene expressed in fewer than three nuclei.

Filtering and visualization were performed using Seurat (v.4.0.3)*. For samples
sequenced on an [llumina HiSeq, nuclei with fewer than 200 or more than 3,000
features were filtered out. For samples sequenced on the NovaSeq, nuclei with
fewer than 200 or more than 7,500 features were filtered out. Similarly, nuclei
with greater than 10% mitochondrial mapping were removed, resulting in 23,808
nuclei in the aged condition and 16,256 nuclei in the young condition. Integration
of the datasets was performed using the IntegrateData function on 5,000 variable
features. The number of nuclei, unique molecular identifiers and unique genes per
sample are reported in Supplementary Fig. 1. To assign identities to clusters, the
FindAllMarkers() command with default parameters was used. This finds the top
genes that define a cluster identity. We named each cluster using the top two genes
to come out of the FindAllMarkers() analysis.

Differential expression was performed using MAST (v.1.18.0)***, with
random effect for sequencing depth and sample of origin®. Genes were considered
significant if the adjusted P value was <0.05 and the log,(FC) was >0.1 or <—0.1.
For re-analysis of publicly available data, raw cell/count matrices were downloaded
and data were reprocessed according to the above-mentioned workflow. MAST was
performed with random effect for sample of origin.

Gene set enrichment analysis. GSEA was performed using the fgsea package
(v.1.18.0)* using the hallmark gene set list and KEGG gene set list from MSigDB
(v.7.2.)%. For each cluster, genes were ranked by log,(FC) after MAST analysis
and the analysis was performed using the fgseaMultilevel command with default
settings and seed set at 1,000. Gene sets were considered to be enriched if the
adjusted P value was <0.1. Conversions between mouse and human annotation
was performed using biomaRt (v.2.48.2).

Trajectory inference and analysis using Monocle3. To infer the aging process

for the microglia/macrophage clusters (n=1,121 nuclei) generated in Seurat, we
applied Monocle3 (refs. *+%). Monocle3 uses dimensionality reduction to place
single cells in a two-dimensional space, removes batch effects by mutual nearest
neighbor alignment and connects single cells to construct a trajectory in a semi-
supervised way. For the microglia/macrophage cluster, we use the integrated Seurat
object with no further batch correction or dimensionality reduction in Monocle3.
We subsetted the microglia and macrophage cluster and programmatically
specified the root of the trajectory by selecting the node most enriched for young
cells. The trajectory and its direction calculated by Monocle3 are in agreement with
the distribution of young and aged cells. Spatial differential expression analysis
along the trajectory was performed with Moran’s I test in Monocle3 and selected
genes with g <0.05 as trajectory-dependent genes (2,112 genes). The set of genes
were grouped into four modules according to its RVAE decoded expression® along
the trajectory.

Functional enrichment analysis. EnrichR" v.3.0 was applied to perform the
functional enrichment analysis of 2,112 genes in individual modules, resulting in
lists (‘4_modules_q_moran[’) of statistically significant enriched terms (P, <0.05
with Benjamini-Hochberg correction) for individual modules. We checked the
gene set databases GO_Biological_Process_2018, GO_Cellular_Component_2018
and GO_Molecular_Function_2018. We kept GO terms with P<0.05 and
visualized the ten most significant terms for each module and visualized in the dot
plot. The Python package RVAgene (v.1.0, in Python v.3.9.6 with PyTorch v.1.9.0)
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RVAE implementation was used to decode the t-DEGs (n=2,112) along the
pseudotime trajectory. Expression was averaged in individual time bins and then
rescaled to the value in [—1,1] and input to RVAgene. For the neural network, the
parameters used were symmetrical architecture with two hidden layers (48 nodes
per layer) and two latent variable dimensions. The output reconstructed trajectory
for the t-DEGs was used to plot the heat map.

Single-cell regulatory network inference and clustering (SCENIC). RNA counts
from samples Young_3, Young_4, Aged_3 and Aged_4 were exported into a loom
file using SCopeLoomR_0.11.0. The standard pySCENIC (v.0.11.0) workflow

was run using Brown University’s cloud computing resource. The workflow

was completed 50 times and the resulting loom files were loaded back into R.
Only regulons and genes within the regulons appearing 10 of 50 times or more
were retained for further analysis. AUCell analysis was performed in R using
SCENIC_1.2.4 and AUCell_1.14.0. Using the previously defined regulons, AUCell
analysis was performed on all cells from the dataset following the default pipeline.
For binarization of regulons, default thresholds were used. Regulon specificity
scores were generated using the calcRSS() command.

CellPhoneDB. RNA counts for young and aged datasets were analyzed separately
to allow for comparison. Conversions between mouse and human annotation was
performed using biomaRt (v.2.48.2). CellPhoneDB (v.2.1.7) was run in a conda
environment (anaconda/2020.02) using the statistical_analysis method with 1,000
iterations and a 0.1 threshold. For visualization in R, only ligand-receptor pairs in
which direction could be inferred were retained for analysis.

Microglia isolation and RT-qPCR analysis. Young (2-3 months), middle aged
(8-13 months) and aged (20-24 months) C57/BL6 wild-type and POMC-EGFP
reporter mice (Jax Stock no. 009593) were housed and used according to protocols
approved by Brown University and in accordance with institutional and national
guidelines. Animals were sacrificed at ZT4. For each biological replicate, four
animals were pooled, with genotypes and estrous state balanced across conditions.
Tissue was dissociated with the Adult Brain Dissociation kit (Miltenyi Biotec,
130-107-677) according to manufacturer’s instructions. Dissociated tissue was
incubated with CD11b MicroBeads (Miltenyi Biotec, 130-049-601) for 15min

at 4°C. Labeled cells were isolated using Miltenyi Biotec MS columns (130-042-
201) on the OctoMACS Separator. RNA was purified using the RNeasy micro kit
(74004) and complementary DNA was generated with the High-Capacity Reverse
Transcription kit (Applied Biosystems, 4374966). A negative control (—RT) for
each sample was also generated by excluding the Multiscribe Reverse Transcriptase
component of the reaction.

Cell2location. Cell2location is a Bayesian model that uses snRNA-seq cell-type
signatures to infer cell types in Visium spatial transcriptomics by decomposing
mRNA counts in each Visium voxel into cell types. We performed the three main
steps in the cell2location workflow: estimate reference expression signatures of
cell types using our dataset, map the learned cell type signatures onto the slides
and perform downstream analysis. The code, model parameters and training
evaluations can be found in the jupyter notebooks in our GitHub repository. In
brief, we used the default parameters to train the cell2location model.

Neuronal age prediction using machine learning. Neuronal nuclei (25,002)
were selected for young or aged classification. All genes were annotated with
their chromosomal location. For each neuron, one categorical feature (neuronal
subtype) and 281 numerical features were used for machine learning: 278 X
chromosome genes (mean expression >0.1 read per cell and detected in >3,000
nuclei), aggregated X chromosome gene expression ‘x_sum, aggregated all
gene expression ‘sum’ and their ratio ‘x_prop. The pipeline and functions were
implemented in Scikit-learn™. For data splitting, 20% of nuclei were first split
into the testing set and the remaining 80% were further split into training and
validation sets using fivefold cross-validation, resulting in train-validation-testing
of 64 — 16 — 20. For preprocessing, OneHotEncoder was applied for the categorical
feature and StandardScaler was applied for the numerical features.
Eight machine-learning models were tested over ten different random
states. The best hyperparameters were selected using GridSearchCV and the
model performance was evaluated using accuracy score of the test sets. XGBoost
classifier* was selected, fine-tuned (max_depth of 5 with early stop) and then
retrained on new splits across 50 different random states. The baseline accuracy
was 0.596 +0.00765 and the model accuracy was 0.778 +0.006224. Model
interpretation was performed using permutation feature importance and SHAP®.
For the hippocampus dataset, neuronal nuclei (11,204) were selected. For
each neuron, 253 X chromosome genes (mean expression >0.1 read per cell and
detected in >1,000 nuclei), aggregated X chromosome gene expression ‘x_sum,
aggregated all gene expression ‘sum’ and their ratio “x_prop’ were used as features
for model training. The rest of the processes were the same as above except that the
max_depth of 4 for the final 50 different random states. The baseline accuracy was:
0.594+0.009167 and the model accuracy was: 0.825 +0.007080.

‘Whole-brain RNA isolation, cDNA generation and qRT-PCR. Hypothalamus,
olfactory bulb, cerebellum and cortex were dissected in cold PBS from the brains
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of 3-month-old and 24-month-old C57BL/6 mice (n=6; 3 male and 3 female for
each age) and snap-frozen in liquid nitrogen. RNA was purified using the QLTAGEN
RNeasy Lipid Tissue Mini kit (QIAGEN, 74804). cDNA was generated using 500 ng
of RNA and the High-Capacity Reverse Transcription kit (Applied Biosystems,
4374966). A negative control (—RT) for each sample was also generated by
excluding the Multiscribe Reverse Transcriptase component of the reaction. qPCR
reactions were completed using the PowerUp SYBR Green Master Mix (Invitrogen,
A25918). Stock primers were diluted to 10mM in sterile water and cDNA was
diluted 1:5 in sterile water (whole brain) or 1:3 in sterile water (microglia).
Expression levels of the genes of interest (see table below) were quantified using a
ViiA 7 Real Time PCR System with QuantStudio software. For whole brain, Actin
was used as a housekeeping gene. For microglia, Itgam (CD11b) was used. Each
sample, water control and —RT control sample was run in triplicate for each primer
set. CT values were normalized to the housekeeping gene and ACT values were
plotted as 272", Technical replicates were averaged per biological replicate.

Gene F sequence R sequence
Actin TGTTACCAACTGGGACGACA CTCTCAGCTGTGGTGGTGAA
Apoe GATCAGCTCGAGTGGCAAA  CTCTGCAGCTCTTCCTGGAC
Arhgap15 AAAGCCAAAATTGCAGATGG GAGCTTGCTGCTTGGAGTCT
Cst3 CTGACTGTCCTTTCCATGACC TGCAGCTGAATTTTGTCAGG
Cx3crl AAGCTCACGACTGCCTTCTT  CCGGTTGTTCATGGAGTTGG
Itgam CTTCTGGTCACAGCCCTAGC  TGGACCACACTCTGTCCAAA
(CD11b)
Lyz2 ACTGCTCAGGCCAAGGTCTA TGCTCTCGTGCTGAGCTAAA
Xist GGTTCTCTCTCCAGAAGC TGGTAGATGGCATTGTG
TAGGAAG TATTATATGG

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Fastq files for raw snRNA-seq and Seurat objects were deposited at the Gene
Expression Omnibus under accession code GSE188646. Publicly available datasets
are available for hippocampal single-nuclei data, GSE161340; human entorhinal
cortex data, GSE138852 (samples AD3-AD4 and Ct1-Ct2); human prefrontal
cortex data, GSE174367 (samples 17, 19, 37, 43, 45, 50, 66 and 90); and Spatial data,
ArrayExpress E-MTAB-11114.

Code availability
All code is available at https://github.com/Webb-Laboratory/
Hajdarovic_And_Yu_et_al_2022.
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Fastq files for raw single nuclei RNA sequencing and Seurat object were deposited at GEO accession GSE188646. Publicly available datasets are available on GEO:




Hippocampal single nuclei data, GSE161340; human entorhinal cortex data, GSE138852 (samples AD3-AD4 and Ct1-Ct2); human prefrontal cortex data, GSE174367
(samples 17, 19, 37, 43, 45, 50, 66, 90); Spatial data, ArrayExpress E-MTAB-11114.
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Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous
publications(25,36).

Data exclusions  Our data were collected at two different points in time, using two different sample preparation kits and sequenced on difference sequencers.
Because of differences in sequencing depth, we use different data exclusion parameters for the samples. Samples sequenced on an Illumina
HiSeq, nuclei with fewer than 200 or more than 3000 features were filtered out. Nuclei with less than 200 features are likely to be artefacts of
sample preparation, and nuclei above 3000 features are likely to be doublets, as these nuclei contain more than double the average number
of features of nuclei in these samples. For samples sequenced on the NovaSeq, nuclei with fewer than 200 or more than 7500 features were
filtered out, following the same logic as above. Similarly, nuclei with greater than 10% mitochondrial mapping were removed as these are
likely to represent cells that were dead or dying during sample preparation. This resulted in 23,808 nuclei in the aged condition, and 16,256
nuclei in the young condition.

Replication The single cell sequencing experiments were performed in two batches using two different sample preparation kits and sequenced on
difference sequencers. While our initial batch was sequenced at a lower depth, all findings (DE genes) remained significant when a second
cohort of animals was added to the analysis.

Randomization It was not possible to allocate mice randomly to the experimental condition (aging) due to the nature of the study, as aged and young mice
needed to be sacrificed and processed at the same time to avoid batch effects.

Blinding For the RNA-scope experiments, the experimenter was blinded to the age of animals from which the sections were obtained. All image
analysis was performed blinded.
Blinding was not possible for data collection for other experiments. Data were collected in batches of four biological replicates for the snRNA-
seq, and processed in an alternating fashion (young sample, aged sample, young sample, aged sample) to ensure that lysis timing, incubation
timing, and time from animal sacrifice to sample collection was balanced across the two conditions.
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