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Single-Cell Analysis Reveals the Range of Transcriptional States
of Circulating Human Neutrophils

Gustaf Wigerblad,*,1 Qilin Cao,*,1 Stephen Brooks,† Faiza Naz,‡ Manasi Gadkari,*
Kan Jiang,† Sarthak Gupta,* Liam O’Neil,*,2 Stefania Dell’Orso,‡ Mariana J. Kaplan,*,3 and
Luis M. Franco*,3

Neutrophils are the most abundant leukocytes in human blood and are essential components of innate immunity. Until recently, neutrophils
were considered homogeneous and transcriptionally inactive cells, but both concepts are being challenged. Single-cell RNA sequencing
(scRNA-seq) offers an unbiased view of cells along a continuum of transcriptional states. However, the use of scRNA-seq to characterize
neutrophils has proven technically difficult, explaining in part the paucity of published single-cell data on neutrophils. We have found that
modifications to the data analysis pipeline, rather than to the existing scRNA-seq chemistries, can significantly increase the detection of
human neutrophils in scRNA-seq. We have then applied a modified pipeline to the study of human peripheral blood neutrophils. Our
findings indicate that circulating human neutrophils are transcriptionally heterogeneous cells, which can be classified into one of four
transcriptional clusters that are reproducible among healthy human subjects. We demonstrate that peripheral blood neutrophils shift from
relatively immature (Nh0) cells, through a transitional phenotype (Nh1), into one of two end points defined by either relative transcriptional
inactivity (Nh2) or high expression of type I IFN-inducible genes (Nh3). Transitions among states are characterized by the expression of
specific transcription factors. By simultaneously measuring surface proteins and intracellular transcripts at the single-cell level, we show that
these transcriptional subsets are independent of the canonical surface proteins that are commonly used to define and characterize human
neutrophils. These findings provide a new view of human neutrophil heterogeneity, with potential implications for the characterization of
neutrophils in health and disease. The Journal of Immunology, 2022, 209: 772�782.

The understanding of heterogeneity and plasticity in hemato-
poietic cells is changing rapidly. Historically, a combination
of cell surface markers, transcription factors, and profiles of

secreted cytokines has been employed to classify cells of similar his-
tological appearance and ontogeny into discrete groups. The implicit
assumption of this categorization, that the resulting cell “populations”
or “subsets” represent polarized and fixed states, has been questioned
for the past two decades by an extensive body of evidence. This is
exemplified by the recent evidence that T cells and macrophages,
which have long been classified in terms of subsets, can convert from
one state to another and display mixed or partial profiles (1�3). This
evidence suggests that hematopoietic cells may be best understood

along a continuum of differentiation and activation states. In this con-
text, single-cell RNA sequencing (scRNA-seq) has been an important
addition to the set of analytical tools, because cells in different states
may express different sets of genes and scRNA-seq offers a less
biased view of cells along a continuum of transcriptional states. Our
understanding of the spectrum of cell states at baseline, in response to
specific stimuli, and in disease remains limited. The extent to which
different transcriptional states correspond to older classifications based
on a limited number of proteins is also unclear for most cell types.
Neutrophils are the most abundant leukocytes in human blood

and are essential components of the innate immune system. Until
recently, they were thought to be a fairly homogeneous and
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transcriptionally inactive cell type, but both concepts have been con-
vincingly challenged in recent years (4, 5). Although human neutro-
phils have lower total RNA content per cell than macrophages (6)
and other hematopoietic cell types (Supplemental Table I), they
express a broad range of genes in resting conditions (7, 8), and their
transcriptome is strongly reactive to environmental stimuli (9�11).
Neutrophils have been characterized based on discrete parameters,
including cell-surface markers, buoyancy, histological characteristics
associated with maturation status, or tissue localization. These obser-
vations have led to the emergent concept of neutrophil heterogeneity,
which has been the subject of recent reviews (4, 5). In these, it has
been proposed that single-cell sequencing technology is a promising
avenue for a more comprehensive and less biased characterization of
neutrophil states. Recent studies in mouse models, with a limited
number of human samples for comparison, have applied scRNA-seq
to the study of circulating and bone marrow neutrophils and have
indeed documented the existence of a range of transcriptional states
(12, 13). Direct evidence for distinct transcriptional subsets of human
neutrophils has also been provided, by our group and others, in
scRNA-seq studies of sex differences in the neutrophils of healthy
donors (14) and in patients with lung cancer (15) or coronavirus dis-
ease 2019 (COVID-19) (16, 17). However, given their low per-cell
RNA content, scRNA-seq in neutrophils remains technically challeng-
ing, explaining in part the paucity of scRNA-seq reports describing
human neutrophils compared with other hematopoietic cell types. To
address this, we first evaluated the technical aspects of scRNA-seq
data generation and analysis. We found that a modified pipeline is
necessary for proper identification of neutrophils in scRNA-seq
data. We then applied such a pipeline to the transcriptional charac-
terization of human circulating neutrophils from multiple healthy
donors at the single-cell level.

Materials and Methods
Cell purification

Human venous peripheral blood samples from healthy donors were obtained
from the Department of Transfusion Medicine at the National Institutes of
Health Clinical Center. For neutrophil purification, whole blood samples
were collected in vacutainer glass blood collection tubes with acid citrate
dextrose. Neutrophils were isolated with the EasySep Direct Human Neutro-
phil Isolation Kit (cat. no. 19666; STEMCELL Technologies).

For granulocyte purification, whole blood was collected in heparinized
tubes. Granulocytes were isolated by dextran sedimentation of RBC pellets
as previously described (18). In brief, cells were first layered on a Ficoll/
Hypaque gradient (cat. no. 17144003; GE Healthcare). The granulocyte/RBC
fraction was then enriched by dextran sedimentation followed by RBC lysis
using hypotonic solution. Granulocytes were then washed with PBS. For
WBC purification, whole blood samples were collected in heparinized tubes.
WBCs were isolated with the Erythroclear RBC Depletion Reagent Kit (cat.
no. 01738; STEMCELL Technologies).

Documentation of cell purity and viability

Flow cytometry was used to assess the purity and viability of purified neutro-
phils. The cells were stained with a panel of mAbs containing ECD CD16
clone 3G8 (cat. no. A33098; Beckman Coulter), BV711 CD45 clone HI30
(cat. no. 564357; BD Biosciences), and FITC CD66b clone G10F5 (cat. no.
305104; BioLegend). The LIVE/DEAD Fixable Dead Cell Stain Kit with
aqua fluorescent reactive dye (cat. no. L34957; Thermo Fisher Scientific)
was used to assess cell viability. PE-Annexin V (cat. no. 640908; BioLegend)
was used to assess early apoptosis activity. UltraComp eBeads Compensation
Beads (cat. no. 01-2222-42; Thermo Fisher Scientific) were used to perform
spectral compensation. Data were collected by a BD Biosciences FACSCelesta
flow cytometer and later analyzed with FlowJo software (v10). The purity of
neutrophils was specifically defined by cell-lineage markers as the proportion
of CD66b1CD161 events among CD451 events.

scRNA-Seq

From each cell purification sample, ∼50,000 cells were centrifuged at
300 × g for 5 min at 4◦C and washed twice with PBS with 0.02% BSA. To

obtain single-cell gel beads-in-emulsion, we resuspended cells at a concentra-
tion of 1000 cells/ml and added 1 ml of RNase Inhibitor (cat. no. 10777-019;
Invitrogen) before loading the mix on a Chromium Comptroller Instrument
(10× Genomics). Single-cell cDNAs and libraries were prepared with a Chro-
mium Single Cell 39 Library & Gel Bead Kit v3.1 (cat. no. 1000121; 10×
Genomics). In brief, gel beads-in-emulsion�reverse transcription incubation
was performed in a C1000 Touch Thermal cycler with 96-Deep Well Reac-
tion Module (cat. no. 1851197; Bio-Rad): 53◦C for 45 min, 85◦C for 5 min,
held at 4◦C. Single-strand cDNAs were purified with DynaBeads MyOne
Silane Beads (cat. no. 37002D; Thermo Fisher Scientific) and amplified with
the C1000 Touch Thermal cycler with 96-Deep Well Reaction Module: 98◦C
for 3 min; 13 cycles of 98◦C for 15 s, 63◦C for 20 s, and 72◦C for 1 min;
72◦C for 1 min; held at 4◦C. Amplified cDNA products were cleaned with
0.6× DynaBeads MyOne Silane Beads (cat. no. 37002D; Thermo Fisher Sci-
entific). Quality and quantity of the cDNAs were assessed on a 4200 Tape
Station (Agilent Technologies) with High Sensitivity D5000 DNA Screen
Tape (cat. no. 5067-5592; Agilent). The final material was amplified as fol-
lows: 98◦C for 45 s; 16 cycles of 98◦C for 20 s, 54◦C for 30 s, 72◦C for
20 s; 72◦C for 1 min; held at 4◦C. Libraries were diluted to the same molar-
ity and pooled for sequencing on NextSeq500 (Illumina) or NovaSeq6000
(Illumina) sequencers. Sequencing read lengths were 28 bp for read 1, 8 bp
for the i7 index, and 91 bp for read 2.

Protease and RNase activity are known to be highly active in neutrophils
(19). It should be noted, however, that the addition of a protease inhibitor (cat.
no. A32963; Thermo Fisher Scientific) or an RNase inhibitor (cat. no. AM2682;
Ambion), individually or in combination, to the standard 10× Genomics protocol
for cell capture and library preparation did not increase the final cDNA concen-
tration at the end of the library construction phase of the protocol.

Cellular Indexing of Transcriptomes and Epitopes by Sequencing

TotalSeq-B oligonucleotide-conjugated Abs (BioLegend), compatible with
the 10× Genomics 39 scRNA-seq chemistry, were used according to the
manufacturer’s protocol. The panel for common markers of circulating neu-
trophils included Abs targeting CD45, CD14, CD33, CD11c, CD10, CD16,
CD107a, HLA-DR, CD11b, CD66b, CD35, CD24, CD184, and CD15.

Processing and analysis of scRNA-seq data

Illumina run folders were demultiplexed and converted to FASTQ format with
Cell Ranger mkfastq version 4.0.0 and Illumina bcl2fastq version 2.20. Reads
were further counted and analyzed with Cell Ranger count version 4.0.0 and
the refdata-gex-GRCh38-2020-A reference, to generate raw and filtered matrix
files. The data can be accessed at GEO accession number GSE188288 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188288).

Matrix files were imported into the R package Seurat version 4.0.1 (20)
for downstream processing. From the raw matrices, cells with a gene number
between 100 and 2500 and a mitochondrial gene proportion < 0.1 were
selected for downstream analysis. The matrices were then normalized by the
LogNormalize method. The FindVariableFeatures() function was used to
select the top 2000 variable genes with the versust selection method. Scaling
was performed by the function ScaleData() regressing out the mitochondrial
gene content. Principal component analysis and clustering were then per-
formed on the scaled data. UMAP (version 0.2.7.0) was used for visualiza-
tion, and SingleR (version 1.4.1) was used for cell identification.

After neutrophils were identified in the dataset corresponding to each
sample, they were integrated. First, contaminants were removed if they had
gene expression values > 1 for three marker genes specific to RBCs
(HBA2), T cells (CD3G), and cells with a predominance of rRNA (RPS8).
Second, genes that were shared among all datasets were identified for down-
stream integration. Anchors were identified with the FindIntegrationAn-
chors() function, and these anchors were used to integrate the neutrophils
together with the function IntegrateData(). Finally, uniform manifold approx-
imation and projection for dimension reduction (UMAP) was performed on
the top eight principal components from the integrated data, and the resolu-
tion was set to 0.2 for visualization of the four clusters identified.

To examine the effect of sequencing depth on clustering and other down-
stream analyses, we down-sampled selected single samples by 50%. Typical
single-cell Illumina runs consisted of two lanes of a flow cell sequencing the
same pooled libraries. Fifty percent down-sampling was accomplished by
analyzing the data from a single lane.

To study neutrophil cell-state trajectories, we used the analysis toolkit
Monocle3, which is implemented as an R package (version 0.2.3.0) (21). A
principal graph was learned on the UMAP projection of the cells with the
learn_graph() function. To generate a pseudotime axis, we then ordered the
cells with the order_cells() function. To identify genes that vary between
groups of cells in UMAP space, we used the graph_test() function; this func-
tion employs the spatial autocorrelation analysis statistic Moran’s I, which
has been shown to be effective for identifying genes that vary in scRNA-seq

The Journal of Immunology 773
D

ow
nloaded from

 http://journals.aai.org/jim
m

unol/article-pdf/209/4/772/1487712/ji2200154.pdf by guest on 27 Septem
ber 2023

http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.2200154/-/DCSupplemental
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&hx003D;GSE188288
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&hx003D;GSE188288


datasets (22). The genes found to be variable were then grouped into mod-
ules with the function find_gene_modules(), which employs the Louvain
method for community detection (23), to identify clusters of genes with a
similar pattern of expression. To infer which transcriptional regulators are
active in the cells, we used the module gene lists as input for the binding
analysis for regulation of transcription (BART) pipeline (24). Transcription
factors associated with cis-regulatory elements most likely to regulate the
input gene lists (Irwin�Hall p < 0.01) were used for further analysis with
the Ghent University Bioinformatics and Evolutionary Genomics custom
Venn diagram tool (http://bioinformatics.psb.ugent.be/webtools/Venn/).

Single-cell Western blotting

Purified neutrophils were loaded on the scWest chip (ProteinSimple),
allowed to settle for 20 min, and treated according to the manufacturer’s
instructions. In brief, the chip was placed in the Milo instrument (Protein-
Simple) for 15-s lysis, 45-s separation, and 4-min ultraviolet exposure. The
chip was then probed using Abs against the proteins ISG15 (cat. no. 2758;
Cell Signaling) and GAPDH (cat. no. 5174; Cell Signaling), labeled with
Alexa 488/Alexa 594, and scanned in an array scanner (Molecular Devices).
Chips were then stripped and reprobed with Abs against IFITM3 (cat. no.
59212; Cell Signaling) and rescanned. Analysis of the images was done in
Scout software (ProteinSimple), where GAPDH was used as loading control
cell marker and data presented as % of total cells positive for ISG15 and/or
IFITM3. A total of 3300 neutrophils were used from two different donors.

Results
A modified analysis pipeline is required for the adequate
identification of neutrophils in scRNA-seq data

The standard analysis pipeline for scRNA-seq data generated with
the 10× Genomics platform and Illumina short-read sequencing is
implemented in the widely used Cell Ranger software (25). This
pipeline involves grouping of the sequencing reads by their cell of
origin (barcode) and RNA molecule of origin (unique molecular
identifier [UMI]). This is followed by a cell-calling step, in which
individual barcodes are determined to be empty (not corresponding
to any cell) or to represent a captured cell. The current cell-calling
algorithm employed by Cell Ranger is based on the EmptyDrops
method (26). In the first step, the algorithm sets a threshold based
on the number of UMIs associated with each barcode, and those
that pass this threshold are classified as cells. In the second step, a
set of barcodes with low UMI counts is selected, and a background
model is generated. The RNA profile of each barcode that was not
called as a cell in the first step is then compared against the back-
ground model, and those whose profile disagrees with that of the
background model are called as cells. The resulting barcodes are
then output in the form of a filtered matrix of the UMI counts corre-
sponding to each gene in each called cell. The goal of the second
step is to identify cells that may have lower RNA content than those
identified in the first step.
To test the ability of this method to reliably identify human neu-

trophils in a mixed-cell population, we first generated scRNA-seq
data from an RBC-depleted whole-blood sample and analyzed it
with the standard Cell Ranger pipeline described earlier. Of the
called cells in the filtered matrix, 27.2% were identified as neutro-
phils by an unbiased algorithm based on reference transcriptomic
datasets (27), which was a clear underrepresentation of neutrophils
in human whole blood (Fig. 1A). We then visualized the frequency
distribution of the number of features per barcode (genes per cell),
contrasting the filtered matrix with the unfiltered matrix (Fig. 1B).
From this, it was clear that the filtered matrix excluded many events
that were near the lower end of the distribution, yet formed a peak
that is distinct from the null set of events with zero or near-zero
features. We hypothesized that neutrophils, having lower overall
transcript abundance than other cell types, could be enriched in this
excluded cell population. To test this, we modified the analysis
pipeline, departing from the unfiltered matrix and lowering the
threshold of genes per cell based on the observed distribution. With

this modification, the proportion of cells that were identified as neu-
trophils increased to 58.7%, which is within the expected range of
neutrophils in human whole blood (Fig. 1C). Correspondingly, the
proportions of other nucleated cell types (T cells, B cells, NK cells,
and monocytes) either decreased to, or remained within, their nor-
mal ranges in human peripheral blood, indicating a more expected
representation of the cell composition of the sample. Overlaying
the distribution of genes per cell of the events now identified as
neutrophils on that of all events in the raw matrix indicated that a
substantial proportion of the events in the distinct peak we had pre-
viously observed, in fact, correspond to neutrophils (Fig. 1D). To
verify the identity of the cells that were rescued by the modified
analysis pipeline as neutrophils, we used the bioinformatics tool
NeutGX (14) and a publicly available dataset (GEO: GSE112101)
of RNA-seq data in nine primary human immune cells (11) to iden-
tify genes that are highly expressed in neutrophils and specific to
neutrophils (FCGR3B) or to myeloid cells (CSF3R, NAMPT). The
expression of these neutrophil marker genes is high in the cells that
were rescued by the modified analysis pipeline and classified as
neutrophils, confirming their identity (Fig. 1E).
In practice, depending on the requirements of specific experimen-

tal settings, human neutrophils are purified by different methods.
Therefore, we systematically compared the performance of the stan-
dard or modified pipelines for neutrophil scRNA-seq in cells puri-
fied by three common methods. Whole blood from each of seven
healthy donors was simultaneously processed by three methods prior
to cell capture for scRNA-seq: RBC-depleted whole blood, granulo-
cytes from density-gradient centrifugation, and immunomagnetically
purified neutrophils. In all sample types, the number of neutrophils
detected was significantly higher with the modified scRNA-seq
pipeline than with the standard pipeline (Fig. 1F).
We then asked whether the same principle could be applied to

improve the identification of neutrophils in scRNA-seq experiments
with samples from other tissues. To test this, we analyzed a recently
published dataset (GEO: GSE145926) of bronchoalveolar lavage
samples in patients with severe COVID-19 (28). With the standard
analysis pipeline, 13.1% of cells were identified as neutrophils, com-
pared with 55.8% of cells with the modified pipeline (Fig. 1G).
A related approach was proposed recently online (https://

support.10xgenomics.com/single-cell-gene-expression/software/
pipelines/latest/tutorials/neutrophils, accessed February 9, 2022). It
involves bypassing the second step of the standard cell-calling
algorithm, forcing the Cell Ranger program to call a set number of
events as cells, and including intronic reads. This is followed by
filtering of noncell events based on the number of genes per cell.
We performed a side-by-side comparison of this approach with our
simpler, modified pipeline and found that both are capable of res-
cuing neutrophils in single-cell data and are comparable in terms
of the specific cells and genes identified (Supplemental Fig. 1).
These results indicate that a modified analysis pipeline is required

for adequate identification of neutrophils in scRNA-seq data, and
that the cell-calling threshold along the frequency distribution of
genes per cell is the key variable that has prevented standard analy-
sis pipelines from identifying neutrophils.

Human circulating neutrophils consist of distinct and reproducible
transcriptional subsets

Recent observations by our group and others indicate that neutro-
phils from humans and mice exist in distinct transcriptional states
(12�14, 16, 17). Taking advantage of the improved analysis pipe-
line, we directly evaluated this by performing scRNA-seq on puri-
fied and abundant neutrophil samples from healthy donors. To
minimize the risk of potential changes in gene expression induced
by gradient centrifugation, osmotic lysis of RBCs, or positive-
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FIGURE 1. Pipeline for identification of neutrophils in scRNA-seq data. (A) Distribution of cell types identified in RBC-depleted whole blood in a
scRNA-seq analysis performed with the filtered matrix output from Cell Ranger (standard pipeline). Data from one capture are shown. (B) Frequency distri-
bution of the number of features per barcode (genes per cell) for the dataset shown in (A), comparing data from the filtered (red) versus raw (gray) matrices.
(C) Distribution of cell types identified in the dataset shown in (A) when the analysis is performed with the raw matrix output from Cell Ranger (modified
pipeline). (D) Frequency distribution of the number of features per barcode (genes per cell) for the dataset shown in (A) and (C), with the distribution for cells
identified as neutrophils in the analysis of the raw matrix (modified pipeline) highlighted in black. (E) Feature plot on the UMAP shown in (C) for three genes
expected to be highly expressed in human neutrophils. (F) Number of neutrophils detected by the standard or modified pipelines in samples from the same
subjects processed by three methods. Each dot represents one biological replicate (one unrelated healthy donor). Statistical testing results are from a paired
t test. (G) Proportion of neutrophils identified in a published scRNA-seq dataset of bronchoalveolar lavage fluid from patients with severe COVID-19 infec-
tion, comparing the results of the standard pipeline (left) with those of the modified pipeline (right).
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selection Abs, we studied neutrophils purified directly from whole
blood by immunomagnetic negative selection. Flow cytometry was
performed on each sample to document purity, viability, and evi-
dence of early apoptosis (Fig. 2A�C, Supplemental Table II). As
expected, the modified analysis pipeline identified a high proportion
of neutrophils that would have been excluded by the standard pipeline
(Fig. 2D). A total of 72,183 purified circulating human neutrophils
were analyzed. This analysis revealed four distinct transcriptional
clusters (Fig. 2E), which were highly reproducible in samples
obtained from seven unrelated healthy donors and processed inde-
pendently (Fig. 2F). For clarity of display and to facilitate future
comparisons of our data with those from other studies in humans or
other species, we have classified these clusters as Nh0 (neutrophils,
human, cluster 0) through Nh3. A table with the complete set of
marker genes for each cluster is provided in Supplemental Dataset 1.
Nh0 neutrophils represent ∼20% of circulating neutrophils

(mean: 22.1%, range: 14.4�30.1%) and are characterized by higher

expression of genes that have been found to be characteristic of
bone marrow neutrophils and are therefore associated with more
immature neutrophil states (8, 13). These include the genes MMP9,
ITGAM, FCN1, CAMP, CYBB, and CST3, which encode known or
candidate neutrophil granule proteins (8, 29). The genes encoding
vimentin (VIM), thioredoxin (TXN), and several proteins of the
S100 family (S100A6, S100A8, S100A9, S100A11, and S100A12)
are also differentially expressed in Nh0 cells compared with other
clusters. Notably, the gene encoding the membrane metalloendopep-
tidase CD10 (MME), which at the protein level is associated with
more mature neutrophils, is also more highly expressed in Nh0 cells,
highlighting the complementary information offered by protein- and
transcript-level measurements (Fig. 3A). Nh1 neutrophils represent
the majority of circulating neutrophils (mean: 57.1%, range:
40.3�71.3%) and appear to be in a more mature state, as indicated
by higher expression of the genes AIF1, CXCR2, and TXNIP
(Fig. 3A, 3B). Compared with other clusters, Nh1 neutrophils have

FIGURE 2. Circulating human neutrophils consist of distinct transcriptional subsets. (A�C) Flow cytometry documentation of human neutrophil purity and
viability. A representative sample is shown for each panel. Purity was defined as the proportion of CD66b1CD161 events among CD451 events, as shown
in (A). Viability was assessed by uptake of an amine-binding dye, as shown in (B). Evidence of early apoptosis was assessed by Annexin V staining, as shown
in (C). Results for each sample are in Supplemental Table II. (D) Frequency distribution of the number of features per barcode (genes/cell) in the purified neu-
trophils dataset, comparing data from the filtered (purple) and raw (black) matrices. (E) Two-dimensional projection (UMAP) of 72,183 purified
circulating human neutrophils showing clusters Nh0�Nh3. (F) Bar graph showing the cluster proportion of the neutrophils from each of seven healthy
controls (HC1�HC7).
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a less distinct pattern of expression: contrary to other clusters, none
of the top expressed genes in Nh1 are uniquely expressed in that
cluster (Fig. 3C). Nh2 neutrophils, which represent ∼14% of circu-
lating neutrophils (mean: 13.6%, range: 5.8�41%), are characterized
by higher expression of two specific long noncoding RNAs
(MALAT1 and NEAT1) and of the gene encoding the G-CSF recep-
tor (CSF3R), relative to other clusters (Fig. 3B). Finally, Nh3

neutrophils, which correspond to ∼7% of circulating neutrophils
(mean: 7.2%, range: 3.8�12.6%), represent a very distinct cellular
state, with substantially higher levels of expression of type I IFN-
inducible genes, including HERC5, IFI16, IFIT1, IFIT2, IFITM2,
IFITM3, and ISG15 (Fig. 3A�D). Given that the marker genes for
Nh3 neutrophils are primarily protein-coding genes expressed at
very low levels in any of the other clusters, we tested whether this

FIGURE 3. Neutrophil tran-
scriptional subsets vary by type
and number of genes expressed.
(A) Heatmap of the top marker
genes from each cluster. Each row
represents one gene, and each col-
umn represents one cell. The cells
corresponding to each cluster are
grouped, as indicated by the col-
ored bars. The top marker genes
were defined by their adjusted
p value and log2 (fold difference)
on differential expression analysis
(expression in a cluster versus
expression in all other clusters).
Genes with adjusted p 5 0 and
log2 (fold difference) $ 0.5 in any
cluster are shown. (B) Dot plot of
the top three marker genes for
each neutrophil cluster, showing
the average expression level and
the percent of cells expressing the
gene in each cluster. (C) Venn dia-
gram displaying the intersection
of the top genes in each cluster
by absolute expression. (D) Violin
plot showing the score per cluster
for a panel of IFN-related genes,
as described by Aran et al. (27).
(E) Single-cell Western blot on
3300 neutrophils, with Abs against
the proteins ISG15 and IFITM3. A
representative blot is shown on the
left, and a bivariate plot of the
estimated single-cell abundances
(peak areas) is displayed on the
right. (F) Neutrophil single-cell
RNA expression of the same tar-
gets as in (E): ISG15 and IFITM3.
(G) Violin plot of the number of
genes per cell in each cluster (left)
and distribution of the number of
genes per cell on the UMAP pro-
jection (right). (H) Ridge plots
showing the distribution of CD10,
CD15, and CD66b surface protein
expression among cells in each tran-
scriptional cluster. Surface expres-
sion and RNA-seq were measured
simultaneously, by Cellular Indexing
of Transcriptomes and Epitopes by
Sequencing (CITE-seq). Data for 11
additional neutrophil surface markers
are shown in Supplemental Fig. 2.
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IFN-regulated gene-high neutrophil phenotype was also detectable
at the protein level. We performed single-cell Western blotting in
purified neutrophils, using Abs recognizing ISG15 and IFITM3
(Fig. 3E). We found discrete sets of neutrophils that express these
proteins at high levels, and the proportion of cells in which one or
both proteins is detectable is within the percentage range for Nh3
neutrophils calculated from the gene expression data (Fig. 3E, 3F).
Interestingly, most of the cells that express both of the ISG15 and
IFITM3 transcripts are from the Nh3 cluster (Fig. 3F), indicating
the enrichment for IFN-related genes in that cluster.
We compared the distribution of the number of genes detected in

cells from each cluster and found that Nh2 neutrophils have a sub-
stantially lower number of genes per cell (Fig. 3G). We then asked
whether this difference was the result of a true biological difference
between the cells in that cluster or an artifact of the clustering algo-
rithm, whereby cells with lower read counts were classified as a dis-
tinct group. To test the latter hypothesis, we performed a down-
sampling analysis, in which we reran the entire analysis pipeline,
but reducing the input reads in one of the samples by 50%. If the
Nh2 cluster was in fact simply the result of cells with lower read
counts being clustered together, then we would expect the down-
sampling of input reads to result in a higher proportion of Nh2
neutrophils. We found no change in the proportion of Nh2 neutro-
phils after down-sampling, in the reduced sample or overall
(Supplemental Fig. 2), indicating that this cluster is unlikely to rep-
resent a clustering artifact driven by cells with lower read counts
and instead more likely represents a distinct cluster of neutrophils
with higher expression of specific genes (Fig. 3B) but lower over-
all transcriptional output.
As with other hematopoietic cell types, neutrophils have been

studied and classified almost exclusively in terms of discrete cell-
surface markers measurable by flow cytometry or immunohisto-
chemistry. To test whether the observed transcriptional subsets cor-
relate to surface expression of one or more of the canonical proteins
that have been used to characterize and group neutrophils, we per-
formed Cellular Indexing of Transcriptomes and Epitopes by
Sequencing, with a custom panel of oligonucleotide-conjugated Abs
targeting CD10, CD11b, CD11c, CD14, CD15, CD16, CD24,
CD33, CD35, CD45, CD66b, CD107a, CD184, and HLA-DR. This
method allows simultaneous measurement of surface protein abun-
dance and transcriptome characterization at the single-cell level
(30). We found that the surface expression level of each of these
proteins was similar among Nh0�Nh3 neutrophils (Fig. 3H,
Supplemental Fig. 3), indicating that these four transcriptional sub-
sets offer a view of circulating human neutrophil heterogeneity that
is independent of the canonical surface proteins that are commonly
used to define and characterize these cells.

Nh2 and Nh3 cells are end points in the transcriptional trajectory of
human neutrophils

An important advantage of scRNA-seq is that it offers an opportu-
nity to study cells along a range of transcriptional states, including
those that fall between theoretically more stable end-point states.
This has, in turn, offered the possibility of ordering single-cell states
along pseudotemporal trajectories (pseudotime), which indicate how
far a given cell has moved along a continuum of biological progress.
We used the R package Monocle 3 (21) to construct a single-cell
trajectory of circulating human neutrophils, with the immature
(Nh0) neutrophils as the root. From this, it is evident that the
Nh2 and Nh3 clusters represent distinct end points in the transcrip-
tional trajectory of circulating neutrophils, while the Nh1 cluster rep-
resents an intermediate state (Fig. 4A). We then looked for genes that
vary between clusters of circulating neutrophils and grouped these
into modules that have a similar pattern of expression. This identified

five modules of coexpressed genes (Fig. 4B), which we mapped back
to the trajectory map. Module 1 genes are most highly expressed in
the immature (Nh0) neutrophil cluster, module 3 genes in the
NEAT1/MALAT1 (Nh2) neutrophil cluster, and module 5 genes in
the IFN (Nh3) neutrophil cluster. The genes in modules 2 and 4 are
more highly expressed in the transitional (Nh1) neutrophil cluster, but
they represent distinct regions along the trajectory: module 2 genes
appear to characterize a transitional state between Nh0 and Nh2 neu-
trophils, whereas module 4 genes characterize a transitional state
between Nh0 and Nh3 neutrophils (Fig. 4C).
Modules of coexpressed genes offer an opportunity to infer com-

mon transcriptional regulatory elements, without the assumptions
and potential biases inherent to inference based on known functions
or on genomic localization with respect to other genes or to DNA
sequence motifs. To infer candidate transcription factors that regu-
late the sets of coexpressed genes in each neutrophil module, we
used BART, a method that relies on experimental evidence of
protein�DNA interactions for >400 known transcription factors
across a variety of cell types (24). We then selected the transcription
factors associated with cis-regulatory elements most likely to regu-
late the coexpressed genes from each module (Irwin�Hall p < 0.01)
and compared these across modules. The modules corresponding to
Nh2 and Nh3 neutrophils have the highest number of predicted tran-
scription factors uniquely associated with them (Fig. 4D). The tran-
scription factors at the intersections of neutrophil modules are also
informative, because the expression of genes encoding specific tran-
scription factors varies along the transition from one neutrophil clus-
ter to another. For example, the genes encoding the transcription
factors FLI1, MAX, SPI1, and YY1 are expressed along the trajec-
tory from the immature (Nh0) to the IFN (Nh3) states, but not in
the MALAT1/NEAT1 (Nh2) neutrophil cluster (Fig. 4E, left). Simi-
larly, the transition from the intermediate (Nh1) cluster to the IFN
(Nh3) cluster is marked by increased expression of genes involved
in NF-kB signaling (Fig. 4E, center). In contrast, the transition from
the intermediate (Nh1) cluster to the NEAT1/MALAT1 (Nh2) clus-
ter is characterized by increased expression of the genes encoding
the transcriptional repressor FOXP1 and the methylcytosine dioxy-
genases TET2 and TET3. To validate the presence of these transcrip-
tion factors at the protein level in circulating neutrophils from healthy
donors, we analyzed mass spectrometry data from a recently pub-
lished study of neutrophils obtained from five healthy donors (31).
Most of the inferred transcription factors were detected at the protein
level in bulk neutrophil preparations, with FCGR3A and FCGR3B as
protein-abundance references (Fig. 4F).
Our results support a model in which Nh2 and Nh3 cells repre-

sent end points in the transcriptional trajectory of circulating human
neutrophils. Distinct sets of transcription factors, at least some of
which are regulated at the level of transcription, orchestrate the tran-
sition from a less mature state (Nh0 cells) to one end-point state or
the other, via an intermediate state (Nh1 cells) that corresponds to
the majority of circulating neutrophils.

A better understanding of neutrophil transcriptional states in healthy
donors can facilitate the interpretation of data from patients

An important potential advantage of a better understanding of neu-
trophil transcriptional states in healthy donors is the ability to con-
trast such states with those of neutrophils obtained from patients
with different infectious or inflammatory diseases. To illustrate this,
we applied our analysis pipeline and subset definitions to raw
scRNA-seq data from low-density granulocytes (LDGs) obtained
from patients with systemic lupus erythematosus (SLE) (32). These
granulocytes layer with PBMCs in a density gradient, are prevalent
in patients with autoimmune diseases like SLE, and have been asso-
ciated with vasculopathy and immune stimulation. It could be
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reasonably hypothesized that LDGs would be strongly enriched for
neutrophils in the Nh0 or Nh3 clusters. Integrating LDGs with
healthy neutrophils, however, it is clear that they contain cells from
all Nh clusters (Fig. 5A), and the proportions of LDGs in each Nh
cluster are similar to those of healthy controls (Fig. 5B). Analyzing
differentially expressed genes in a pseudobulk comparison, there is
increased expression in the lupus LDGs of genes relating to IFN sig-
naling and NF-kB signaling (Fig. 5C, 5D). This is consistent with
the overactivity of type 1 IFN signaling that has been described by
scRNA-seq mononuclear cells from patients with SLE (33). The
large increase in the total IFN gene score seen in lupus LDGs
(Fig. 5E, left) is apparent in all Nh subsets (Fig. 5E, right). These
results indicate that LDGs in patients with lupus have similar rela-
tive representation of neutrophils in different transcriptional states as
neutrophils from healthy donors. They also indicate that the high
expression of IFN-stimulated genes in lupus LDGs results from an
overall increase in transcript abundance for these genes, rather than
an overrepresentation of Nh3 cells among the low-density fraction.

Discussion
Our findings indicate that circulating human neutrophils are tran-
scriptionally heterogeneous cells, which can be classified based on
their transcriptional state into one of four clusters (Nh0�Nh3) that

are highly reproducible among healthy human subjects. We demon-
strate that neutrophils transition transcriptionally from relatively
immature (Nh0) cells, through an intermediate phenotype (Nh1),
into one of two end points defined by either relative transcriptional
inactivity (Nh2) or higher expression of IFN-induced genes (Nh3).
More broadly, our findings demonstrate the feasibility of applying
scRNA-seq to the study of human neutrophils obtained by different
methods, by means of a modified analysis pipeline that significantly
improves the identification of neutrophils in scRNA-seq datasets.
Recent studies have applied scRNA-seq to the study of murine

neutrophil development in states of health or experimental infection
(12, 13), and have found clear evidence of neutrophil transcriptional
heterogeneity. One of these studies also analyzed CD331 cells
sorted from whole blood from a human donor (12), while the other
analyzed a publicly available scRNA-seq dataset generated from
human bone marrow neutrophils as part of the Human Cell Atlas
(13), suggesting that human neutrophils also exhibit distinct patterns
of transcriptional heterogeneity. Our group and others have also pro-
vided recent evidence for transcriptional subsets of human neutro-
phils in scRNA-seq studies of sex differences in neutrophils
obtained from healthy donors (14) and in patients with lung cancer
(15) or COVID-19 (16, 17). However, because of their lower RNA
content relative to other cell types, scRNA-seq with human

FIGURE 4. Nh2 and Nh3 cells are
end points in the transcriptional trajec-
tory of circulating human neutrophils.
(A) Trajectory analysis showing the
learned graph on the UMAP space
with the pseudotime ordering by color.
(B) Heatmap showing unsupervised
classification of genes that vary across
clusters of circulating neutrophils into
five clusters of coexpressed genes.
(C) Correspondence between the five
modules of coexpressed genes and the
four transcriptional clusters of circulat-
ing human neutrophils. (D) Venn dia-
gram of transcription factors associated
with cis-regulatory elements most likely
to regulate the coexpressed genes in
each module. Gene lists from the mod-
ules were used as input in BART. The
overlap across modules for the top-
ranking transcription factors (Irwin�Hall
p < 0.01) is shown. (E) Transcription
factor gene expression changes along the
transcriptional trajectory of circulating
human neutrophils. Three patterns are
shown: transcription factors expressed
along the Nh0-Nh1-Nh3 trajectory, but
not in Nh2 cells (left); transcription fac-
tors expressed in the transition from Nh1
to Nh3 cells (middle); and transcription
factors expressed in the transition from
Nh1 to Nh2 cells (right). (F) Mass spec-
trometry data from bulk neutrophil prep-
arations obtained from five healthy
donors, showing relative protein abun-
dances for the transcription factors in
(E), with FCGR3A and FCGR3B as
abundance references.
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neutrophils remains technically challenging and not well standard-
ized, and it is common in human scRNA-seq studies for neutrophils
to be missing or drastically underrepresented with respect to their
expected proportions (17, 28, 34, 35). One possibility is that nucle-
ases or proteases in neutrophil granules could interfere with the stan-
dard cell capture, cell lysis, or library preparation steps in scRNA-
seq. However, after testing several modifications to the standard
10× Genomics chemistry, we did not find a clear benefit to the
addition of nuclease or protease inhibitors. Another possibility is
that the standard cell-calling algorithms that are routinely used by
most laboratories are not optimal for the differentiation of neutro-
phils from the background distribution of empty capture beads, thus
excluding most neutrophils from downstream analyses. We found
this to be the most likely source of neutrophil underrepresentation
and describe an alternative approach to data analysis that departs
from the raw matrix of UMIs associated with each barcode and con-
siders the observed frequency distribution of features per barcode
(genes per cell). This simple modification to the analysis pipeline
significantly increases the inclusion of cells that, based on their tran-
scriptional profile, clearly represent neutrophils.
We applied the modified analysis pipeline to the study of human

neutrophils purified by immunomagnetic negative selection, with
high viability and without evidence of early apoptosis. We analyzed
72,183 cells and found that circulating human neutrophils can be
consistently clustered into four distinct transcriptional states, which
we have classified as Nh0�Nh3. The global pattern of gene expres-
sion in Nh0 cells is similar to what has been described in bone mar-
row neutrophils (8, 13), with higher relative expression of various
granule proteins and of several members of the S100 family. Trajec-
tory analysis indicates that circulating neutrophils develop from this

relatively immature state into a transitional cluster, Nh1, which is
transcriptionally the least distinct cluster and accounts for a majority
of the captured cells (∼60%). From this cluster, the developmental
trajectory diverges toward one of two end-point states: the Nh2 and
Nh3 phenotypes. Nh2 cells are characterized by higher relative
expression of specific noncoding (NEAT1, MALAT1) or coding
(CSF3R) RNAs, but have a lower overall transcriptional output than
other neutrophils. Accordingly, they also have higher expression of
genes encoding active regulatory elements that are associated with
epigenetic modulation of transcription in neutrophil development,
including TET2 and NELFA (36). In addition, the gene encoding the
transcription factor SPI1 (PU.1), which is a central factor in myeloid
development (37), is highly expressed in all clusters except Nh2.
This end point, therefore, likely represents the mature and transcrip-
tionally quiescent state that has been classically associated with all
circulating neutrophils. The IFN gene�expressing Nh3 cluster is
transcriptionally quite distinct from the Nh2 state. Nh3 cells express
more genes, they have increased expression of IFN-inducible genes
that are not significantly expressed by any other neutrophil cluster,
and based on our results, their expression of key regulatory tran-
scription factors is also distinct. The transition from Nh1 to Nh3 is
associated with increased expression of genes in the NF-kB family
of transcription factors, which are known to play a role in the regu-
lation of neutrophil activation, apoptosis, and NADPH oxidase
activity (38�40). The existence of a subset of circulating neutrophils
that expresses increased levels of IFN-inducible genes is now a
well-validated finding in mouse and human (12�17), and we had
previously shown that there are gender differences in the expression
of the genes in this cluster (14). Our single-cell Western blot results
indicate that this cluster is also likely to be detectable at the protein

FIGURE 5. LDGs from SLE
patients show upregulated IFN-induced
gene expression but normal propor-
tions of Nh clusters. (A) UMAP of
healthy control (n 5 7) neutrophils
integrated with SLE LDGs (n 5 3),
split between healthy control and lupus
cells. (B) Nh cluster proportions in
healthy donor neutrophils and lupus
LDGs. (C) Gene Ontology terms for
the top 50 upregulated genes in a pseu-
dobulk comparison between healthy
neutrophils and lupus LDGs. (D) Top
upregulated and downregulated genes
based on log2 (fold change), in a pseu-
dobulk comparison between healthy
neutrophils and lupus LDGs. (E) Total
IFN-gene score for healthy control and
lupus LDG (left) and IFN-gene scores
by cluster (right).
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level. It is still unknown whether these cells represent neutrophils
that have encountered a specific stimulus in vivo or if they are epi-
genetically committed from a precursor state. In either case, the fact
that the proportion of this cluster is relatively stable among healthy
donors suggests that they represent a steady state rather than an inci-
dental finding related to a recent exposure. More studies in humans
will be necessary, but data from Escherichia coli�challenged mice
suggest that the equivalent cluster of IFN-high neutrophils might
have different bone marrow precursors than other neutrophils (12).
An important advantage of defining the transcriptional states of

circulating neutrophils in healthy donors is the possibility of con-
trasting these states to those of neutrophils from patients or from
human subjects exposed to environmental or pharmacological stim-
uli that might alter neutrophil biology. We illustrate this by analyz-
ing publicly available data we had previously generated on LDGs
from patients with SLE. We found that these cells have a preserved
distribution of Nh0�Nh3 neutrophil transcriptional states, and that
the high expression of IFN-related genes in lupus LDGs occurs in
all clusters and is not the result of expansion of the Nh3 cluster.
Thus, by providing a careful description of neutrophil transcriptional
states in healthy humans, we anticipate that our findings will con-
tribute to the broader goal of understanding neutrophil heterogeneity
in different contexts.
The limitations of this work can be considered in two categories.

First, there are limitations related to the current state of scRNA-seq
technology and data analysis methods. As with all available scRNA-
seq technologies, we rely on a very shallow sampling of the tran-
scriptome of any given cell (50,000 reads per cell in our case, but in
many studies half of that or less). Data analysis methods in scRNA-
seq also rely on linear (principal components analysis) and nonlinear
(UMAP or t-distributed stochastic neighbor embedding) reductions
from a high-dimensional ambient space into two-dimensional repre-
sentations, with inevitable loss of potentially important relations
between cells. The choice of clustering algorithms and parameters
can also drastically affect the results, which highlights the need for
standardized methods and clear reporting. Second, there are limita-
tions related to the scope of our experiments. We focus on a single
scRNA-seq chemistry (10× Genomics), which, although highly
prevalent, is not the only one available. The extent to which our
modified analysis pipeline can be extrapolated or adapted to other
chemistries remains to be determined. Our study is also limited to
circulating human neutrophils, which are of obvious biological
importance but represent a minority of total neutrophils. Finally, the
transcriptional subsets we describe appear to be offering a view of
neutrophil heterogeneity that is independent of the very limited one
afforded so far by a small set of cell-surface markers. There is, at
this time, no reliable way to sort neutrophils based on transcriptional
signatures while preserving viability. Therefore, experimental char-
acterization of possible functional differences among the transcrip-
tional subsets we have described is an important future goal.
Based on our results, we propose that human circulating neu-

trophils are transcriptionally dynamic cells that develop from a
less mature state into one of two distinct transcriptional pheno-
types that cannot be defined by common surface markers. We
also propose that a modified analysis pipeline is necessary for
proper representation of neutrophils in scRNA-seq studies. We
hope that these findings will pave the way for better representa-
tion of neutrophils in scRNA-seq studies, to a better understand-
ing of neutrophil heterogeneity, and to additional studies
exploring the behavior of these transcriptional neutrophil sub-
sets over time (circadian variation or variation over the human
life span), in response to environmental or pharmacological
stimuli, or under different pathological conditions.
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