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Single-cell analysis reveals that stochasticity and
paracrine signaling control interferon-alpha
production by plasmacytoid dendritic cells
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Type I interferon (IFN) is a key driver of immunity to infections and cancer. Plasmacytoid

dendritic cells (pDCs) are uniquely equipped to produce large quantities of type I IFN but the

mechanisms that control this process are poorly understood. Here we report on a droplet-

based microfluidic platform to investigate type I IFN production in human pDCs at the single-

cell level. We show that type I IFN but not TNFα production is limited to a small sub-

population of individually stimulated pDCs and controlled by stochastic gene regulation.

Combining single-cell cytokine analysis with single-cell RNA-seq profiling reveals no evidence

for a pre-existing subset of type I IFN-producing pDCs. By modulating the droplet micro-

environment, we demonstrate that vigorous pDC population responses are driven by a type I

IFN amplification loop. Our study highlights the significance of stochastic gene regulation and

suggests strategies to dissect the characteristics of immune responses at the single-cell level.
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P
lasmacytoid dendritic cells (pDCs) are blood circulating
innate immune cells with the unique ability to rapidly
release large quantities of type I interferon (IFN) for anti-

viral immunity1–3. pDC-produced type I IFN is associated with
effective anti-cancer immunity but is also a driver of autoimmune
diseases4–8. Type I IFN production by pDCs is initiated when
nucleic acids trigger the endosomal Toll-like receptors (TLRs) 7
or 9 leading to the activation of transcription factor interferon
regulatory factor-7 (IRF7), which only pDCs express con-
stitutively and at high levels9–11. Several pDC subclasses were
proposed and single-cell genomic profiling revealed ample var-
iation in the molecular outfit of individual DCs12–16. These
individual differences may have an impact on the ability of each
pDC to produce type I IFN, and in non-pDC model systems
random differences between virus-infected cell populations,
attributed to stochastic gene regulation, caused significant varia-
tion in the production of type I IFN17–21. Additionally, type I IFN
production by pDCs can be modulated by the microenvironment
via soluble factors or cell surface receptors22–27. It is currently not
known how pDC populations combine the complex information
from TLR signaling and microenvironmental factors with ran-
dom variations in the molecular outfit of individual pDCs to
generate robust type I IFN responses. The question remains
whether pDCs display stochastic expression of type I IFN despite
high IRF7 expression, and whether pDC populations exploit
environmental cues to counterbalance potential heterogeneity
arising from this phenomenon.

Here, we developed a droplet-based microfluidic platform to
dissect the human pDC-driven type I IFN response at the single-
cell level within a tunable microenvironment. Generating thou-
sands of identical droplets at high throughput allows massively
parallelized single-cell experiments within these bioreactors.
Recent technological breakthroughs in the field of droplet-based
microfluidics increased the throughput of single-cell DNA and
RNA-sequencing experiments by orders of magnitude28,29. Pre-
vious attempts by our lab and others to leverage this power for
the analysis of cytokine secretion were hampered in their trans-
lation into practice due to complex detection equipment or dif-
ficult handling conditions30,31. Here, we demonstrate the
detection of cytokine secretion and activation marker expression
by individually stimulated cells in droplets and reveal stochastic
differences in pDC-driven type I IFN production. Single-cell
RNA-sequencing (ScRNA-seq) of these cells allowed us to profile
the transcriptional changes in each cell upon perturbation with
TLR ligands and links transcriptional variation to cytokine
secretion at the protein level. Finally, by varying key droplet
parameters, we find that single pDCs collaborate to amplify their
activity and generate population-driven type I IFN responses.

Results
Functional pDC heterogeneity arises early after stimulation.
pDCs operate in complex microenvironments that influence their
cellular state. To investigate the intrinsic potential of single pDCs
to produce IFNα without interference of other cells, we developed
a droplet microfluidic single-cell assay for the detection of cyto-
kine secretion (Fig. 1a). In short, pDCs were coated with capture
reagents for cytokine readout and encapsulated in picoliter dro-
plet microenvironments using a microfluidic device (Fig. 1b, c).
During in-droplet incubation, produced IFNα and tumor necrosis
factor-α (TNFα) was captured on the cell surface by the cytokine
capture reagents. After breaking the emulsion, pDCs were iso-
lated and analyzed via multicolor flow cytometry. Each droplet
served as a standardized and independent cell reactor and allowed
the investigation of tens of thousands of individually stimulated
cells simultaneously. This massively parallel approach facilitated

the characterization of rare, truly single-cell behavior. This system
greatly exceeds the throughput and possibilities when compared
to conventional limited dilution experiments which require
numerous replicate cultures and, crucially, cannot prohibit cel-
lular crosstalk. Further, the low droplet volume greatly reduced
reagent consumption and allowed us to work with small numbers
of (primary) cells. We routinely probed rare pDCs using as few as
40,000 cells as input, showing that our technique is highly suited
for the use of small biological samples. Importantly, our droplet-
based cytokine capture approach enables sensitive cytokine
detection and makes no use of transport inhibitors, which
negatively impact cellular function and viability. This enabled us
to measure cytokine secretion for extended time periods in an
accumulative rather than snapshot fashion and facilitated the
analysis of extremely early secretion events within the first 30 min
of stimulation. Early activation events are problematic to inves-
tigate with transport inhibitor-based methods as they negatively
impact cell signaling, thereby distorting the measurement. In
contrast to microtiter-based approaches, our microfluidic setup
makes use of computer-controlled syringe pumps. This allowed
us to precisely control environmental factors and vary droplet
volume and local cell density in a range that currently cannot be
obtained with conventional cultures.

First, we encapsulated pDCs in picoliter droplets (average
92 pL, SEM 1.8 pL, n= 85) with an encapsulation efficiency of
approximately 6% cell-containing drops (Fig. 1d) of which 96%
contained a single cell (Fig. 1e). Cells were incubated with the
synthetic nucleic acid compound CpG-C (TLR9 agonist) and
analyzed by flow cytometry (Fig. 1f). Strikingly, only a minor
subset of pDCs produced IFNα, which emerged as early as 2 h
after stimulation and peaked after 6 h of stimulation (Fig. 1g, h).
In contrast, we observed that virtually all pDCs produced TNFα
during incubation in droplets (Fig. 1g, h). Similarly, the majority
of pDCs was positive for the activation markers CCR7, CD40, and
CD86 and most pDCs were highly multifunctional (Fig. 1i–k).
Furthermore, we confirmed previous findings that a recently
discovered subset of pDC-like progenitor cells, called AS DCs,
was not involved in IFNα production (Supplementary Fig. 1)15.

Next, we studied the capacity of TLR signaling to modulate the
probability of pDCs to produce IFNα. We encapsulated cells with
varying concentrations of CpG-C and measured the fraction of cells
producing IFNα (Fig. 2a). Surprisingly, we only observed minor
variations in the fraction of pDCs secreting IFNα irrespective of the
concentration of CpG-C. In contrast, the production of TNFα, the
expression of the activation markers CCR7, CD40, and CD86, and
cell viability all positively correlated with CpG-C concentration
(Fig. 2a, Supplementary Fig. 2). To exclude CpG-C-specific
limitation in the TLR9 signaling pathway, we stimulated pDCs
with the synthetic TLR7/8-agonist R848 (Fig. 2b) and the strong
IFNα inducer TLR9 agonist CpG-A (Supplementary Fig. 3). Similar
to CpG-C stimulation, only a small fraction of pDCs produced
IFNα and this effect was independent of stimulus concentration.
Thus far, virtually all knowledge on IFNα secretion by human pDCs
is based on bulk cultures. Therefore, cells from the same donor were
analyzed by microfluidics and bulk culture side-by-side. Our results
demonstrate that individually stimulated cells in droplets indeed
have an inferior capacity to secrete IFNα as compared to bulk
stimulated cells (Supplementary Fig. 4). Finally, to rule out that the
observed IFNα production was due to stimulus-independent
constitutive secretion, we stimulated pDCs with either
interleukin-3 (IL-3) or CpG-C. The pDCs treated with IL-3, a
survival factor for pDCs, which only survive briefly ex vivo when
left unstimulated, showed a significantly reduced probability to
produce IFNα (Fig. 2c). To exclude that IFNα production by single
pDCs is delayed compared to bulk analysis, we incubated pDCs for
12 h and 24 h but only observed small deviations (Fig. 2d).
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Together, our data demonstrate that our microfluidic assay is
suited for the sensitive detection of cytokine secretion and protein
expression by single cells. Functional heterogeneity emerges
immediately after TLR activation in pDCs, as only a small
fraction of cells is able to produce IFNα. IFNα production is
enhanced by TLR signaling but appears to be regulated
by an additional stochastic, i.e. random, component which is
not associated with strength, amplitude, or duration of cell
activation.

Type I IFN is an important regulator of early pDC function.
Cellular heterogeneity often emerges from random processes
during gene transcription32. To probe whether the observed dif-
ferences in IFNα production originate from such stochastic gene
regulation or whether a privileged pDC subset already exists at
steady state, we employed scRNA-seq to profile the onset of the
type I IFN response upon perturbation with CpG-C. Freshly
isolated pDCs from a healthy donor were encapsulated in dro-
plets and individually stimulated with CpG-C using our
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microfluidic platform (Fig. 3a). After incubation for 0, 1, or 2 h,
the emulsion was broken, cells were stained for cytokine secre-
tion, and 384 cells at each time point were sorted into well plates
for scRNA-seq (Fig. 3b). Single cells were processed using the
SORT-Seq (sorting and robot-assisted transcriptome sequencing)
protocol followed by sequencing of ~0.1 million to 0.2 million
paired-end reads per cell33. At 2 h, when we detected the first
IFNα+ pDCs, we enriched for this subset by sorting 39 IFNα+

pDCs before randomly filling up remaining wells with IFNα+ and
IFNα− cells. In total, we profiled 1152 cells with an average of
4677 transcripts per cell and 1574 unique genes detected per cell.
After filtering, down-sampling, and removal of 141 DCs that
clustered separately in initial analyses and expressed gene sig-
natures of non-pDC subsets (CD1c+, CD141+), the final dataset
contained 774 cells expressing 13,214 genes (Supplementary
Fig. 5)15.

Unsupervised k-medoid clustering of the correlation matrix
combined with outlier detection using the raceID2 algorithm
suggested the presence of 8 cell clusters (Supplementary
Figure 6A–E) which were visualized in two dimensions using t-
distributed stochastic neighbor embedding (t-SNE) (Fig. 3c, d;
Supplementary Fig. 6F–H)34. We observed two clusters of
unstimulated cells, Cl1 and Cl7. Cl1 also contained a group of
cells that expressed characteristics of the described CD2hi pDC
and AS DC subsets (Supplementary Fig. 7)12,15. Cells stimulated
for 1 h mapped into Cl2 with few cells also present in Cl3 and
Cl8. Cl4, Cl6, and Cl5 were dominated by pDCs that were
stimulated for 2 h. Cells sorted as IFNα+ mapped to Cl4 and Cl5
at equal fractions and more than 60% of cells in Cl5 were sorted
as IFNα+ (Fig. 3e). The pDCs mapping to Cl5 produced high
levels of IFNα as measured by flow cytometry (Fig. 3f) and cells
sorted as IFNα+ expressed high levels of type I IFN genes, such as
IFNA2, and IFNB1, as well as the interferon-inducible gene IFIT2
(Fig. 3g). Differential gene expression analysis showed an
enrichment of type I IFN genes or type I IFN-induced genes in
Cl5 as compared to all other cells (Fig. 3h). In contrast, no
obvious transcriptionally distinct pDC subset that could predict
type I IFN production was observed at steady state. This could
either be because type I IFN production is genuinely a stochastic
process, or because the nature of such a privileged cell state
cannot be determined a priori by present technology. Similar
results were obtained when pDCs from two additional healthy
donors were profiled at steady state (Supplementary Fig. 8).

Next, we compared the gene expression of individually
stimulated pDCs and unstimulated cells. We argued that the
underlying mechanisms of Cl5 pDCs' unique activation state
might become evident when comparing the differential gene
expression profiles of all stimulated pDC clusters. On average, Cl5

pDCs showed 77 upregulated genes (log2(fold change) > 1.5;
p value < 10−8) and 1 downregulated gene (log2(fold change) <
−1.5; p value < 10−8) compared to unstimulated pDCs in Cl1
(Fig. 4a). Type I IFN and IFN response genes were among the
most upregulated genes as well as several genes that support IFNα
production in pDCs including MIR155HG, HSPA1A, and
HSP90AA1 (Fig. 4b)35–37. Notably, the chemokines CCL3 and
CCL4 that bind to the chemokine receptor CCR5 were
upregulated. CCR5 is expressed on all pDCs and CCL3/4-
CCR5 signaling might be responsible for the generation of large
pDC clusters early after activation38,39. Next, we checked for
other clusters with similar expression patterns. Cl5 cells shared
many upregulated genes with cells from other clusters, especially
Cl3 and Cl4; however, they also retained a group of uniquely
upregulated genes centered around type I IFN production
(Fig. 4c). Gene enrichment and functional annotation analysis
using DAVID (Database for Annotation, Visualization and
Integrated Discovery) showed that upregulated genes in Cl5
pDCs were enriched for anti-viral responses, cytokine responses,
and apoptosis (Fig. 4d and Supplementary data 1−4)40,41.
Similarly, type I IFN-related or -induced pathways were uniquely
enriched in Cl5 genes, including TLR signaling, cytosolic DNA
sensing, and the RIG-I-like pathway.

These results demonstrate that our microfluidic platform is
ideally suited to work in conjunction with scRNA-seq to link
functional information from extremely rare cells (<0.02% IFNα-
producing pDCs) to whole transcriptome profiling. Together, the
data show that type I IFN-producing cells possess unique
transcriptional features, many of which are associated with
autocrine type I IFN signaling. ScRNA-seq data revealed no
evidence for a privileged pDC subset at steady state but type I IFN
appears to be an important orchestrator of early pDC activation.
The question remains of how pDC populations regulate the cellular
heterogeneity originating from variation in type I IFN production.

Environmental factors modulate type I IFN production. In
vivo, pDCs act in a dynamic microenvironment and migrate
considerably during their life cycle. To assess the impact of
environmental changes on the observed heterogeneity during
pDC-driven type I IFN responses, we systematically varied key
droplet parameters (Fig. 5a).

First, we generated droplets of varying size, covering several
orders of magnitude (Fig. 5b). Single pDCs were encapsulated in
droplets ranging from 31 to 1209 pL and stimulated for 12 h
(Fig. 5c). No significant difference in the fraction of IFNα-
secreting cells was detected (Fig. 5d, colored dots). Comparison
with pDCs from additional donors, which were encapsulated in
droplets of up to 3371 pL—a volume comparable to the average

Fig. 1 Single-cell analysis reveals functional heterogeneity within individually stimulated pDCs. a Schematic overview of the droplet microfluidic assay. The

pDCs were coated with cytokine capture reagents, encapsulated in picoliter droplets, and stimulated with TLR ligands. After incubation, cells were stained

for viability, cytokine, and surface marker expression, and analyzed by flow cytometry. b Schematic overview of the employed microfluidic chip with

microscopic image of the flow-focusing nozzle for the encapsulation of cells in droplets. c Microscopic image of emulsion after droplet production. b, c Red

arrows indicate cells. Scale bars equal 100 µm. d The pDCs were encapsulated at a concentration of 1,300,000 cells/mL in 92 pL droplets. The distribution

of cells in droplets was measured by manual analysis of microscopic images showing the emulsion directly after production. Shown is the fraction of

droplets plotted against the number of cells per droplet; n= 85, black line indicates median, red line indicates predicted values. e Shown is the fraction of

cell-containing droplets with exactly one cell; n= 85. Lines indicate mean, hinges mark interquartile ranges, and whiskers reach to the highest/lowest value

that is within 1.5 × interquartile range. f–k The pDCs were treated as described above and stimulated with 5 μg/mL or 50 µg/mL CpG-C. f Viable pDCs

were detected by forward scatter (FSC) and side scatter (SSC) analysis and subsequent gating on CD14−CD19− and viability dye− cells. g IFNα- and TNFα-

secreting cells were detected within that population. h Shown is the fraction of cytokine-secreting cells plotted against incubation time; n (5 µg/mL)= 3,

n (50 µg/mL)= 6. i Surface marker-expressing pDCs were identified comparing the expression levels to fluorescence-minus-one controls. j Shown is the

fraction of surface marker-expressing cells plotted against the incubation time; n >= 4. k The co-expression of CCR7, CD40, CD86, and TNFα by single

IFNα+ and IFNα− pDCs was analyzed. Shown is the relative contribution of each functional response pattern to the total pDC population. h, j Dots indicate

mean, error bars indicate SEM
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volume of a single pDC in a perfectly mixed microtiter plate—
showed no increase in the fraction of IFNα-secreting cells
(Fig. 5d, gray dots).

Previous studies indicated that pDCs build homologous cell
clusters upon stimulation, indicating that cellular crosstalk might be
involved in their activation process2,39. To test this, we stimulated
pDCs at various cell densities in microtiter plates in bulk
(Supplementary Fig. 9A). Indeed, the fraction of IFNα-expressing
pDCs depended on cell density (Supplementary Fig. 9B–F).

Communication between abovementioned pDCs in bulk can,
thus, amplify the fraction of IFNα-producing cells. To get more
insight into the nature of this communication, we tested whether
crosstalk between two random interacting cells would be
sufficient to enable IFNα production. We encapsulated pDCs in

90 pL droplets and gradually increased the fraction of droplets
containing multiple cells (Fig. 5e). The fraction of IFNα-secreting
cells increased slightly with the fraction of multiple cells per drop
but did not match the predictions of a random interaction model
(Fig. 5f, red). In contrast, the increase was better described by an
alternative model based on the assumption that the early IFNα-
producing pDCs activate co-encapsulated cells to produce IFNα
as well (blue). However, in the employed system, we cannot rule
out the possibility that the increase was caused by passive
diffusion of cytokines or capture reagent between two co-
encapsulated cells (Supplementary Fig. 10).

Together, these results show that the microenvironment—in
this case represented by surrounding pDCs—has a critical impact
on the probability of a pDC to produce IFNα.

Priming with type I IFN increases the chance to produce IFNα.
Communication between IFNα-producing pDCs and surround-
ing pDCs occurs either in a juxtacrine or paracrine fashion. To
elucidate whether paracrine signaling is the driving factor, freshly
isolated pDCs were primed for 2 h with conditioned medium
(CM) harvested from overnight bulk pDC cultures (Fig. 6a). After
priming, pDCs were thoroughly washed, coated with capture
reagent, encapsulated in picoliter droplets, and stimulated indi-
vidually with CpG-C. Priming cells with 10% CM significantly
increased the fraction of single pDCs that produced IFNα
(Fig. 6b). In contrast, no effect was observed when cells were
primed with remnant CpG-C, fresh cell culture medium, or
primed without subsequent TLR stimulation. Similar to previous
experiments, IFNα-secreting cells were highly multifunctional
(Fig. 6c). Interestingly, the fraction of IFNα-secreting pDCs
depended on the concentration of the CM, but not on the con-
centration of CpG-C (Fig. 6d, e). These findings indicate that
priming modulates the probability of a pDC to produce IFNα but
does not directly induce IFNα production.

To identify the responsible factor for the priming effect, we tested
several cytokines described to positively affect IFNα-production by
pDCs22,27. An initial screen revealed that only IFNβ—which acts
similar to IFNα via the IFNα/β-receptor—increased the average
per-cell IFNα production by pDCs cultured in microtiter plates at
low cell density (Supplementary Fig. 11A, B). Furthermore, blocking
the IFNα/β receptor and adding neutralizing antibodies against
IFNα and -β inhibited the positive effect of CM on per-cell IFNα
production. Priming of pDCs with IFNβ also led to an increase in
the fraction of low-density cultured pDCs producing IFNα as
measured by flow cytometry (Supplementary Fig. 11C). Finally,
priming with IFNβ increased the fraction of IFNα-secreting cells in
droplets to a similar extent as CM (Fig. 6f).

Previous studies identified IRF7 as a limiting factor in non-
pDC models of type I IFN production18. In our hands, all pDCs
displayed high levels of IRF7 immediately after isolation which
decreased, however, during ex vivo culture (Supplementary
Figs. 12, 13). High levels of IRF7 were induced by priming with
IFNβ or by natural production of type I IFN by pDCs and
coincided with but did not precede IFNα production (Supple-
mentary Figs. 12, 13).

Together, these results unambiguously show that signaling
via the type I IFN receptor amplifies TLR-induced IFNα
production, thus modulating the patterns of heterogeneity
within the pDC population. Next,we challenged our hypothesis
that the bulk type I IFN response is governed by a small driver
population of cells by conducting bulk experiments where type
I IFN-mediated paracrine communication was abrogated by
blocking the IFNα/β receptor and by adding neutralizing
antibodies against IFNα and -β prior to bulk activation. Our
experiments revealed that blocking the IFNAR in combination
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with neutralizing sera reduced the fraction of cells secreting
IFNα to similar numbers as observed in our droplet experi-
ments (Supplementary Fig. 14), indicative for a pool of early
responder cells.

Based on our results, we propose the following model of early
pDC activation (Fig. 6g). The pDCs are able to produce IFNα
constitutively, but this is a rare and stochastic process that is
controlled by transcription factors such as nuclear factor (NF)-κB
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Fig. 3 Single-cell RNA-sequencing identifies type I IFN-expressing cells early after activation. a The pDCs were coated with capture reagent, encapsulated
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cytokine secretion, different pDC subsets were collected using fluorescence-activated cell sorting (FACS) and their transcriptomes were sequenced using

the SORT-Seq protocol. c Heat map of the 774 cells that passed quality control filters representing transcriptome similarities as measured by Euclidean
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Different colors indicate clusters, different shapes indicate stimulation time. e The employed workflow allowed to link protein expression data acquired

during FACS to the transcriptome data. The number of IFNα+ cells assigned to each cluster, and the percentage of sorted IFNα+ cells in each cluster, is

plotted against the cluster name. f t-SNE map showing the fluorescence intensity of IFNα and TNFα as measured during FACS for each cell. g Shown are

transcript counts for genes of the type I IFN response and the TNF gene in single cells stimulated for 2 h with CpG-C. IFNα+ cells, identified during FACS,
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10−8). Shown is the log2(fold change) for each gene. The color scale indicates the corresponding p value
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or activator protein 1 (AP-1), but not IRF727. TLR triggering,
which behaves as a sensitive and digital process, leads to the
activation of the MyD88–IRF7 pathway and a 20-fold increase in
stochastic IFNα expression. In many cells, this pathway is,
however, limited by downstream components and by trafficking
of CpG molecules to early endosomes. This leads to a still very
limited pool of early responder pDCs that secrete type I IFN.
Secreted type I IFN, then, primes surrounding pDCs and induces
the expression of important factors for the IFNα production. This
increases the probability of IFNα expression in those cells and leads
to a robust population response.

Discussion
We show that type I IFN production by freshly isolated human
pDCs is controlled by stochastic gene regulation and amplified by
environmental signals. This is supported by several observations.
First, TLR signaling was necessary but insufficient for the
induction of type I IFN production. Only a minor subset of cells
produced IFNα, whereas all cells expressed TNFα or CCR7,
implying universal activation of the TLR signaling pathway.
Second, neither TLR signaling strength nor duration influenced

the fraction of IFNα-producing cells. Third, RNA profiling of
single pDCs indicated no evidence of a privileged pDC subset
with superior ability to produce type I IFN. On the contrary, a
type I IFN-expressing pDC subset emerged at 2 h after activation,
at the same time as type I IFN secretion was first observed in
droplets, indicating that heterogeneity emerges simultaneously at
protein and messenger RNA (mRNA) levels. Stochastic gene
regulation is one of the strongest drivers of cellular heterogeneity
and can be caused by not only the inherently random nature of
gene expression itself but also by limitations in the signaling
pathways leading to the production of a cytokine18,19,21,32. In our
system, high IRF7 expression, which represented the most
important cause of stochasticity in other systems, did not guar-
antee type I IFN production in all pDCs18.

In contrast, we show here that the microenvironment has a
decisive impact on type I IFN responses as IFNα production by
pDCs depended directly on cell density. This effect could be
mimicked by pre-treating pDCs with type I IFN leading to an
increase in the fraction of IFNα-producing individually stimu-
lated pDCs. This combination of stochastic gene regulation and
environmental response amplification poses an efficient yet
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flexible solution for pDCs to generate robust type I IFN
responses. IFNα production by rogue cells that detect host-
derived nucleic acids in sterile situations is limited without type I
IFN amplification, but rapid and robust responses are guaranteed
when pDCs are triggered in inflamed tissue with high pDC
density or type I IFN signals from infected body cells. Further-
more, controlling type I IFN production in such a population-
regulated stochastic manner allows the induction of an antiviral

state in all cells of a given tissue but bypasses the necessity of all
cells being type I IFN producers, reducing type I IFN levels and
tissue damage.

These insights have far-reaching implications: on an applied
level, pDC-focused treatments, such as DC-based immunotherapy,
need to reconsider vaccine parameters, such as number of injected
cells, location and pre-treatment of injection side, and cell density
during stimulation for better efficacy. On a more fundamental level,
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our insights imply that the functional behavior of pDCs is plastic
and adaptable to local cues from the tissue microenvironment,
similar to macrophages42. Therapy approaches that target pDCs
inside the body should take into account that not all pDCs are the
same and that pDCs might react differently to treatment depending
on the tissue context of the disease.

Here, we show that well-studied human primary immune cell
responses can be based on stochastic processes at the single-cell
level and emphasize the importance of single-cell techniques to
deconstruct immunological responses at the single-cell level.

Methods
Antibodies and cell stimuli. For a full list of utilized antibodies and reagents, the
readers are referred to the Supplementary Methods.

Cell isolation and culture. Jurkat T cells (ATCC, Clone E6-1 (ATCC® TIB-152™))
were cultured in RPMI (Thermo Fischer Scientific) supplemented with 10% fetal
calf serum (FCS; Greiner Bio-One) and 1% Antibiotic-Antimycotic (Life Tech-
nologies), and regularly tested for mycoplasma contamination. The pDCs were

obtained from buffy coats of healthy donors (Sanquin) after written informed
consent per the Declaration of Helsinki and according to institutional guidelines. In
short, peripheral blood mononuclear cells (PBMCs) were isolated from donor
blood via Ficoll density gradient centrifugation (Axis-Shield). The pDCs were
subsequently isolated using magnet-activated cell sorting (MACS) or fluorescence-
activated cell sorting (FACS).

For MACS isolation, PBMCs were resuspended in X-Vivo 15 cell culture
medium (Lonza) supplemented with 2% pooled human serum (HS; Sanquin) and
incubated for 1 h at 37 °C in cell culture flasks T75 (Corning) to deplete monocytes.
Cells were washed thrice with phosphate-buffered saline (PBS; Braun) while non-
adherent cells were collected. The pDCs were isolated from this cell population by
positive selection using the CD304 Microbeat Kit (Miltenyi Biotec) following the
manufacturer’s instructions. Cells were counted and purity was assessed using flow
cytometry. For this purpose, cells were washed with PBS supplemented with 0.5%
bovine serum albumin fraction V (BSA, Roche) and 0.01% NaN3 (Merck;
subsequently referred to as PBA) and stained for 10 min at 4 °C using APC-labeled
anti-CD303 and fluorescein isothiocyanate (FITC)-labeled anti-Lineage Cocktail 1
(LIN1) antibodies in 30 μL PBA. The pDCs were identified as CD303+LIN− and
purity was on average 93% (Std.: 3.76%, n= 67).

For FACS isolation, PBMCs were washed and FITC-labeled anti-LIN1
antibodies were added to the pellet. Cells were incubated for 20 min at 4 °C.
Subsequently, cells were washed with PBS supplemented with 4 mM
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droplets, and stimulated individually with 0.01 µg/mL IL-3 or 50 µg/mL CpG-C for 12 h. CM was generated from bulk pDC cultures stimulated with 5 µg/

mL CpG-C at a density of 25,000 cells/well. Cytokine-secreting cells were detected using flow cytometry. b The fraction of IFNα-secreting cells is plotted

against different treatment conditions. c Co-expression of CCR7, CD40, CD86, and TNFα by single IFNα+ and IFNα− pDCs was analyzed. Shown is the

relative contribution of each functional response pattern to the total pDC population. d The pDCs were primed with different concentrations of CM and
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ethylenediaminetetraacetic acid (EDTA; Sigma) and 0.1% BSA (subsequently
referred to as wash buffer) and anti-FITC microbeads (Miltenyi Biotec) were added
to the pellet. Cells were incubated for 30 min at 4 °C and subsequently washed with
wash buffer. LIN1-positive cells were magnetically depleted using an LD column
(Miltenyi Biotec) following the manufacturer’s instructions. Cells were washed with
wash buffer and VioBlue- or PE-Cy7-labeled anti-HLA-DR and BV510- or PE-
labeled anti-CD304 antibodies were added to the pellet. Cells were incubated for
30 min at 4 °C and afterwards washed with wash buffer. The pDCs were sorted as
LIN1−HLA-DR+CD304+ cells on a FACS Aria II SORP (BD).

During stimulation, pDCs were cultured in X-Vivo 15 supplemented with 2%
HS or RPMI supplemented with 10% FCS.

Soft lithographic procedure. The microfluidic device was molded against an SU-8
photo resist structure on a silicon wafer using a commercially available poly-
dimethylsiloxane silicone elastomer (Sylgard 184, Dow Corning). The surface of the
Sylgard 184 was OH-terminated by exposure to plasma (Diener Electronic GmbH),
and was sealed with another plasma-treated glass cover slide to yield closed micro
channels. Channels were treated with a 2% silane solution.

Microfluidic setup. Soft lithographic techniques were used to fabricate micro-
fluidic channels (see above). Liquids were dispensed from plastic syringes (Becton
Dickinson), which were connected to the microfluidic device by polytetra-
fluoroethylene tubing (Novodirect GmbH). The syringes were driven by computer-
controlled syringe pumps (Nemesys, Cetoni GmbH). For the stability of droplets,
3 w/w% Pico-Surf® surfactant (Sphere Fluidics) was used in fluorinated HFE-7500
oil (Novec 7500, 3M). Cells and stimuli were loaded separately on the microfluidic
chip. The dimensions of the microfluidic channels are 40 µm × 25 µm at the first
inlet, 60 µm × 25 µm at the second inlet and the production nozzle, and 100 µm ×
25 µm at the collection channel.

Priming and blocking. To block type I IFN signaling, pDCs were incubated at
37 °C for 30 min with medium containing blocking antibody against IFNAR2 (PBL
Assay Science, 10 μg/mL) and neutralizing sera against IFNα and IFNβ (both from
PBL Biomedical Laboratories, both 1000 NU/mL). To prime, pDCs were resus-
pended in medium containing cytokines or conditioned medium and incubated for
2 h, 37 °C. Subsequently, cells were washed thrice with wash buffer and prepared
for downstream applications.

Single-cell activation assay. Cells were washed twice with wash buffer and
incubated in 100 µL per 106 cells wash buffer containing Cytokine Catch Reagent
(Miltenyi Biotec) at 4 °C for at least 40 min. Control experiments excluded that the
employed Cytokine Catch Reagents affect viability or cellular functions (Supple-
mentary Fig. 15). Next, cells were washed with wash buffer and medium and
resuspended in medium at 2.6·106 cells/mL for single-cell encapsulation in
70–100 pL droplets. In case of experiments using different droplet sizes or multiple
cells per drop, these concentrations were adjusted to yield the desired Poisson
distribution. Stimulus was dissolved in medium at twice the desired concentration
to account for on-Chip dilution. For 90 pL droplet production, flow rates were
adjusted to 900 µL/h for the oil phase and 200 µL/h for the aqueous fractions
(Supplementary Table 4 for overview of all employed flow rates). In all experi-
ments, constant volumetric flow rates were used. To assess the encapsulation rate,
videos of the droplet production and images of the produced emulsion were
acquired using a CKX41 microscope (Olympus) at ×10 magnification. Encapsu-
lation rate was manually assessed using Fiji43,44. The emulsion was collected and
covered with medium to protect droplets from evaporation. Cells were incubated
with open lid at 37 °C and 5% CO2. Next, the emulsion was broken by adding
150 µL HFE-7500 containing 20% w/w 1H,1H,2H,2H-Perfluoro-1-octanol and
centrifuging briefly at 60 relative centrifugal force (RCF). The cell-containing
aqueous phase was transferred into a new tube containing 500 µL PBA and left for
2 min to allow residual oil to settle. Finally, the aqueous phase was transferred into
a clean tube and cells were washed with PBS. Dead cells were identified by staining
with Fixable Viability Dye eFluor® 780 (eBioscience, 1:2000 in PBS, 100 μL) for 30
min at 4 °C. Cells were washed once with PBS and blocked with PBA supplemented
with 1% HS for 10 min at 4 °C. To stain for surface proteins and captured cyto-
kines, cells were incubated with antibodies in 70 μL PBA supplemented with 1% HS
for 10 min on ice. After incubation, cells were washed and resuspended in PBA and
kept at 4 °C until acquisition on a FACS Verse flow cytometer (BD).

RNA isolation and quantitative PCR. RNA was isolated using Trizol (Life
Technologies) following the manufacturer's protocol. RNA quantity was deter-
mined on NanoDrop 2000c (Thermo Scientific) and RNA quality was determined
via agarose gel electrophoresis. Then, 2 μg of RNA was DNAse I-treated to remove
residual genomic DNA and reverse transcribed into complementary DNA (cDNA)
by M-MLV reverse transcriptase (Life Technologies) to obtain 25 μL of cDNA. The
cDNA was diluted 25× in nuclease free water. For each reaction, 4 μL diluted
cDNA, 300 nM primers, 10 μL SYBR Green (Roche), and water were added to a
final volume of 20 μL. Each sample was amplified using a CFX96 sequence
detection system (Bio-Rad). The following quantitative PCR (qPCR) cycling con-
ditions were used: 50 °C/2 min, 95 °C/10 min, 40 cycles of 95 °C/15 s; 60 °C/1 min,

melt analysis 60 °C–95 °C with increment 0.5 °C/5 s. The gene-specific oligonu-
cleotide primers used to determine the expression of the genes of interest are listed
in Supplementary Table 2. To increase the chance of consistency, qPCR primers
were based on the MA probes with highest differential expression. PCR products
were monitored by measuring the increase of fluorescence caused by binding of
SYBR Green. Quantitative PCR data were analyzed using CFX96 manager and
relative expression of the gene of interest was determined using the cycle threshold
method with GAPDH as reference genes45.

Perturbation profiling–scRNA-seq. Using FACS as described above, single cells
were sorted in 384-well plates containing a 50 nL droplet with CELseq2-primers
and covered by mineral oil. A Mosquito® HTS (TTP Labtech) was used to dispense
the droplets. To remove red blood cells, PBMCs were resuspended in 8 mL of ice-
cold ACK buffer and incubated for 5 min on ice prior antibody staining with FITC-
labeled anti-LIN1. Subsequently, the cells were washed with X-Vivo 15 supple-
mented with 2% HS and the standard protocol was further followed.

After sorting, plates were immediately frozen at −80 °C until further processing.
Several days later, plates were thawed and incubated at 65 °C for 5 min to lyse cells.
Perturbation profiling was conducted using the SORT-Seq protocol33. In short,
spike-in RNA, reverse transcriptase and second-strand mixes were added to the
wells using the Nanodrop II liquid handling platform (GC Biotech). Subsequently,
the mRNA of each cell was reverse transcribed and converted to double-stranded
cDNA. Libraries were then pooled, and in vitro transcribed for linear amplification,
following the CEL-Seq 2 protocol46. Primers consisted of a 24 bp polyT stretch, a 6
bp random molecular barcode (unique molecular identifier (UMI)), a cell-specific
8 bp barcode, the 5′ Illumina TruSeq small RNA kit adaptor, and a T7 promoter.
Illumina sequencing libraries were then prepared with the TruSeq small RNA
primers (Illumina) and sequenced paired-end at 75 bp read length (high output) on
the Illumina NextSeq.

Stimulation in microtiter plate. The pDCs were resuspended in 100 µL medium
containing the appropriate stimulus (see supplementary methods) and cultured in
96-well round bottom plates (Costar, polystyrene) at a density of 25,000 cells per
well if not stated differently. Depending on the experimental setting, Brefeldin A
(Sigma, 10 µg/mL) was added 2 h before harvesting the cells.

Antibody staining. Cells were washed once with PBS and dead cells were identified
by staining with Fixable Viability Dye eFluor® 780 (eBioscience, 1:2000 in PBS,
100 μL) at 4 °C for 30 min. Subsequently, cells were washed once with PBS and
blocked with PBA supplemented with 1% HS at 4 °C for 10 min. Cells were washed
and incubated with antibodies against surface proteins in 30 μL PBA supplemented
with 1% HS for 10 min on ice. Afterwards, cells were washed with PBA followed by
a wash with PBS. Cells were fixed and permeabilized with Cytofix/Cytoperm
solution (BD, 100 μL) for 20 min at 4 °C. Next, cells were washed with Perm/Wash
buffer (BD) and blocked for 10 min at 4 °C using Perm/Wash buffer supplemented
with 1% HS. Subsequently, cells were incubated with antibodies against intracel-
lular proteins in 30 μL Perm/Wash buffer supplemented with 1% HS for 30 min at
4 °C. Cells were washed twice with Perm/Wash buffer followed by a wash with PBA
and resuspended in PBA. For IRF7 staining, cells were instead fixed with 4%
paraformaldehyde (Merck) in PBS for 10 min at room temperature. After incu-
bation, PBA was added and cells were washed twice with PBA, followed by a wash
with PBA supplemented with 0.1% Triton X (Sigma). Cells were blocked for 10 min
at 4 °C using PBA supplemented with 0.1% Triton X and 1% HS. Subsequently,
cells were incubated with antibodies against intracellular proteins in 30 μL PBA
supplemented with 0.1% Triton X and 1% HS for 30 min at 4 °C. Cells were washed
twice with PBA supplemented with 0.1% Triton X followed by a wash with PBA
and resuspended in PBA. All cells were kept at 4 °C until acquisition on a FACS
Verse flow cytometer (BD). To guarantee highest purity in experiments, we limited
our analysis to viable CD14−CD19− pDCs.

ELISA analysis. The enzyme-linked immunosorbent assay (ELISA) plates (Nunc
MaxiSorp ELISA Plates for IFNα, Greiner bio-one high binding microplates for
TNFα ELISA) were incubated with PBS containing anti-cytokine antibodies at the
manufacturer-recommended concentration (Human IFN-alpha matched antibody
pairs, Human TNF alpha ELISA Ready-SET-Go, both from eBioscience) overnight
at 4 °C. Next, plates, coated with antibodies against IFNα, were washed once with
PBS supplemented with 0.05% Tween-20 (Merck, subsequently referred to as
ELISA wash buffer and used for all wash steps) and blocked using 250 µL ELISA
wash buffer supplemented with 0.5% BSA for 2 h at room temperature. Plates were
washed twice and incubated with 50 µL of sample or standard and 50 µL of
horseradish peroxidase (HRP)-conjugated detection antibody at the recommended
concentration for 2 h at room temperature. Plates coated with antibodies against
TNFα were washed once and blocked with ELISA dilutent (eBioscience) for 2 h at
room temperature. Plates were washed once and incubated with 50 µL sample or
standard. Next, plates were washed 4× and incubated with detection antibody at
the recommended concentration. Subsequently, plates were washed 4× and incu-
bated with Avidin-HRP at the recommended concentration for 30 min at room
temperature. Finally, all plates were washed trice and incubated with 100 µL TMB
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Solution (eBioscience). Reaction was stopped by adding 100 µL of 1 M H3PO4 and
absorption was measured at 450 nm using a microplate reader (Bio-Rad).

Flow cytometry and ELISA analysis. Flow cytometry data were analyzed using
FlowJo X (Tree Star) and SPICE (downloaded from http://exon.niaid.nih.gov)47.
Analysis and presentation of distributions was performed using PRISM for win-
dows version 5.03 (GraphPad) and The R Project for Statistical Computing using
the ggplot2, reshape, and xlsx packages48–51. For statistical analysis, Student's t-test,
Mann–Whitney test, and linear regression analysis using least square fit were
performed.

Linear regression model. Two models were generated: direct interactions between
two random pDCs amplify the type I IFN production (2 × percentage of droplets
with >1 cells/[100%+ percentage of droplets with >1 cells] × 100% ~ percentage of
cells that produce IFNα); interactions between early type I IFN-producing pDCs
and other pDCs amplify type I IFN production (percentage of droplets >1 cells ·
percentage of early-responding cells+ the percentage of early-responding cells ~
percentage of cells that produce IFNα). In both models, droplets with 3 or more
cells are treated as if they contained only 2 cells. To compare the fit of each model,
the dataset (n= 24) was randomly split into training (75%) and test (25%). Model
parameters were estimated based on the training dataset, and the test dataset was
used to predict the fraction of type I IFN-producing cells. Predicted and measured
values were compared using the root-mean-square error (RMSE). This process was
repeated 100 times and the average RMSE for each model was calculated.

ScRNA-seq analysis. Paired-end reads from Illumina sequencing were aligned to
the human transcriptome with BWA52. Read 1 was used for assigning reads to
correct cells and libraries, while read 2 was mapped to gene models. Reads that
mapped equally well to multiple locations were discarded. Read counts were first
corrected for UMI barcode by removing duplicate reads that had identical com-
binations of library, cellular, and molecular barcodes and were mapped to the same
gene. Transcript counts were then adjusted to the expected number of molecules
based on counts, 4096 possible UMIs, and poissonian counting statistics.

Samples were normalized by down-sampling to a minimum number of 1700
transcripts. RaceID2 was used to cluster cells and to perform outlier analysis.
Differentially expressed genes between two subgroups of cells were identified based
on DEseq33. Gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) analysis was conducted by submitting lists of up to 50 most upregulated
genes (log2(fold change) of >1.5, adjusted p value < 10−8) to the DAVID 6.7 online
platform40,41.

Data availability. All relevant data related to this manuscript are available on
request from the authors. The accession number for the single-cell RNA-sequen-
cing data described in this study is GEO: GSE114161. All relevant codes related to
this manuscript are available from the authors or as Supplementary Information.
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