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Single-cell analysis supports a luminal-
neuroendocrine transdifferentiation in
human prostate cancer
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Neuroendocrine prostate cancer is one of the most aggressive subtypes of prostate tumor.

Although much progress has been made in understanding the development of neuroendo-

crine prostate cancer, the cellular architecture associated with neuroendocrine differentiation

in human prostate cancer remain incompletely understood. Here, we use single-cell RNA

sequencing to profile the transcriptomes of 21,292 cells from needle biopsies of 6 castration-

resistant prostate cancers. Our analyses reveal that all neuroendocrine tumor cells display a

luminal-like epithelial phenotype. In particular, lineage trajectory analysis suggests that focal

neuroendocrine differentiation exclusively originate from luminal-like malignant cells rather

than basal compartment. Further tissue microarray analysis validates the generality of the

luminal phenotype of neuroendocrine cells. Moreover, we uncover neuroendocrine

differentiation-associated gene signatures that may help us to further explore other intrinsic

molecular mechanisms deriving neuroendocrine prostate cancer. In summary, our single-cell

study provides direct evidence into the cellular states underlying neuroendocrine transdif-

ferentiation in human prostate cancer.
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L
ineage plasticity endows cancer cells with the ability to
switch their cellular phenotype1 and is often associated
with more aggressive stages of cancers2. In prostate can-

cer, lineage plasticity contributes to the acquisition of the
neuroendocrine (NE) phenotype3–5, with the emergence of a
highly aggressive variant, termed neuroendocrine prostate
cancer (NEPC)6. Current studies support that NEPC tumors
arise clonally from prostate adenocarcinoma (PCA)7, accom-
panying with a phenotypic transition from acini epithelial
tumor cells to NE-like tumor cells8. This lineage transition
enables tumor cells to evade androgen receptor (AR) pathway
inhibitors such as enzalutamide by shedding their dependence
on the AR pathway4,9. Therefore, understanding the cellular
and molecular basis underlying neuroendocrine differentiation
(NED) of prostatic tumor cells is of important clinical
significance.

The normal prostate gland consists predominantly of cells of
the luminal and the basal compartment with a small minority
of NE cells that are scattered between the luminal and the basal
cell compartment10. Several recent studies have attempted to
uncover the cell of origin of focal NED and even NEPC. As
normal NE cells share many features with malignant NE cells
(for example, expressing SYP and CHGA), it has been pro-
posed that NEPC might arise from transformed NE cells11.
However, genomic studies seem to be supportive of an epi-
thelial origin of NEPC, given that NEPC showed genomic
overlap with PCA, such as TMPRSS2-ERG fusion12,13. Within
the prostatic epithelial cell compartments, both luminal and
basal epithelial cells have been shown to be capable of gen-
erating prostate cancer and even NEPC. For example, Zou
et al.14 have demonstrated that focal NED, as well as eventual
well-differentiated neuroendocrine disease directly arises via
transdifferentiation from luminal adenocarcinoma cells. In
contrast, Lee et al.15 have recently reported that basal cells can
directly give rise to NE cells during prostatic tumorigenesis
without undergoing an intermediate luminal state. In addition,
some studies have suggested that NE cells derived from basal
cells exhibit a loss of basal features and upregulation of luminal
features during NED16,17. Overall, there is no consensus on the
cellular characteristics during the transition from epithelial
tumor cells to neuroendocrine (NE) tumor cells.

Gene expression is a key determinant of cellular phenotypes.
Previous population-based RNA sequencing (RNA-seq)
method has been performed to compare the transcriptional
similarity between prostatic basal and luminal epithelial cells
and suggested that metastatic NEPC molecularly resembled
stem cell in basal compartment18,19. Recent advance in single-
cell RNA sequencing (scRNA-seq) technology has greatly
empowered us to gain a more comprehensive understanding of
the transcriptional signatures of distinct subpopulations of
epithelial cells in human and mouse prostate20–23. However, a
detailed analysis of the cellular states of NED in primary
human prostate cancer at single-cell resolution is still lacking.
Herein, we apply scRNA-seq technology to determine the
cellular identity associated with NED in human prostate can-
cer. Our datasets reveal that a luminal epithelial state is highly
linked with NED of prostate cancer cells. Furthermore, we
show by intra-tumoral RNA velocity analysis that the NE cells
are directly generated by luminal-like adenocarcinoma cells.
Finally, we dissect the transcriptomic landscape underlying
NED and validate single-cell derived NED-related gene sig-
natures in bulk RNA samples. Altogether, our results support
the epithelial-NE transdifferentiation model regarding the
NED in human prostate cancer and offer fresh insights into
cellular states and molecular features associated with this
process.

Results
Single-cell transcriptional profiling of biopsies from 6 CRPC.
Given that focal NED can be more frequently detected in patients
with advanced prostate cancer undergoing ADT but not in pri-
mary prostatic adenocarcinoma24–26, we sought to perform
scRNA-seq on tumor biopsies from CRPC patients. In this study,
we isolated fresh cells from six CRPC patients, four out of whom
were found to have low PSA levels (<20 ng/ml; Table 1, Fig. 1A
and Supplementary Fig. 1), indicating a higher likelihood of
having NED. In these patients, three had received the first-line
therapy of the LHRH analog goserelin coupled with the AR
inhibitor bicalutamide, two had undergone surgical castration
coupled with bicalutamide, while the remaining one was diag-
nosed as small-cell NEPC at the beginning and treated with
chemotherapeutic drug docetaxel. By pathological examination,
biopsy tissues from three patients (#2, #5, and #6) displayed
cellular morphology resembling small-cell carcinoma and biop-
sies from patient #1 and #4 presented a classical PCA phenotype
(Fig. 1B). However, biopsy from patient #3 was characterized as
prostatic intraepithelial neoplasia, which may due to the inaccu-
racy of the biopsy procedure. The clinical and pathologic features
of the biopsy samples are summarized in Table 1.

Then, single-cell suspension from each tissue was subjected to
scRNA-seq by a 10x Genomics-based single-tube protocol with
exclusive transcript counting through barcoding with unique
molecular identifiers27. After exclusion of red blood cells as well
as cells not passing quality controls, we obtained a total of 21,292
high-quality cells at ~2884 genes detected on average per cell
(Supplementary Fig. 2A and supplementary Table 1). Using an
unsupervised graph-based clustering strategy, we manually
classified different cell clusters into eight major cell types with
canonical markers curated from the literature, including epithelial
cells, immune cells (T cells, B cells, myeloid cells, and mast cells),
stromal cells (fibroblasts and myofibroblasts), and endothelial
cells (Supplementary Fig. 2A, B and Supplementary Data 2).

NE cells present an epithelial phenotype. Next, in keeping with
our aim to characterize NED, we sought to identify NE cells by
evaluating the expression levels of 12 well-known NE markers
that have been previously characterized as biomarker or driver
genes of NEPC, such as ASCL1, CHGA/B, and FOXA224,28,29.
Using Seurat scoring strategy, we detected obvious NED in three
patients (patient #2, #5, and #6; Fig. 1C), which is in line with the
pathological results. Notably, we found that NEhigh cell popula-
tion detected in these three patients all belong to the epithelial
cells instead of the non-epithelial cell compartments (Fig. 1C and
Supplementary Fig. 2C, D), supporting an epithelial origin of
NED. In addition, we noticed that majority of epithelial cells from
patient #2 and #5 were scored for a NE phenotype, while only
part of epithelial cells from patient #6 have a NE phenotype
(Fig. 1C), manifesting different extent of NED among these three
patients. Taken together, single-cell analysis showed that three
patients likely have NED and suggested an epithelial origin of
NED in human prostate cancer.

NE cells present a malignant luminal-like phenotype. Having
characterizing an epithelial phenotype of NED, we next focused on
epithelial compartment by computationally removing all non-
epithelial cells and then performing Pearson correlation analysis
on these cells. In order to gain more insight into the molecular
features of NED in each patient, we then scored each cell according
to different lineage/pathway marker genes including epithelial
basal/luminal lineage markers22, AR signature genes30–32, EMT
as well as stem cell genes33 (Supplementary Table 2). This analysis
revealed that most of epithelial cells from patients #2 and #5
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represent an obvious NED phenotype (Fig. 2A, B). In contrast,
epithelial cells of patient #6 were divided into two main groups: a
small population of NE-like cells and the remaining majority NE-

ARhigh cells, which illustrating clear intra-tumoral heterogeneity
regarding NED. Most importantly, by analyzing cellular pheno-
types/states, we found that all NE cells prominently exhibited a
luminal phenotype rather than basal phenotype (Fig. 2A, B). Of
note, AR scores were extremely low in NE cells, which is consistent
with previous findings that AR signaling activity is downregulated
in NEPC34. Previous studies have suggested that the EMT process
and stem cell state might play an important role in inducing
NED35. However, our analysis demonstrated that only NE cells
from patient #5 displayed higher EMT and stemness signature
scores.

We next interrogated malignant identities of NE cells by
performing inferred copy number variation (CNV) analysis on
the basis of the average expression of 101 genes in each
chromosomal region36,37. Inferred CNV analysis supported a
malignant identity of NE cells, as evidenced by remarkable CNVs
(Fig. 2C, D and Supplementary Fig. 3A). Interestingly, most
basal-like epithelial cells lacked CNVs, suggesting that basal
epithelial cells were non-malignant or less malignant. In addition,
we noticed that the epithelial cells of patient #3 had very few
CNVs (Fig. 2C and Supplementary Fig. 3A), which was consistent
with its histologically intraepithelial neoplasia characteristic
(Fig. 1B).

In addition to correlation analysis, we also visualized cell–cell
similarity by UMAP dimension reduction analysis of the 12,861
epithelial cells (Fig. 2E and Supplementary Fig. 3B). This analysis
showed that most KRT5+ basal cells from different samples were
grouped together. In addition, we found that the NE cells of
patient #6 were separated from the remaining epithelial cells in
this patient and located closely to the NE cells from patient #2
and #5, demonstrating a certain degree of transcriptional
similarity between NE cells from different patients. Taken
together, preliminary analyses revealed a malignant feature of
NE cells and showed that most NE cells exhibited a luminal-like
ARlow/− phenotype.

Intra-tumoral analyses identify different extent of focal NED.
To better understand the extent of NED in each individual tumor,
we next investigated intra-tumoral epithelial diversity. Re-
clustering epithelial cells from each tumor combined with heat-
map analysis showed that epithelial cell sub-clusters from each
sample highly expressed luminal cell markers such as KRT8 and
KRT18, while the expression of basal, NE, and AR signature genes
exhibited apparent intra- and inter-tumor heterogeneity (Fig. 3A,
B and Supplementary Data 3). We thus annotated all epithelial
clusters into basal, luminal, and NE subtypes, respectively,
according to their transcriptional landscapes. For example, in
patient #1, we identified a cluster of basal cells (KRT17+; cluster 1
and 7), several clusters of luminal cells (KRT5− KRT8+, cluster 0,
2, 3, 4, 5, and 6). This analysis also confirmed the NE phenotype
of patients #2 and #5 and showed that most clusters in these two
patients uniformly expressed NE markers, manifesting a pure NE
phenotype. Particularly, immunofluorescence (IF) result illumi-
nated that NE cells in patient #2 expressed both NE and luminal
markers (Supplementary Fig. 4). In addition, epithelial cells of
patient #6 consisted of a group of NE cells (cluster 4, expressing
ASCL1, CHGA, and CHGB), a group of basal cells (cluster 8,
expressing KRT5, KRT14, and KRT15) as well as the remaining
ARhigh luminal cells, presenting mixed features of both adeno-
carcinoma and NEPC (Fig. 3B). The most interesting observation
was from patient #4, a histologically diagnosed adenocarcinoma,
in which we found that when compared with other epithelialT
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clusters, cluster 5 preferentially expressed NE markers CHGA and
SYP (Fig. 3B), probably representing a population of early NE
precursors. These observations were further validated by IHC
assays for lineage markers in sections from five samples (Fig. 3C).
For instance, we detected a minority of scattered SYP+ NE cells in
section from patient #4, which may correspond to the cells of
cluster 4 revealed by single-cell analysis. In addition, IHC ana-
lyses of patient #5 samples also showed an overall good con-
cordance with the single-cell transcriptional profiles that SOX2
was intensively expressed, while another NE marker SYP was
almost undetectable (Fig. 3C). Thus, intra-tumoral analysis

confirmed NED in three patients (patient #2, #5, and #6) and
enabled us to detect NE cells in a PCA (patient #4).

Epithelial cellular relationships in patient #4. We next paid
specific attention to patient #4, given that the NE subpopulation
detected in this PCA may represent an early state of transdif-
ferentiation from epithelial toward NE fate. Epithelial cells in
patient #4 were partitioned into four main subtypes: basal
cells (cluster 6, expressing KRT5 and TP63), urothelial-like
cells (cluster 4, expressing UPK1A and GATA3), NE cells
(cluster 5, expressing SYP and EZH2), and luminal cells with a

Fig. 1 Single-cell transcriptomic profiling of 6 CRPC tumors. A Workflow for single-cell extraction, sequencing, and analysis. B Haematoxylin and eosin

(H&E) staining for 6 CRPC patients. The scale bars represent 25 μm. C UMAP plots of cells from six patients with cells colored based on the cell types

(upper row) and NE scores using the well-established NE marker genes (lower row). The minimum score is indicated by light gray and the maximum score

is indicated by blue. The red arrows pointed to high NE score cell population.
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KRT5−UPK1A−SYP−KRT8+ feature (clusters 0–3; Fig. 4A, B).
UMAP visualization suggested that NE cells were tran-
scriptionally closer to luminal cells than basal or urothelial-like
cells. IF analysis of SYP and KRT8 further validated a luminal
phenotype of SYP-expressing cells (Fig. 4C). Interestingly, the
early NED cells and luminal cells shared almost the same CNV
pattern, indicating that they had a common clonal origin (Fig. 4A
and Supplementary Fig. 5A). In contrast, basal cells in this sample
displayed very few CNVs. Thus, the separation of different epi-
thelial subtypes may reflect their marked genomic differences.

A closer relationship between NE cells and luminal-like
malignant cells was further supported by visualization using
Partition-based approximate graph abstraction (PAGA)38

(Fig. 4D). To deepen our understanding of the dynamics of
epithelial to NE transition, we next applied RNA velocity analysis
that predicts the future state of an individual cell by leveraging the
fact that newly transcribed, unspliced pre-mRNAs and mature,
spliced mRNAs can be distinguished in common single-cell

RNA-seq protocols39. Notably, unlike many other existing
computational methods40, RNA velocity analysis does not rely
upon a priori knowledge to set up the starting cell for inferring
the trajectory and thus enable us to more unbiasedly and
accurately predict the cellular differentiation trajectory. Given the
heterogeneous epithelial composition, we utilized scVelo, a
likelihood-based dynamical model that has recently be introduced
to solves the full gene-wise transcriptional dynamics41. This
analysis clearly showed positive velocity from luminal malignant
cells (cluster 3) toward early NED cells (cluster 5; Fig. 4E). In
contrast, KRT5+ basal and UPK1A+ urothelial-like cells were
clustered far from NED cells and did not show a tendency to
progress into SYP+ cells. Therefore, this finding suggested that
luminal-like malignant cells may serve as the direct progenitor
cells responsible for early NED in this patient we analyzed here.

TMA analysis confirms the prevalence of luminal-like NED
phenotype. We next validated the generality of this observation

Fig. 2 NE cells present an epithelial phenotype. A Pairwise correlations between the expression profiles of 12,861 epithelial cells (rows, column) from 6

CRPC samples (color bar). Correlations were calculated across 63 lineage-specific genes (Supplementary Table 2). B Enrichment scores for gene lists

including basal, luminal, NE, AR, stemness, and EMT pathway associated genes. Cells were ordered as in (A). Green indicates a low score and purple

indicates a high score. C Average inferred CNV signals of corresponding cells in (A). Black indicates the high CNV signal (Supplementary Fig. 3). D UMAP

visualization of all 12,861 epithelial cells for the 6 patients with cells colored by the gradient of NE score (top) and average CNV signal (bottom). The

minimum score is indicated by light gray and the maximum score is indicated by blue (top) or black (bottom). E UMAP visualization of all 12,861 epithelial

cells from 6 patients with color-coded for the sample origin which kept concordant with (A).
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in a large population using clinical PC TMAs, which contained
297 cancer tissues (280 PCA, 10 CRPC, and 7 NEPC) (Supple-
mentary Data 4). We carried out triple IF staining for K18,
K5, and SYP to evaluate the basal/luminal phenotypes of
NE cells (Fig. 4F). Consequently, we detected SYP-positive cells in
102 tumors, of which 81% were K18+K5−SYP+, and 5% exhib-
ited both K18+K5−SYP+ and K18−K5−SYP+ characteristics

(Fig. 4G). Notably, no K18−K5+SYP+ cells were found in any of
the 297 cancer tissues. This analysis therefore verified that NED
precursors in human prostate cancer had a prevalent luminal
phenotype. Of interest, a substantial number of the SYP-
expressing tumor specimens came from patients who had not
received any therapy (96/102), demonstrating that NED in fact
occurred much earlier than the development of castration

Fig. 3 Intratumor heterogeneity analyses reveal different extents of NE differentiation. A UMAP visualization of epithelial cell sub-clusters from each

sample. B Heatmap depicting prostate lineage marker genes and AR pathway gene expression levels in epithelial cell sub-clusters from each sample. Those

highlighted in red frame showed cluster 5 in patient #4 and cluster 4 in patient #6 was NE sub-clusters. C Immunohistochemistry (IHC) staining for K5,

K18, AR, SYP, and SOX2 in sections from five samples. Scale bars represent 50 μm.
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resistance, which is in line with previous findings that neu-
roendocrine differentiation is present in 10–100% of localized
PCAs and increases with disease progression42,43. All together,
TMA analysis generally supported the single-cell results, showing
that the most of NED cases in human prostate cancer exhibited a
luminal-like phenotype.

Epithelial cellular relationships in patient #6. Similar to patient
#4, epithelial cells of patient #6 also showed intra-tumoral NED
heterogeneity, which was composed of a small population of NE
cells (cluster 4), a small population of basal cells (cluster 8), and
the vast majority of luminal epithelial cells (Fig. 5A, B). Inter-
estingly, like patient #4, basal epithelial cells in patient #6
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epithelial cells also displayed relatively fewer CNVs compared
with luminal compartment as well as NE cells (Fig. 5A and
Supplementary Fig. 5B), indicating that basal epithelial cells were
less likely to be the direct progenitors of NE cells. The cellular
relationship was further indicated by PAGA (Fig. 5C), showing
that NE cells in this sample still connected with luminal-like
tumor cells. We next inferred cellular dynamics using RNA
velocity, which predicated similar cellular processes that NED in
this sample was exclusively branched from luminal cells (Fig. 5D).
We further sought to identify genes that display pronounced
dynamic expression patterns linked to the transition state toward
a NE fate (Supplementary Data 5). As expected, signatures of AR
signaling such as KLK2 and KLK3 were notably downregulated
along with the emergence of NE phenotype (Fig. 5E). We then
paid attention to genes that were positively correlated with NED.
Within the top-ranked likelihood genes, we found ASCL1, a key
transcription factor for neuronal differentiation44, which has also
been associated with NED in prostate cancer45 (Fig. 5E). In
addition, this analysis also illustrated many unknown genes that
might serve as the potential drivers or biomarkers of the NED
transdifferentiation, for example, VGF, SCGN, and PAPPA2, the
roles of which in NEPC have not been reported. Altogether,
deeper analyses of epithelial cell relationships in this sample also
suggested that malignant cells with a luminal phenotype fuels the
development of NE cells.

Identifying NED-associated gene meta-programs. We next
sought to understand the underlying molecular features asso-
ciated with NED. For this purpose, we applied non-negative
matrix factorization (NMF) to define underlying transcriptional
programs specific to the epithelial cells from each tumor46,47

(Fig. 6A and Supplementary Data 6). To relate these meta-
programs to cell phenotypes, we scored these ordered cells
according to basal, luminal, NE, EMT, AR, and cell cycle marker
genes (Fig. 6B). This analysis revealed three meta-programs
highly associated with NED (P1, P2, and P4). For example, meta-
program P1 was characterized by neuroendocrine markers such
as CHGB and CHGA and meta-program P2 contained NE-related
transcriptional factor (TF) EZH2 and DLX5, a homeobox
transcription-factor gene. DLX5 has been recently reported to
mark delaminating neural crest cells during development48. Of
note, neural crest cells can differentiate into numerous derivatives
including neuroendocrine cells49,50, implying a potential role of
this gene in participating NED of prostate cancer cells. Moreover,
we identified a cell cycle-related meta-program (P3) that was
obviously upregulated in NE cells of patient #2 and #5), likely
reflecting well-differentiated NE state of these two tumors. More
interestingly, meta-program P2 was specifically associated with
patient #2, while meta-program P4 was preferentially expressed in
patient #5, suggesting two kinds of NED features.

We next asked whether the NE-related gene meta-programs
derived from single-cell data could robustly reflect the NED in
bulk expression profiles. Thus, we used three bulk-transcriptomic
datasets7,30,51, which included both CRPC and NEPC patients.
We first performed correlation analysis between the expression of

all genes from three meta-programs (P1, P2, and P4) and the NE
score defined by the average expression of well-established NE
markers to screen out genes that were most relevant to NED. This
analysis identified 121 genes highly correlated with the NE score
(Pearson R ≥ 0.3; Fig. 6C and Supplementary Data 7). Consis-
tently, we found that by plotting their expression in the five
groups of samples that was defined by the expression patterns of
NE and AR activity genes30, most genes displayed evidently
higher expression in the AR−NE+ group than in NE− groups
(Fig. 6D). Thus, NED-associated gene signatures derived from
single-cell data can provide reliable clues for distinguishing
human NEPC and searching for undescribed drivers involved
in NED.

Identifying NED-associated transcription-factor regulatory
network. The above NMF analysis revealed that two well-
differentiated NEPC displayed distinct NED signatures. To
explore the underlying molecular mechanisms driving the distinct
NE differentiation phenotypes, we next used single-cell regulatory
network inference and clustering (SCENIC) to identify the co-
expressed transcription factors and their putative target genes, as
an indicator of transcription-factor regulatory activity52. SCENIC
analysis showed that NED from different patients could upre-
gulate the expression of different transcription-factor networks
(Fig. 7A). For instance, DLX6 and ASCL1 regulons were highly
active in NE cell of patient #2, whereas expression of FOXA2 and
SOX21 network was restricted in NE cells of patient #5. In line
with reports that SOX2 is essential for NED in prostate cancer, we
found that SOX2 regulon was upregulated across almost all NE
cells from patient #2 and #5 (Fig. 7A). Thus, single-cell regulatory
network analysis provided an explanation for the divergence of
NED from our patient cohort. In addition to many well-
established NE-related TFs identified in this analysis (such as
SOX2 and ASCL1), it also predicted many neuronal
differentiation-related TFs that might also be involved in NED.
For instance, expression of LHX2 has previously been shown to
confer neuronal competency for activity-dependent dendritic
development of cortical neurons53, but its role in NED of prostate
cancer remains undetermined and need future studies to clarify
their specific roles.

Next, we analyzed TF regulons of epithelial cells from two
patients with intra-tumoral NED heterogeneity. Analysis of
patient #4 revealed that NE subpopulation specifically upregu-
lated transcriptional activities of NKX2-2, HES6, FOXA2, and
ASCL1, all of which have been previously reported to be essential
for a variety of neural cell types’ differentiation (Fig. 7B, C). The
intra-tumoral heterogeneity in terms of TF activity was also
observed in patient #6, showing that NE subpopulation has
obviously higher TF activities of SOX2 and FOXA2 (Fig. 7D, E).
In addition, NE subpopulation strongly upregulated activities of
UNCX and CELF5 regulatory networks, which have been both
reported to involve in maintaining neural cell survival or
promoting some neuron diseases54,55. Overall, TF network
analysis revealed both known and unknown NED-associated

Fig. 4 Epithelial cellular relationships in patient #4. A UMAP visualization of epithelial cells from patient #4 with color-coded for the corresponding sub-

cluster (left) and the average inferred CNVs signals (right; gray to black). B Dot plots of the expression level of NE, urothelial-like, basal and luminal lineage

markers across the populations shown in (A) (Source data are provided as Supplementary Data 1). C Immunofluorescence (IF) co-staining for K18 (red)

and SYP (green) in sections for patient #4. Scale bar represents 100 μm. D The PAGA graph and connectivity scores of the populations shown in (A).

E Velocities of epithelial cells from patient #4 are visualized as streamlines in a UMAP-based embedding, in which color-coded for the corresponding

populations shown in (A). F Representative confocal fluorescence microscopy of triple co-staining of SYP (green), K18 (gray), and K5 (red) in PC TMA

sections. The SYP+NE cells have three subtypes: K18+K5−SYP+, K18−K5−SYP+, and K18+K5+SYP+. Scale bars represent 25 μm. G Pie chart of statistics

for PC TMA co-staining results showing that the major part of prostate cancers contain NE cells with exclusive luminal phenotype (K18+SYP+,83/102).
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Fig. 5 Epithelial cellular relationships in patient #6. A UMAP visualization of epithelial cells from Patient #6 with color-coded for the corresponding sub-

cluster (top) and the average inferred CNV signal (bottom; gray to black). B Dot plots of the expression level of NE, basal, and luminal lineage markers

across the populations shown in (A) (Source data are provided as Supplementary Data 1). C The PAGA graph and connectivity scores of the populations

shown in (A). D Velocities of epithelial cells from patient #6 are visualized as streamlines in a UMAP-based embedding, in which color-coded for the

corresponding Seurat cluster in (A). E Phase portraits (upper row) and expression dynamics along latent time (lower row) for specific genes selected from

top-ranked likelihood gene set (gene likelihood >0.2).
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Fig. 6 Intra-tumoral meta-programs underlying NED. A Heatmap showing scores of 12861 epithelial cells (column, from 6 CRPC patients) for each of 60

programs (rows) derived from NMF analysis of individual samples. Cells and programs are hierarchically clustered, and 3 NE-related meta-programs (P1,

P2, and P4) and a cell cycle-related meta-program (P3) are highlighted. B Enrichment scores of prostate lineages: basal, luminal, NE marker genes and AR,

stemness, EMT, and cell cycle pathway genes in cells ordered as in (A), with the color-coding for the corresponding CRPC sample. C Pearson correlation

between the expression of genes of P1, P2, and P4 and the NE score, as measured by the average expression of 14 known NE markers. Three previously

published bulk RNA-seq datasets were used in this analysis, as described in the “Methods” section. Highlighted in red are some known NED genes (Source

data are provided as Supplementary Data 1). D Heatmap depicting strong expression of 121 genes (Pearson R≥ 0.3, as measured by Pearson correlation

analysis shown in (C) in AR−NE+ group of Morrissey dataset. Total samples are divided into five groups as previously suggested in ref. 40.
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Fig. 7 Transcription-factor regulatory networks underlying NED. A Heatmap of SCENIC binary regulon activities (row) and NE scores (row) of 12,861

epithelial cells (column). Three TF regulatory networks with high activities in NE cells were highlighted. B Heatmap of the mean regulon activities (row)

that differentially expressed on epithelial clusters (column) of patient #4. C t-SNE on the SCENIC regulon activity matrix and the representative regulon

activities on epithelial cells from patient #4. Cells are colored by the corresponding cluster and gradient of regulon activity (gray to red). D Heatmap of the

mean regulon activities (row) that differentially expressed on epithelial clusters (column) of patient #6. E t-SNE on the SCENIC regulon activity matrix and

the representative regulon activities on epithelial cells from patient #6. Cells are colored by the corresponding cluster and gradient of regulon activity (gray

to red).
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TFs and offered more insight into both intertumoral and intra-
tumoral heterogeneity regarding NED.

Discussion
In this study, we generated 21,292 single-cell transcriptomes from
6 CRPC patients with a focus on the cellular phenotypes asso-
ciated with NED. We detected NED in four tumors, in which all
of the NE cells exhibited a luminal rather than basal epithelial
phenotype. It is important to note that in two tumors that contain
both NE cells and non-NE epithelial cells (patient #4 and #6),
there is clear cell fate transition tendency from luminal-like
adenocarcinoma cells toward NE cells (Figs. 4E, 5D). Thus, our
finding has identified the transdifferentiation process that has
been proposed for a long time in explaining NED in prostate
cancer. Although previous genomic analyses have suggested that
NEPC are clonally derived from PCA that usually present
luminal-like phenotype7,12,13, this is the first study to our
knowledge that has shown the cellular diversity in human CPRC
as well as the cellular phenotypes associated with NED at single-
cell resolution.

Our current study is limited regarding the total number of
samples that contain NED for analyses. To unbiasedly evaluate
the cellular phenotypes associated with NED, we next performed
triple IF staining against KRT5, KRT8, and SYP on our large
cohort of PC TMAs. We found that the luminal-like malignant
phenotype of NE cells (K5−K18+SYP+) is mainly detected in
adenocarcinomas (Fig. 4G). Therefore, this results further con-
firmed a closer relationship between NED and a luminal state
rather than basal state in human prostate cancer. It should be
noted that our results do not exclude the probability that basal
cells serve as cells of origin of NEPC. According to in vivo cell
lineage tracing studies, both basal and luminal cells are capable of
initiating prostate tumorigenesis56. In particular, prostate cancer
originated from human basal cells gradually loss basal features
and upregulation of luminal hallmarks16,57. Based on these
findings and our current results, we propose a model that PCA
can be initiated from both basal and luminal cells, while focal and
eventual NEPC is more likely to be made by NE precursors with
luminal phenotype (Fig. 8). We also consider the possibility that a

direct basal-NE transdifferentiation may happen. If NE cells are
directly transdifferentiated from basal cells, we would expect to
see hybrid cells with both basal and NE phenotypes more fre-
quently. However, our analysis in PC TMAs reveals that only
about 1% of patients (1/102) contain SYP+ cells that express both
K8 and K5 in adenocarcinoma tissues argue strong for
the notion that such direct basal-NE transdifferentiation is likely
rare in human prostate cancer, but rather luminal-NE transdif-
ferentiation is fundamentally responsible for phenotypic transi-
tion from acinar adenocarcinomas toward NEPC. Interestingly, a
recent cell lineage tracing study using TRAMP mouse
models (p63-CreERT2;Rosa-LoxP-STOP-LoxP-tdRFP;TRAMP
and K8-CreERT2;Rosa-LoxP-STOP-LoxP-tdRFP;TRAMP) has
demonstrated that NEPC is directly originated from basal pro-
genitor cells but not luminal cells or pre-existing KRT8+ ade-
nocarcinoma cells15. This observation is different from the results
obtained from the double p53 and Pten knockout-induced PCA
mouse model in which all NEPC cells were transdifferentiated
from NKX3.1-expressing luminal cells. According to our results,
we are inclined to think that a transformed basal cell would first
differentiate to a luminal-like tumor cell and then execute NED
process. Nevertheless, future single-cell studies of serial tumor
samples from individuals will be needed in principle to map the
cellular dynamic involved in NED process as much as possible.

Our next aim is to explore the signature genes driving NE
transdifferentiation. By performing NMF analysis, we further
identified three gene meta-programs consisting of many genes
highly correlated with NED (Fig. 6A). The bulk datasets analysis
has validated the robustness of this result, showing that most
genes are evidently expressed in patients with NED (Fig. 6D).
Interestingly, we found that two well-differentiated NEPCs
(patient #2 and #5) seem to have distinct NED programs. SCE-
NIC analysis highlighted that the heterogenous NED might be
determined by distinct TF networks. Nevertheless, the exact role
of many identified genes in prostate cancer, especially NEPC, is
unknown and needs further comprehensive investigation.

In summary, our single-cell study has disentangled both intra-
and intertumoral heterogeneity regarding NED in human pros-
tate cancer and characterized both cellular phenotypes and

Fig. 8 Cellular relationship and disease progression model of NEPC. Schematic illustration of tumor evolution toward the neuroendocrine phenotype, in

which dotted arrows indicate the potential relationship between cell lineages and the solid arrows indicate that NEPC is directly originated from AR-

dependent tumor cells. In this model, we suppose that the NE precursor, AR-independent tumor cell, directly transdifferentiates from the luminal-like tumor

cell, and that is the precursor, which will next evolve in forming the focal NEPC and finally progress to small-cell (pure) NEPC. The extent of AR and NE

signature scores varies over the spectrum of adenocarcinoma to neuroendocrine transdifferentiation (orange indicates a high level of AR signal and green

indicates a high level of NE signal).
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molecular features linked with the luminal to NE transdiffer-
entiation. Understanding the progressive trajectory of NED will
benefit the development of early diagnosis and even therapeutic
treatments for human NEPC.

Methods
Patient selection. With a focus on neuroendocrine prostate cancer, the partici-
pating patients were required to meet the following requirements: (1) the patients
must have developed resistance to castration therapy; (2) CT imaging showed an
apparent prostate tumor (Supplementary Fig. 1A). In addition, we preferentially
selected patients whose circulating PSA level was lower than 20 ng/ml. The patient
information is described in detail in Table 1. The present study was approved by
the Institutional Ethics Review Board of Ren Ji Hospital, Shanghai Jiao Tong
University School of Medicine, and written informed consent was obtained from
every patient.

Isolation of single cells. Prostate biopsies were transported to the research
laboratory on ice in DMEM/F12 (Gibco, 11320033) with 3% FBS (Gibco, 10099-
141) within 30 min of collection. Each specimen was equally separated into two
fragments. One fragment was processed for histopathological assessment, and the
remainder of the provided tissues was processed for scRNA-seq. In brief, fresh
tumor samples were minced and place in a 1.5 ml Eppendorf tube, where they were
enzymatically digested with collagenase IV (Gibco) and DNase I (Sigma) for 1 h at
37 °C with agitation. After digestion, samples were sieved through a 70-μm cell
strainer, washed with 1% BSA and 2 mM EDTA in PBS, and centrifuged for 5 min
at 350 × g. Single-cell suspensions were subjected to Lympholyte-H separation
(Cedarlane, CL5020) to remove RBCs and debris according to the manufacturer’s
specifications. Pelleted cells were then resuspended in DMEM/F12 with 3% BSA
and were assessed for viability and size using a Countess instrument (Thermo).

Single-cell library preparation and sequencing. A total of 5000 cells per sample
were targeted for capture. Then, the cell suspension of each sample was run in the
Chromium Controller with appropriate reagents to generate single-cell gel bead-in-
emulsions (GEMs) for sample and cell barcoding. The libraries were then pooled
and sequenced on a NovaSeq 6000 (Illumina) at a depth of ~400 M reads per
sample.

Single-cell data preprocessing and quality control (QC). Raw sequencing data
were converted to FASTQ files with Illumina bcl2fastq, version 2.19.1, and data
were aligned to the human genome reference sequence (GRCH38). The CellRanger
(10X Genomics, 2.1.1 version) analysis pipeline was used for sample demulti-
plexing, barcode processing, and single-cell 3′ gene counting to generate a digital
gene-cell matrix from these data. Of note, Cell Ranger filters any barcode that
contains <10% of the 99th percentile of total UMI counts per barcode, as these are
considered to be associated with low-quality cell barcodes. This processing resulted
in an average of 160,233 reads per cell, and an average of 2884 genes were detected
per cell (Supplementary Table 1). The gene expression matrix was then processed
and analyzed by Seurat (version 3.0) and an R toolkit (https://github.com/satijalab/
seurat), using the software R (version 3.6.0). We performed Seurat-based filtering
of cells based on the number of detected genes per cell (500–7000) and the per-
centage of mitochondrial genes expressed (<10%). The mitochondrial genes and
ribosomal genes were also removed from the gene expression matrix. Following
quality control, 21,292 high-quality cells were retained with an average of 2419
genes were detected per cell (Supplementary Table 1). Each single-cell dataset was
then processed by SCTransform from the Seurat package, which contained the
function of normalization, regression, and identification of variable genes.

UMAP visualization and cell-type annotation. We used UMAP58 to visualize the
clusters of cells that passed quality control for each sample. Clusters were asso-
ciated with cell types based on the scores of differential expression of well-
established marker genes for each cell type: T cells (CD2, CD3D, CD3E, and CD3G),
B cells (CD79A, CD79B, CD19, andMS4A1), myeloid cells (CD14, CD68, AIF1, and
CSF1R), mast cells (MS4A2, ENPP3, PCER1A, and KIT), fibroblasts (DCN,
TNFAIP6, APOD, and FBLN1), myofibroblasts (MYH11, GJA4, RGS5, and MT1A),
endothelial cells (ENG, CLDN5, VWF, and CDH5) and epithelial cells (EPCAM,
KRT8, KRT5, and CDH122,37,59–62.

Defining cell scores. We used Seurat AddModuleScore function to evaluate the
degrees to which individual cells express a certain pre-defined gene set as described
previously37,63. For example, the NE gene set included ASCL128, FOXA264, NKX2-
130,MYCN16, POU3F265, INSM166, SIAH229, NCAM1, CHGA/B, SYP, and ENO267

(Fig. 1C). Using the same approach, we defined scores to estimate the activities of
prostate cell lineages/pathway corresponding to basal, luminal, NE, AR pathway,
EMT state, and cell stemness from previous literatures4,22,29–33,64,66,68,69 (Figs. 2B,
6B). The detailed gene list can be found in Supplementary Table 2.

Inferred CNV analysis from scRNA-seq. Large-scale CNVs inferred from single-
cell gene expression profiles using a previously described approach (https://github.
com/broadinstitute/inferCNV/wiki)36,37. To determine the distinct chromosomal
gene expression pattern of epithelial cells in comparison to putative noncarcinoma
cells, we set normal prostate epithelial cells from a dataset which contains 78,286
prostate epithelial cells captured by Henry et al. from three health men22 as the
“reference” cells. In addition, those genes expressed in fewer than 200 cells were
removed from the count matrix. Average expression was calculated using the log-
transformed data (log2[1+UMI]), and absolute values of fold change were bound
by 3. All genes were sorted by their chromosome number and start position. The
chromosomal expression patterns were estimated from the moving averages of 101
genes to determine the window size, and they were adjusted as central values across
genes. Finally, the average CNV signal was estimated by averaging the CNV
modification for 22 autosomes.

Multiple datasets integration and Batch correcting. For merging multiple
datasets, we applied Harmony integration70, which has been shown to reduce
technical batch effects while preserving biological variation for multiple batch
integration. RunHarmony returns a Seurat object, updated with the corrected
Harmony coordinates. The manifold was subjected to re-clustering use the cor-
rected Harmony embeddings rather than principal components (PCs), set reduc-
tion= ‘harmony’, with parameters of Seurat analysis.

Differential gene expression analysis. DEGs in a given cell type compared with
all other cell types were determined with the FindAllMarkers function from the
Seurat package (one-tailed Wilcoxon rank-sum test, P values adjusted for multiple
testing using the Bonferroni correction). For computing DEGs, all genes were
probed provided they were expressed in at least 25% of cells in either of the two
populations compared and the expression difference on a natural log scale was at
least 0.25.

RNA velocity. RNA velocities were predicted using velocyto in R program
(http://velocyto.org, version 0.6)39,41. Briefly, spliced/unspliced reads were anno-
tated by velocyto.py with CellRanger (version 2.2.0), generating BAM files and an
accompanying GTF; then, they were saved in .loom files. The .loom files were then
loaded to R (version 3.6.0) using the read.loom.matrices function, and they gen-
erated count matrices for spliced and unspliced reads. Next, the count matrices
were size-normalized to the median of total molecules across cells. The top 3000
highly variable genes are selected out of those that pass a minimum threshold of 10
expressed counts commonly for spliced and unspliced mRNA. For velocity esti-
mation, we use the default procedures in scVelo (n_neighbors=30, n_pcs=30). In
consideration that the assumptions of a common splicing rate and the observation
of the full splicing dynamics with steady-state mRNA levels were often violated, we
used the function recover_dynamics, a likelihood-based dynamical model, to break
these restrictions. Finally, the directional flow is visualized as single-cell velocities
or streamlines in the UMAP embedding with the Seurat cluster annotations.

Connectivity of cell clusters. To identify potential developmental relationships of
cell clusters in patient #4 and #6, we utilized the partition-based graph abstraction
(PAGA)38 to estimate any potential developmental relationships among the three
prostate lineages. The computations were performed on the same subset of variable
genes as for clustering, using the default parameters.

Identification of epithelial gene meta-programs. Transcriptional programs were
determined by applying NMF as previously described46,47. Analysis was performed
for the epithelial cells only. We set the number of factors to 10 for each tumor. For
each of the resulting factors, we considered the 30 genes with the highest NMF
scores as characteristics of that given factor (Supplementary Data 6). All single cells
were then scored according to these NMF programs. Hierarchical clustering of the
scores for each program using Pearson correlation coefficients as the distance
metric and Ward’s linkage revealed four correlated sets of programs with our focus.

SCENIC. In order to further investigate the gene regulatory networks (GRNs) in
process of NED, we applied SCENIC52 workflow to reconstruction the GRNs. The
input matrices for SCENIC of every single sample was the corrected UMI counts in
“SCT assay” of Seurat, in which we removed the variation of mitochondrial
mapping percentage. For the combined sample (epithelial cells of 6 patients),
Combat71 was run to correct for “patient of origin” as source of batch effect.
Following the standard procedure of SCENIC, we used GENIE3 (for single sample)
and GRNBoost (for combined sample) to identify potential TF targets. Besides, the
activity of each regulon in each cell is evaluated using AUCell, which calculates the
Area Under the recovery Curve, integrating the expression ranks across all genes in
a regulon. Finally, we used the default “AUCCellThreshholds” for each regulon as
the threshold to binarize the regulon activity scores and created the “Binary reg-
ulon activity matrix”. The motifs database for Homo sapiens was downloaded from
the website https://pyscenic.readthedocs.io/en/latest/.
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Bulk dataset analysis. Bulk-transcriptomic data were collected from Morrissey
et al. (GEO:GSE126078)30, Beltran et al. (https://www.cbioportal.org/study/
summary?id=nepc_wcm_2016)7, and Charles L. Sawyers et al. (https://github.com/
cBioPortal/datahub/tree/master/public/prad_su2c_2019)51. To estimate the corre-
lation of the P1, P2, and P4 meta-program with NED, we first defined an NE score
by gene set variation analysis (GSVA)72,73 for every sample in these bulk RNA-seq
data, and the NE markers we used are listed in the materials. Then, we filtered cell
cycle-related genes from the gene list of the three meta-program and performed
Pearson correlation coefficient analysis of the remaining genes.

Tissue microarrays. Tissue specimens from 297 patients who underwent radical
prostatectomy were collected for the construction of tumor microarrays (TMAs),
and then the specimens were cut into 5-μm-thick sections using a standard
microtome. These tissue cores were assessed by uropathologists to determine
tumor stages according to the haematoxylin and eosin staining results (Supple-
mentary Data 4).

Immunohistochemistry (IHC) and immunofluorescence (IF). Formalin-fixed
and paraffin-embedded tissue sections (5 μm) were deparaffinized and rehydrated.
Antigen retrieval was carried out using 10 mM sodium citrate (pH 6.0) in a
microwave oven. For DAB staining, endogenous peroxidase activity was blocked
with 0.3% hydrogen peroxide for 10 min and 5% BSA in PBS for 1 h. Slides were
incubated overnight at 4 °C with a primary antibody, which was followed by
incubation with an HRP-linked secondary antibody (CST) at room temperature
(30 min). Diaminobenzidine (DAB) was used as chromogen, and the sections were
counterstained with haematoxylin. For immunofluorescence staining, the sections
were washed with PBS and transferred to a blocking solution (10% normal donkey
serum in PBS) for 1 h at room temperature. After blocking, specimens were
incubated overnight at 4 °C with diluted primary antibodies. The next day, slides
were washed with PBS three times for 10 min each, and then they were incubated
for 1 h at room temperature with secondary antibodies conjugated to Alexa-488,
-555, or -647, which were diluted with PBS containing 1% normal donkey serum
(1:1000). Then, the secondary antibody was rinsed, and the slides were washed
three times with PBS before being mounted with Vector Shield mounting medium
containing DAPI (Vector Laboratories, H-1200).

Image acquisition. IF images were acquired using a Zeiss LSM 710 confocal
microscope and were processed by ZEN Imaging Software. IHC images were
acquired using an Olympus BX53 System Microscope.

Primary antibodies. The following antibodies were used in these studies: anti-
SOX2 (Abcam, ab236557), anti-AR (Abcam, EPR1535(2)), anti-Cytokeratin 5
(Abcam, ab52635; For IHC), anti-CK5 (Biolegend, 905904; For IF), anti-SYP (Cell
Signaling Technology, #36406), and anti-K18 (ProteinTech, 66187-1-Ig).

Statistics and reproducibility. Statistical analysis was performed using R (version
3.6.0) and GraphPad Prism (version 8). Wilcoxon rank-sum tests were used in this
study and are described in each figure. Detailed descriptions of statistical tests are
specified in the figure legends.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The scRNA-seq data were deposited in the NCBI Gene Expression Omnibus (GEO)

database under accession number GSE137829. Source data underlying plots shown in

figures are provided in Supplementary Data 1. All relevant data are available from the

authors upon reasonable request.
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